
T-chamber at AGHS

Gianluca Cavoto - Sapienza and INFN Roma
Ptolemy meeting in Genova
Nov 2024

Demonstration of graphene hydrogenation

Use thermal cracking in vacuum

Gap Opening in Double-Sided Highly Hydrogenated Free-Standing Graphene

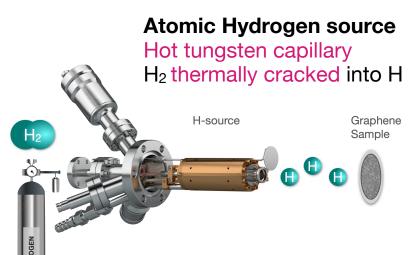
- Nanoporous graphene (NPG) as substrate
- X-ray spectroscopy to see sp³ bonds to measure hydrogen uptake

M.G.Betti et al. Nano Lett. 2022, 22, 7, 2971-2977

Tritium on graphene

Hydrogen and deuterium share the **same chemistry** with tritium (Still interesting in future do some spectroscopy on graphene-tritium system)

Port the graphene hydrogenation technique to tritium storage on graphene (and other carbon nanostructure in future)


Start with **NPG** since self-standing and proved to allow large uptake

Goals

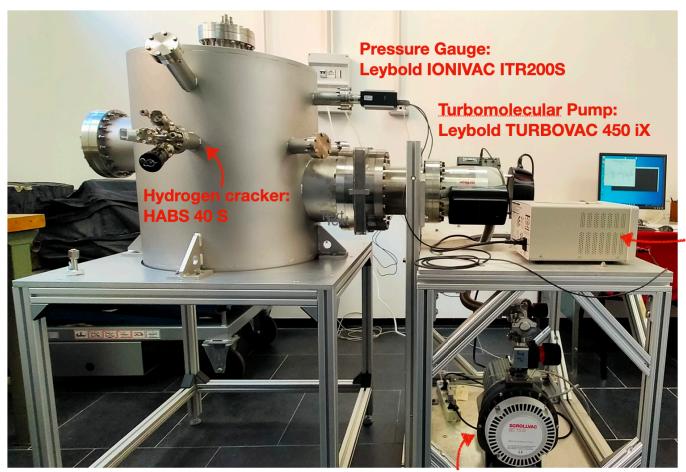
- ▶ Have a < 1 GBq solid atomic tritium target</p>
 - Less troubles with radio safety regulations
- Use carbon nanostructure as support
 - Well defined position in the apparatus, well defined potential
- Demonstrate the solid target is stable (i.e. no tritium release) at room temperature
 - To be certified according to radio-protection standards
- Measure
 - Radioactivity activity
 - band gap, resistivity
- First **beta spectrum** measurement

Concept for graphene target production

- Use thermal cracking (2400 K) of hydrogen molecule
 - Atomic thermal hydrogen flowing onto the sample with a thermal kinetic energy

Mass Spectrometer

In order to measure H₂ flux And to control possible contaminations

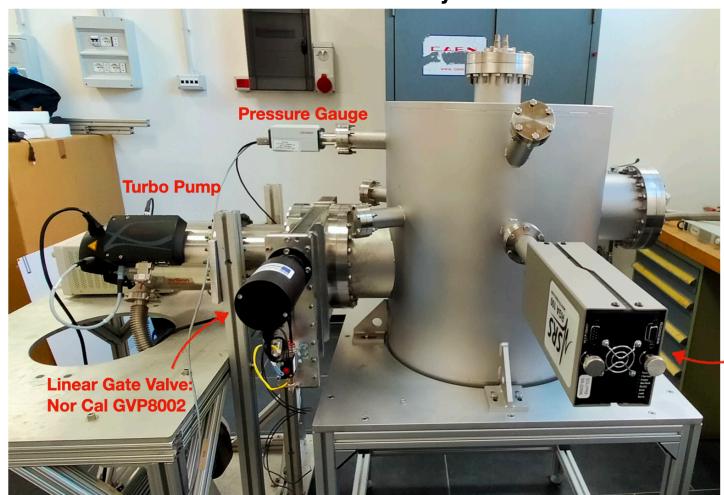


UHV chamber base pressure goal: 10⁻¹⁰ ₋ 10⁻⁹ mbar

Using **commercial components** (reproduced in several experiments now in Roma and RomaTre)

T-chamber at Sapienza

Financed by Princeton U.

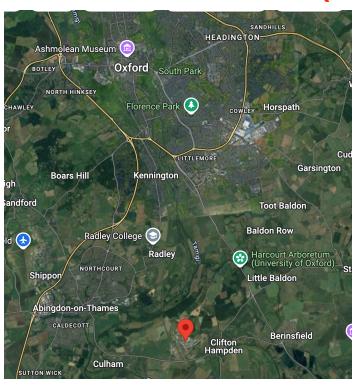


Power Supply: -- RS Pro

Scroll Pump: Leybold SCROLLVAC SC 15 D

T-chamber at Sapienza - right view

Financed by Princeton U.

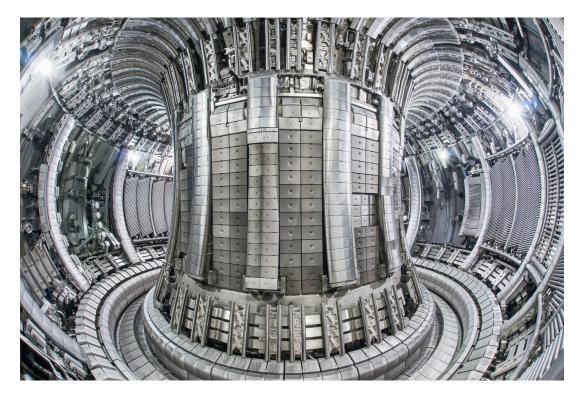


Quadrupole Mass Spectrome SRS RGA 100

- Currently working on operating T-chamber at Sapienza
 - Optimize deuterium deposition (flow, pressure, position of the sample)
 - Characterise exhaust gas (deuterated water ?)
- How can we get tritium ?

Culham Science Center (UK)

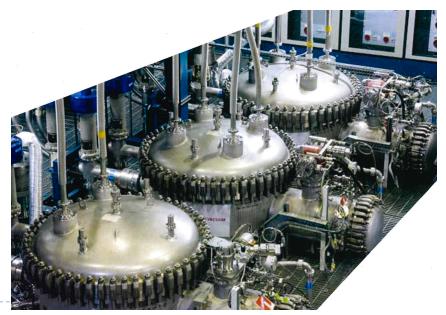
Close to Oxford (UK)



Tritium is here

JET Tokamak at Culham

- https://ccfe.ukaea.uk/ : Culham Center for Fusion Energy
- European site to study fusion



I visited the facility on Sep 20th (one day "course" on tritium handling)

AGHS

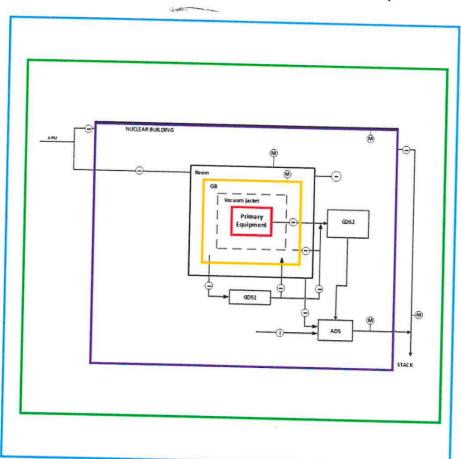
- JET stopped operation recently (D-T reaction)
 - Now in a decommissioning phase
- ▶ The UKAEA's Active Gas Handling System (AGHS) is the facility they operated at Culham to handle tritium for JET
 - A entire building quite busy for a variety of operation:
 - Confinement by containment
 - Impurity processing
 - Isotope separation
 - Storage and supply
 - Gas and Water detritiation

When not in use, tritium sits in depleted Ur beds

H3AT (heat)

- From their official brochure:
 - ▶ The Hydrogen 3 Advanced Technology centre (H3AT) will provide
 - opportunity for academia, industry and partners to benefit from
 - the tritium technology centre (infrastructure to handle tritium)
 - ▶ The high level of **technical expertise** (training and **R&D**)

A flexible suite of **enclosures** designed to enable a wide variety of experimental work, including: **pure tritium science**, **process development**, component testing and waste detritiation


Laboratory for H3AT still in construction Apparently interested to collaborate to our project of tritium on graphene

But

H3AT is a medium term project (AGHS is in fact in another building now...)

Principle of containment

Primary Containment

– process volumes

Secondary Containment – recovery systems

Tertiary Containment – building & radiation workers

Site Boundary - site workers

Environment - general public

T-chamber (may be smaller?)

Glove box to contain T-chamber

 AGHS provides the inlet and outlet gas pipe for tritium (and all the infrastructure for handling)
 Space in the current AGHS building

Glove box

- Likely
 much smaller but
 should contain
 T-chamber and
 pumps and a
 handling system
 for the sample
- The tritiated graphene should be extracted from T-chamber and kept in vacuum

Shipping of the sample

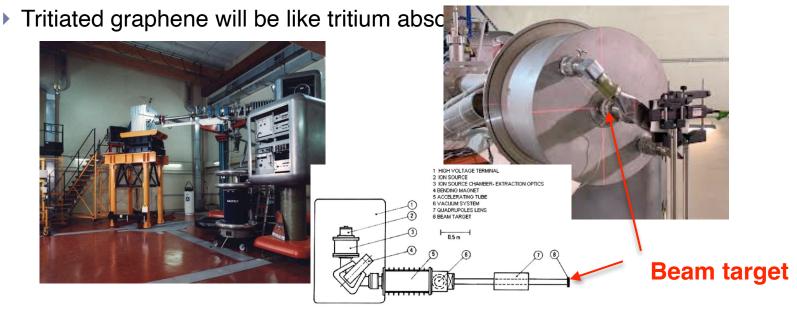
- There are clearly legal issues (tritium inventory, etc.) but they can be overcome
- ▶ Technically: we need a special <u>suitcase</u> to ship a sample to be kept in vacuum

NB: AGHS bought tritium from Canada reactors: shipped

in depleted Ur beds

First test in Italy

- Contact with ENEA INMRI
 - Still interested in evaluating radioactivity and stability with standard radio-metrology procedures
- A legal statement on the stability of the radioactive source might be obtained.
- One relevant different with hydrogen: tritium can induce radiolysis of the substrate
 - β particles can release energy in the graphene and break chemical bonding (graphene get damaged, other T atoms get released...?)
 - Simulation of energy loss needed


Beware of water

- Presence of water or oxygen can induce the formation of tritiated water (HTO)
 - Extremely dangerous (corrosion due to radiolysis)
 - Need to have clean samples (thermal annealing)
- Formation of other compound must be evaluated (i.e. triated methane CH₃T)

We should study the **residual gas** after **deuteration** in our current T-chamber: D as a proxy of T in the chemical reaction inside the T-chamber

Where "solid" tritium is used in Italy

- ► <u>ENEA FNG</u> (**F**rascati **N**eutron **G**enerator)
 - ▶ ENEA Frascati where the ITER DTT (*divertor* demonstrator) will be built
 - Tritium beam target (D +T reaction to yield neutrons)
 - Bought from a French company (metal "tritide")

The whole vacuum chamber of the FNG is connected to a tritium detection system Beam target kept in a glove box Exhaust sent to atmosphere

Outlook

- Accessing tritium at UK atomic agency authority not impossible.
- Need various steps
 - ▶ 1) design of a new smaller T-chamber to be located into a glove box (optimise gas flow, reduce contaminants, check parts are compliant with tritium usage...)
 - Contract with AGHS engineers.
 - 2) manipulation of the sample in vacuum
 - 3) shipping (in vacuum) according to regulations
 - 4) assessment of the level of radioactivity with standard metrology
 - ▶ 5) first test in a vacuum chamber (beta spectrum, C 1S, ...)

Likely to be a project over few years

Require additional funding

Tritiated graphene might be available for Ptolemy demonstrator towards the end of the commissioning/operation phase