Electron ExB Slow Drift Demonstration

Mark Farino, Andi Tan

At Pollica...

Successfully measured difference in event rates of electrons emitted by C-14 (through Kapton film) using windowless PIN Diode based on **ExB** drift

Nov 21 2024

Mark Farino

At Pollica...

Successfully measured difference in event rates of electrons emitted by C-14 (through Kapton film) using windowless PIN Diode based on ExB drift

Event Rates with Antisymmetric Diode Placement (~10e-6 Torr & 0.3 Tesla)

-6kV

Mark Farino

To increase event rate:

- C-14 source disk and PIN Diode placed inside chamber

To increase event rate:

- C-14 source disk and PIN Diode placed inside chamber
 - C-14 source disk set at 60 degree angle

-

To increase event rate:

- C-14 source disk and PIN Diode placed inside chamber
- C-14 source disk set at 60 degree angle
 - B-field lowered to 0.16 T

$$oldsymbol{v}_E = rac{oldsymbol{E} imes oldsymbol{B}}{B^2}$$

-

To increase event rate:

- C-14 source disk and PIN Diode placed inside chamber
- C-14 source disk set at 60 degree angle
- B-field lowered to 0.16 T

To mitigate backgrounds & sparking:

- Center Electrodes width reduced (1.25" => 1")

To increase event rate:

- C-14 source disk and PIN Diode placed inside chamber
- C-14 source disk set at 60 degree angle
- B-field lowered to 0.16 T

To mitigate backgrounds & sparking:

- Center Electrodes width reduced (1.25" => 1")
- 3 mil thick Kapton lined inside vacuum chamber & electrodes

To increase event rate:

- C-14 source disk and PIN Diode placed inside chamber
- C-14 source disk set at 60 degree angle
- B-field lowered to 0.16 T

To mitigate backgrounds & sparking:

- Center Electrodes width reduced (1.25" => 1")
- 3 mil thick Kapton lined inside vacuum chamber & electrodes
- Entire system cleaned, polished, and rewired

- Operate 0.16 T B field and set voltages on drift electrodes to generate an upward E field

- Operate 0.16 T B field and set voltages on drift electrodes to generate an upward E field
- Apply maximum voltage difference (<u>+</u> 6kV) to outer pairs of electrodes (maximal drift velocity).

-6kV	,	-6kV	
		•	8
+6k\		+6kV	

- Operate 0.16 T B field and set voltages on drift electrodes to generate an upward E field
- Apply maximum voltage difference (± 6kV) to outer pairs of electrodes (maximal drift velocity).
- Set center pair to smaller voltage difference to achieve slow drift (e.g., + 2kV for ¹/₃ drift speed)

-6kV	-2kV	-6kV	
0		0	
+6kV	+2kV	+6kV	

- Operate 0.16 T B field and set voltages on drift electrodes to generate an upward E field
- Apply maximum voltage difference (<u>+</u> 6kV) to outer pairs of electrodes (maximal drift velocity).
- Set center pair to smaller voltage difference to achieve slow drift (e.g., + 2kV for ¹/₃ drift speed)
 - Record data with bouncing plate operated *both* at **-6kV** and **0kV** (to account for scattering). Difference between rates indicates successful transport

6kV	-2kV -6kV	
	-6kV/0kV	
+6kV	+2kV +6kV	

-

- Operate 0.16 T B field and set voltages on drift electrodes to generate an upward E field
- Apply maximum voltage difference (<u>+</u> 6kV) to outer pairs of electrodes (maximal drift velocity).
- Set center pair to smaller voltage difference to achieve slow drift (e.g., + 2kV for ¹/₃ drift speed)
- Record data with bouncing plate operated *both* at -6kV and 0kV (to account for scattering).
 Difference between rates indicates successful transport
- Discard remaining noise/background via mean and standard deviation selection criteria (~97% efficient)

Mark Farino

- Operate 0.16 T B field and set voltages on drift electrodes to generate an upward E field
- Apply maximum voltage difference (<u>+</u> 6kV) to outer pairs of electrodes (maximal drift velocity).
- Set center pair to smaller voltage difference to achieve slow drift (e.g., + 2kV for ¹/₃ drift speed)
- Record data with bouncing plate operated *both* at -6kV and 0kV (to account for scattering).
 Difference between rates indicates successful transport
- Discard remaining noise/background via mean and standard deviation selection criteria (~97% efficient)

Nov 21 2024 _____

Mark Farino

Symmetric Slow Drift

- Symmetrically lower magnitude of top and bottom electrodes

Symmetric Slow Drift

- Symmetrically lower magnitude of top and bottom electrodes
- Expectation: as X decreases, so too does event rate (electrons, following potential lines, more likely to terminate on wall)

Voltage Scan (2kV)

 Record event rates within 2kV window around varying center voltage X

Voltage Scan (2kV)

- Record event rates within 2kV window around varying center voltage **X**
- Useful to study profile of source activity by 'zooming in' on a specific potential window

Simulation

 1 million particles (2pi solid angle, uniform energy distribution) between 0-160keV launched for each voltage setting

Nov 21 2024

Simulation

- 1 million particles (2pi solid angle, uniform energy distribution) between 0-160keV launched for each voltage setting
- Terminal location recorded via particle monitor; those impinging silicon active region of diode are saved

Simulation

- 1 million particles (2pi solid angle, uniform energy distribution) between 0-160keV launched for each voltage setting
- Terminal location recorded via particle monitor; those impinging silicon active region of diode are saved
- Output weighted (relatively) by C-14 spectrum (convolved with gaussian based on posited energy resolution)

Nov 21 2024

Symmetric Slow Drift Results

- Reduction in event rate corresponding to potential difference
- Fewer high-energy events as potential difference decreases

Symmetric Slow Drift Results

- Reduction in event rate corresponding to potential difference
- Fewer high-energy events as potential difference decreases

- Increases, though rate of change plateaus as potential % -> 1
- Non-zero event rate at 0

Symmetric Slow Drift Simulation Comparison

⁻ Similar plateauing shape

- Simulations still running to study event rate at 0

2kV Voltage Scan Results

Asymmetric and *not* centered around 0, why?

2kV Voltage Scan Results

Asymmetric and *not* centered around 0 because tilting the source disk favors electrons with cyclotron radii located in the *upper half* of the cage

2kV Voltage Scan Simulation Comparison

Resembles shape of data, though horizontally *offset* with a smaller plateau

Mark Farino

Next Steps & Outlook

- Run more voltage scan settings
- Develop more rigorous methods to compare data and simulation
 - Document findings and draft paper