Plasma Hydrogenation of Carbon Nanotubes

PTOLEMY collaboration meeting Nov 21st 2024

Orlando Castellano, Alice Apponi, Daniele Paoloni, Luca Cecchini, Sammar Tayyab, Francesco Pandolfi, Ilaria Rago, Carlo Mariani, Gianluca Cavoto, Alessandro Ruocco

Aligned Nanotube Detector for Research On MeV Darkmatter

CVD chamber @ La Sapienza

VACNT growth

Plasma Hydrogenation Recipe

CNT pristine

Annealed at ~ 550 °C

Used as a reference

Two samples from the same batch Annealing 650 °C in CVD chamber

CNT plasma H

Exposed to hydrogen plasma:

0 100 W **O** 0.7 mbar H₂, 300 sccm **0**1h

Kept in low vacuum during transfer

Annealed at ~ 230 °C

XPS analysis: from sp² towards sp³

Counts (A.U.)

XPS Survey Scan Reveals Iron Traces in Hydrogenated CNTs

Why a higher Fe 2p intensity in hydrogenated CNT? It may require SEM investigation

How to measure a Work Function

Bias voltage applied to the sample to measure the secondary electron onset

Analyzer point of view

$$E_{K}^{min} = \phi_{S} - \phi_{Spec}$$
$$E_{K}^{max} = h\nu - \phi_{Spec}$$

 ΔE_{K} depends only on the sample

$$\Delta E_K = E_K^{max} - E_K^{min} = h\nu - \phi_S$$

UPS: Work Function Changes and Band Gap Opening

Work Function measure:

$\phi_{\text{sample}} = hv - \Delta E_k = hv - (FL - SE)$

Surface dipole changes:

o WF lowers from 4.33 ± 0.05 eV to

3.81 ± 0.05 eV

UPS: Work Function Changes and Band Gap Opening

8

Hydrogenation Signatures in Energy Loss Spectroscopy

Electron Energy Loss Spectroscopy

- o CH stretching appears at ~ 0.36 eV
- and low energy losses

o Quenching of the **π plasmon**

o Wide band gap opening ~ 6.9 eV

Hydrogen Plasma vs Thermal Cracking Hydrogenation

$$s_{p3} / (I_{sp2} + I_{sp3}) \simeq 67\%$$

WF = 3.81 ± 0.05 eV

Atomic Deuterium bonding to Multi-Walled Carbon Nano Tubes

Sammar Tayyab et al., to be published

$$I_{sp3} / (I_{sp2} + I_{sp3}) \approx 70\%$$

WF = 3.84 ± 0.05 eV

A successful plasma hydrogenation of CNT

- **o** sp² and **π plasmon** lowering, sp³ increasing
- **o Work function** decreases
- **o C-H** vibration appears
- o Gap opening

A successful plasma hydrogenation of CNT

- **o** sp² and **π plasmon** lowering, sp³ increasing
- **o Work function** decreases
- **o C-H** vibration appears
- o Gap opening

Large amount of hydrogen!

Is it hydrogenated also in depth?

...but it is not perfectly clean

A successful plasma hydrogenation of CNT

- **o** sp² and **π plasmon** lowering, sp³ increasing
- **o Work function** decreases
- **o C-H** vibration appears
- o Gap opening

Present/Future steps:

1. Compare thermal cracking and plasma hydrogenation in depth

Large amount of hydrogen!

Is it hydrogenated also in depth?

...but it is not perfectly clean

A successful plasma hydrogenation of CNT

- **o** sp² and **π plasmon** lowering, sp³ increasing
- **o Work function** decreases
- **o C-H** vibration appears
- **o** Gap opening

Present/Future steps:

- 1. Compare thermal cracking and plasma hydrogenation in depth
- 2. Make plasma hydrogenation during CNT growth

Large amount of hydrogen!

Is it hydrogenated also in depth?

...but it is not perfectly clean

A successful plasma hydrogenation of CNT

- **o** sp² and **π plasmon** lowering, sp³ increasing
- **o Work function** decreases
- **o C-H** vibration appears
- **o** Gap opening

Present/Future steps:

- 1. Compare thermal cracking and plasma hydrogenation in depth
- 2. Make plasma hydrogenation during CNT growth
- 3. Fine tuning of the parameters to limit oxygen contaminations

Large amount of hydrogen!

Is it hydrogenated also in depth?

...but it is not perfectly clean

Highly Aligned Multi Walled Carbon Nanotubes

4 * Mahmoud Mohamed Saad Abdelnabi et al, Nanomaterials (2021), 11, 130.

Pristine MW-CNT					
O1s component	BE (eV)	FWHM (eV)	Area/Area _{total}		
C=O	531.8	2.1	302		
C-O	533.5	1.9	276		
D-CNT MW-CNT	,				
O1s component	BE (eV)	FWHM (eV)	Area/Area _{total}		
C=O	531.8	1.9	335		
C-O	533.4	2.1	481		

C1s component	BE (eV)	Δ BE (eV)	FWHM (eV)	Area/Area _{total}
sp ²	284.7	0	1.1	63
sp ³	285.3	0.6	2.9	16
C-O	286.5	1.8	1.5	0.8
C=O	288.5	3.8	1.5	0.4
π - excitation	290.9	6.2	5.0	15
vacancy - DB	284.1	-0.6	0.8	4

C1s component	BE (eV)	$\Delta BE (eV)$	FWHM (eV)	Area/Area _{total}
sp ²	284.7	0	1.1	27
sp ³	285.3	0.6	1.8	62
C-O	286.8	2.1	1.0	0.6
C=O	288.0	3.3	2.1	1.6
π - excitation	290.9	6.2	2.0	0.3
vacancy - DB	284.0	-0.7	1.1	8

UV Photoelectron Spectroscopy technique and setup

The work function of a sample can be measured with **UPS**

He I UV photon energy: hv = 21.22 eVHe II UV photon energy: hv = 40.8 eV

Inelastically scattered photoelectrons produce secondary electrons

The electrons emitted are collected by an electron analyzer which measures their kinetic energy

How to measure a Work Function

• a **potential difference** is applied to the sample with respect to the analyzer in order to measure the secondary electron onset

Analyzer point of view

$$E_{K}^{min} = \phi_{S} - \phi_{Spec}$$
$$E_{K}^{max} = h\nu - \phi_{Spec}$$

$$\Delta E_K = E_K^{max} - E_K^{min} = h\nu - \phi_S$$

• E_K max does not depend on the sample but only on the analyzer's work function

• E_{K} min depends on the sample and on the analyzer

• ΔE_{K} depends only on the sample

Fitting procedure and calculation of ϕ_{CNT}

Uncertainty treatment

Secondary onset

 $\phi_{\text{sample}} = hv - \Delta E_k = hv - (E_f - SE) = 21.22 - (19.937 - 3.13) = 4.41 \text{ eV}$

the SE onset strongly depends on how the data points for the fit are selected

choosing different "windows" of data points in the linear rising region ± 0.05 eV should be a reasonable value

What about the uncertainty?

Counts (A.U.)

BE (eV)

0.28
0.56
0.02
0.01
0.06
0.04

Asymmetry	Amp	Ek (eV)	GW	LW
0.100	2.09 ± 0.23	284.27 ± 0.02	0.62 ± 0.01	0.23 ± 0.01
0.00	4.20 ± 0.33	-0.48 ± 0.04	1.15 ± 0.06	
0.00	0.14 ± 0.07	-6.14 ± 0.07	3.00 ± 1.00	
0.00	0.05 ± 0.03	0.74 ± 0.03	0.44 ± 0.07	
0.00	0.48 ± 0.25	-1.55 ± 0.20	1.21 ± 0.27	
0.00	0.30 ± 0.16	-2.62 ± 0.55	2.50 ± 0.75	

)	Ek (eV)	GW	LW
0.18	284.38 ± 0.02	0.62 ± 0.01	0.23 ± 0.01
0.21	-0.48 ± 0.04	1.15 ± 0.06	
0.23	-6.14 ± 0.07	3.00 ± 1.00	
0.03	0.74 ± 0.03	0.44 ± 0.07	
0.14	-1.55 ± 0.20	1.21 ± 0.27	
0.16	-2.62 ± 0.55	2.50 ± 0.75	

26

Asymmetry	Amp	Ek (eV)	GW	LW
0.00	0.10 ± 0.03	0.00	0.00	0.00
0.00	0.13 ± 0.03	0.00	0.00	0.00
0.00	0.03 ± 0.01	0.00	0.00	0.00

4 E .	۷.U			24	JJZ JZO J2	050
	s (À				BE (eV)	
	unt					
	° °					
	1	LW	GW	Ek (eV)	Amp	Asymmetry
.0	1	0.92 ± 0.82	0.65 ± 0.84	948.38 ± 0.07	0.00 ± 0.04	0.00
	1	1.22 ± 0.47	1.51 ± 0.38	949.83 ± 0.05	0.71 ± 0.10	0.00
53		0.08 ± 0.71	1.23 ± 0.41	951.75 ± 0.08	0.14 ± 0.05	0.00
	-					

XPS cross sections

