Method of

Magnetic Adiabatic Drift Collimation and Transmission (MADCAT)

for the Determination of the Neutrino Mass at the Tritium Endpoint

<u>Wonyong Chung</u>, Chris Tully Princeton University

> November 21, 2024 Genoa

Permanent Magnet Target

 $\mu = rac{T_\perp}{B}$

- $egin{aligned} heta_{col} &= heta_{orig} \cdot rac{B_{ext}}{B_{perm}} \ B_{ext} &pprox 0.1 \ B_{perm} &pprox 0.5 \end{aligned}$
- Unconstrained trajectories follow field lines
- Transverse momentum collimated into longitudinal
 - Linear "collimation factor" in B via adiabatic invariant
- Effectively a pitch range compression (90 \rightarrow 27)

Collimated Injection

- Shape electrodes to follow the magnetic field lines
 - > Well-parameterized by ellipse equation
 - > Aligns potential gradient against path of electron
 - > Drains parallel momentum
- Once electrons enter central channel
 - > Apply fast drift in z
 - > Contain bounce motion
 - > Accelerate to uniform region

18.6 keV electrons pitch 5, 25, 45, 65, 85

Method of Adiabatic Drift Collimation

 $\lambda_{\rm B}$ fixed by magnet, $\lambda_{\rm E}$ still variable

Intentionally introduce imbalances at injection and filter entry

Exploit:

- Low-pitch electrons have lower transverse KE
- Lower grad-B drift (smaller y-excursion) for same z-excursion
- Can be calculated/predicted analytically (see <u>spring 2023 slides</u>)
- <u>Make trajectories intersect/converge at desired z position across</u> wide pitch range

Shifting $\lambda_{\rm E}$ as a multiple of $\lambda_{\rm B}$

- Voltage transitions connected smoothly from injection electrodes to uniform region (see neg-y electrodes)
- Bounce voltages constant from injection through uniform region
- All adjustments made w.r.t normalized sampled B_x field
- Separate lambda shift during injection/acceleration, $\lambda_{\rm E} = 0.25 \lambda_{\rm B}$

 $-\lambda_F = \lambda_B$

 $\lambda_E = 0.25 \lambda_B$ $\lambda_E = 0.60 \lambda_B$

neg-y (abs)

Tradeoff: Runaway ExB drift

 $\lambda_{\rm E}$ = 0.70 $\lambda_{\rm B}$

single electrons, pitch 5-85 (20 deg steps), endpoint energy

- Voltage transitions connected smoothly from injection electrodes to uniform region (see neg-y electrodes)
- Bounce voltages constant from injection through uniform region
- All adjustments made w.r.t normalized sampled B_x field
- Separate lambda shift during injection/acceleration, $\lambda_E = 0.25 \lambda_B$

- Higher aspect ratio amenable to residual parallel momentum draining
- Pick $\lambda_{\rm E} = 0.60 \lambda_{\rm B}$ for now, run first transmission curves

Transmission Function Setup

(5 rings)

1mm radius

- 1mm radius circular area split into 50 rings (5 shown)
- Set pitch (theta) and emission phase angle (phi)
- Blocks of 10 deg pitch (5-15, 15-25, ..., 75-85 deg)
 - Uniform distribution of +/- 5 deg about 10, 20, ... , 80 deg pitches
 - Per pitch block: 8x fixed phi blocks in 45 deg steps (0, 45, ... , 270, 315 deg)
 - 8 pitch blocks x 8 phi blocks = 64 blocks
 - 50 rings = 10,200 particles per block
 - Total N = 652,800 endpoint electrons

Transmission Count Method

- 2D plane monitors every 1 cm
- Count unique particle hits per plane
- Average energy over all hits (incl. duplicates)

First Transmission Plots

- Entirely static configuration
- No optimization at all
- Total energy filter idea appears to work
- Drop in efficiency around 75-100 cm likely due to weak bounce voltages

Effective Pitch

• Apply cut in x-position (within 5mm of center) to estimate pitch

A picture is worth a thousand words...

- Drift envelopes directly reflect adjustments to lambda
- Silhouette provides a clear <u>visual guide to optimize</u> lambda adjustments and voltages
- Adjust to opt for more acceptance ExB drift may not matter

Estimated event rate

- Using classical Fermi function
- 1 nanogram of tritium
- Assuming 10% efficiency from filter to microcalorimeter...
 - > ~1% from target to microcalorimeter
 - ➤ Last 10 eV ~100 events/yr
 - RF will be needed to validate a high confidence measurement (background/signal coincidence – e.g. listening to a dinner conversation in a loud restaurant)

Filter to Microcalorimeter Transport

- Introduce cylindrical "mu-metal"(Iron) shielding, cancellation coils
- Idea is to go for "second collimation" effect
- Eventually want potential contours to look like:

First Attempts (z=100cm)

Maybe better

- calorimeter housing/electrostatic analyzer
- •

More to come ٠