Method of

Magnetic Adiabatic Drift Collimation and Transmission (MADCAT)

for the Determination of the Neutrino Mass at the Tritium Endpoint

Wonyong Chung, Chris Tully Princeton University

> November 21, 2024 Genoa

Permanent Magnet Target

 $\mu = \frac{T_{\perp}}{B}$

- $\theta_{col} = \theta_{orig} \cdot \frac{B_{ext}}{B_{perm}}$ $B_{ext}\approx 0.1$ $B_{perm}\approx 0.5$
- Unconstrained trajectories follow field lines
- Transverse momentum collimated into longitudinal
	- ➢ Linear "collimation factor" in B via adiabatic invariant
- Effectively a pitch range compression (90 \rightarrow 27)

Collimated Injection

- Shape electrodes to follow the magnetic field lines
	- ➢ Well-parameterized by ellipse equation
	- Aligns potential gradient against path of electron
	- ➢ Drains parallel momentum
- Once electrons enter central channel
	- ➢ Apply fast drift in z
	- ➢ Contain bounce motion
	- ➢ Accelerate to uniform region

18.6 keV electrons pitch 5, 25, 45, 65, 85

Method of Adiabatic Drift Collimation

 λ_B fixed by magnet, λ_E still variable

Intentionally introduce imbalances at injection and filter entry

Exploit:

- Low-pitch electrons have lower transverse KE
- ➢ Lower grad-B drift (smaller y-excursion) for same z-excursion
- Can be calculated/predicted analytically (see [spring 2023 slides\)](https://agenda.infn.it/event/36402/contributions/204441/attachments/107602/151963/Chung_TransferFunctionSimulation.pdf)
- ➢ Make trajectories intersect/converge at desired z position across wide pitch range

Shifting λ_E as a multiple of λ_B

- Voltage transitions connected smoothly from injection electrodes to uniform region (see neg-y electrodes)
- Bounce voltages constant from injection through uniform region
- All adjustments made w.r.t normalized sampled $\mathbf{B}_{\mathbf{x}}$ field
- Separate lambda shift during injection/acceleration, $\lambda_{\rm E}$ = 0.25 $\lambda_{\rm B}$

 $-\lambda_F = \lambda_B$

neg-y (abs)

 $1.5\,$

Tradeoff: Runaway ExB drift

 $\lambda_{\rm E}$ = 0.65 $\lambda_{\rm B}$

 $\lambda_{\rm E}$ = 0.70 $\lambda_{\rm B}$

- Voltage transitions connected smoothly from injection electrodes to uniform region (see neg-y electrodes)
- Bounce voltages constant from injection through uniform region
- All adjustments made w.r.t normalized sampled $\mathbf{B}_{\mathbf{x}}$ field
- Separate lambda shift during injection/acceleration, $\lambda_{\rm E}$ = 0.25 $\lambda_{\rm B}$

- Increased volume for cyclotron radius containment
- Decreased ExB drift due to larger spacing
- Higher aspect ratio amenable to residual parallel momentum draining
- Pick $\lambda_E = 0.60 \lambda_B$ for now, run first transmission curves

Transmission Function Setup

1mm

radius

(5 rings)

- 1mm radius circular area split into 50 rings (5 shown)
- Set pitch (theta) and emission phase angle (phi)
- Blocks of 10 deg pitch (5-15, 15-25, ..., 75-85 deg)
	- Uniform distribution of $+/-$ 5 deg about 10, 20, ..., 80 deg pitches
	- Per pitch block: 8x fixed phi blocks in 45 deg steps $(0, 45, ..., 270, 315$ deg)
	- 8 pitch blocks x 8 phi blocks = 64 blocks
	- 50 rings = 10,200 particles per block
	- Total $N = 652,800$ endpoint electrons

Transmission Count Method

- 2D plane monitors every 1 cm
- Count unique particle hits per plane
- Average energy over all hits (incl. duplicates)

First Transmission Plots

- Entirely static configuration
- No optimization at all
- Total energy filter idea appears to work
- Drop in efficiency around 75-100 cm likely due to weak bounce voltages

Effective Pitch

• Apply cut in x-position (within 5mm of center) to estimate pitch

A picture is worth a thousand words…

- Drift envelopes directly reflect adjustments to lambda
- Silhouette provides a clear visual guide to optimize lambda adjustments and voltages
- Adjust to opt for more acceptance ExB drift may not matter

Estimated event rate

- Using classical Fermi function
- 1 nanogram of tritium
- Assuming 10% efficiency from filter to microcalorimeter…
	- \triangleright ~1% from target to microcalorimeter
	- \triangleright Last 10 eV ~100 events/yr
	- \triangleright RF will be needed to validate a high confidence measurement (background/signal coincidence – e.g. listening to a dinner conversation in a loud restaurant)

Filter to Microcalorimeter Transport

- Introduce cylindrical "mu-metal"(Iron) shielding, cancellation coils
- Idea is to go for "second collimation" effect
- Eventually want potential contours to look like:

First Attempts (z=100cm)

Maybe better

- Parabolic 'mirror' electrode to reflect/focus electrons into calorimeter housing/electrostatic analyzer
- Reduce from 150 eV to 10 eV

• More to come