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Introduction: PTOLEMY RF region

Tritium target

Energy Drain
+filter

m
K

2m

TESFilterRF region

Filter trigger
K and Θ, fast and rough 
measurement

σK=50 meV
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Electron Trap goals

• Study RF pattern of electrons in bouncing motion

• Reconstruction of K, KL by fc and Tb 

• σE and Tobs = O(drift time) ? 

• What could be a good range of pitch angle in 
PTOLEMY RF Region? 
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Electron Trap concept

• We need to design a test setup ->electron trap

• Rectangular waveguide (for RF collection) with inside electrodes 
(ptolemy-like electron motion)
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Electron trap:state of art
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1. Electron trap design

2. Electron trap simulation

3. Identify K, KL reconstruction
method from fc, Tb

4. Design of Test Setup

5. Assembly of electron trap test setup

Naples meeting

LNGS 
meeting

Pollica meeting
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1. Electron trap design

2. Electron trap simulation

3. Identify K, KL reconstruction
method from fc, Tb

4. Design of Test Setup

5. Assembly of electron trap test setup

6. Data taking: phase 1
7. Data taking: phase 2

Naples meeting

LNGS 
meeting

Pollica meeting

Genova meeting

Electron trap:state of art
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The Krypton source

τKr=158.1min
Main lines:
 
L=30.4keV
M=31.9keV
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Electron Trap: 3D Geometry

• Rectangular WG (37x15) mm with inside 
bouncing electrodes

• Left: Kr source inlet

• Right: RF readout

• Inside:
electron in cyclotron motion+ 
bouncing motion+ Z drift

B
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WG

LNA

HV

e- trap
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T=23K
P=4E-9 mBar



Electron motion in electron Trap
• Vz=Ey/B

• Potential well
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B

HIGH Z 
drift

• Vz=Vz(y)

• Pitch angle acceptance
NO Y drift

X

Y

Z
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Motion: cyclotron + bouncing + Z drift (snake-like GCS trajectory)

B
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Electron RF emission

During the motion: cyclotron emission in  
potential well

K variation

Frequency variation

Measure <K> Non trivial frequency 
pattern

f=26GHz
P=2fW
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Δ

Right Shift from cos(Δω*t) 
term

Simulation of single electron emission

14



Δ

Δ0

Carrier modulation in 
frequency from K in pot. wellRight Shift from cos(Δω*t) 

term

Simulation of single electron emission
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Δ

Δ0

Δ Δ

Carrier modulation in 
frequency from K in pot. 
well

Armonics from FM

Right Shift from cos(Δω*t) 
term

-ΔΔ

Simulation of single electron emission
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L.Pesce

Montecarlo pattern RF

Δ

Δ0

Right Shift from cos(Δω*t) term

-Δ

+Δ-Δ=0

Narrow (in real life: potential well effect)

Distribution of Δ
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What is the extected RF pattern for all Kr lines for N 
electrons?

10/Sep/2024 Federico Virzi on behalf of LNGS group

Montecarlo:
Expected Pattern RF

L.Pesce

L.Pesce
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Electron Trap: readout electronics

DAQ
LNA DIPLEXER

Dedicated downconverter 
developed @ NIKHEF 

DAQ with FPGA trigger under 
development @ NIKHEF 

RTO64 used for trigger task

LNA

IFRF

Tc

f(IF)=f(downc.)-f(RF)+0.45GHz



Trigger: how it works

1. Take the avg noise

2. Draw the trigger area

3. Shift up in power by 
the desired SNR

4. If FFT(signal) =inside 
trigger area->save 
time series
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Data analysis



How to show electron tracks: The Sauron Plot

• Spectrogram: method to plot a FFTs over time

frequency

time

Sometimes the axis are inverted
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Sauron plot: Bkg Thermal noise (short time window) with 
50 μs FFT->50 μs track
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Sauron plot: electron signal (project 8)

• Project8 designed for 
long tracks

You expect to see 
variation of frequency 
over time

• Electron trap: designed 
for short track (fast 
trigger goal)
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Sauron plot: electron signal

• Electron trap: designed 
for short track (fast 
trigger goal)

• Electron in potential 
well

• Do you expect to see 
df/dt?
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Results of electron trap phase 1

• A lot of short tracks:
Is something like that an 
electron or BKG event?

• Trigger rate: Kr evidence

• RF pattern(statistical basis)
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Electron Trap: Krypton lifetime

• Trigger on 
expected 
frequency 

• Source was 
open by several 
hrs

• Time=0 source 
closed

/2
0

 m
in

27



Source open 
@t=-90min
(RUN10)

τ=(353.5 ±109.5) min
 τKr=158.1 min

RUN11 RUN12

Trigger rate: ‘rise-decrease’ plot

Time[min]

#t
ri

gg
er

/2
0

 m
in
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What can emulate this rise-decrease trigger rate?

• LNA gain depends 
by temperature

• Cyrcadian variation 
of temperature 
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Noise trigger <N>=10LOG10(KTΔf/1mW)+G

temperature

Gain

Trigger zone=fixed
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What can emulate this ‘rise-decrease’ trigger rate?

T

Gain

Trigger 
rate

31

morningmorning

Time[min]

(example of temperature behaviour, 
not related to the trigger rate 
measurement)



What can emulate this ‘rise-decrease’ trigger rate?

RUN11
RUN12

Time[min]

#t
ri

gg
er

/2
0

 m
in

• This is a strong evidence that we where triggering something related to Krypton 
source(beginning of summer)

• After those measurements the trigger becomes broken
• Trigger repaired few weeks ago
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Measured Pattern RF

Frequency of the tracks
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What can emulate this results?

• The Gain of the electronics is not flat(histogram obtained by flat cut) 

34

…but there is a 
good evidence of 
good signals at 
backup slide 65…



Montecarlo 
vs 

data

L.Pesce

Expected to 
be fixed

trigger

Possible shift
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Montecarlo 
vs 

data

L.Pesce

trigger

Narrow 
sideband (L1) 
in trigger 
zone
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Montecarlo 
vs 

data

L.Pesce

trigger

Double peak 
structure
(carrier)
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Montecarlo 
vs 

data

L.Pesce

trigger

Rise of  right 
sideband
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Narrow 
blue 

sideband?

L.Pesce

trigger

?

?
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Pattern RF and Gain variation

• Obtained with a flat power cut (see backup 
slides)

• Gain is decreasing after 600MHz
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Candidate distribution of left sideband of M lines  
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Branching fraction ratio

Rteor=BR(L)/BR(M)=5.95

Rmeasured=6.36+-1.04

L line only
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An example of a (nice) Sauron Plot



Carrier and secondary candidates

Carrier

Secondary

K=(30449,1±0.4) eV KL=(11.4 ±0.4) eV

Carrier

Secondary
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Sideband

Tb~9.0 ns

Sideband candidate
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Electron trap phase 1: 
do we have measured electrons?

• Kripton lifetime mesurement

• Pattern RF

• Short tracks (and so no df/dt due to radiation emission) why?

• Hard background rejection
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Electron trap: 
systematics

…Yes, the talk is almost concluded



Understanding the systematics of electron 
trap setup

• Effective Magnetic field

• Relative angle trap-magnet

• Bended electrodes

• Variation of gain during the day
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Field map: Bx
• Need to implement the true field map on CST 
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Field map: By
• Need to implement the true field map on CST 
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Magnetic field effective volume

• We have seen (with an home-made probe) that the effective  volume 
of magnetic field is half of the expected

• Centering of the trap is crucial
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We are buying a 3000 
E probe for magnetic 
field measurement for 
field map task



Bended electrodes

• Electrodes of phase 1 were lightly bended

• Possible effect on electron drift?
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Relative angle between trap and magnet

• Possible sisyematics for pitch angle, bouncing period and Vz?
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Temperature improvements
• Better insulation between phase 1 and 2 (best temperature T=23K)

• Still have cyrcadian modulation->PID
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Electron trap: outlook

Ok, now the talk is really almost concluded



Electron Trap phase 2

• Goal: obtain material for a convincent Paper

• Longer tracks?

• Higher SNR?
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New RF flange
• Better vacuum pressure thanks to new RF 

flange(x2)
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New electrodes support and thin electrodes

old

new

• Half of conductor volume

• ¼ of dielectric volume

• Less power loss (5.5dB instead 
of 8.3dB)->Better rejection
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Electron trap phase3 (march?) 

• Wire electrodes (much less Vz->longer tracks)

• High activity source
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Conclusions
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PHASE 1*:
Setup commissioning and 

preliminary data taking

PHASE 2:
• Good electron track identification
• first Paper
• K,KL reconstruction on event by 

event basis

PHASE 3:

• σE, Tobs, K,KL reconstruction 
based on event by event basis, 
with large statistics

• second Paper with ‘official 
numbers’

PHASE 4 :
Injection with e-gun

Need more activity, new source?

https://wiki.sites.lngs.infn.it/doku.php?id=ptolemy:org:biweekly:2024-06-05
https://wiki.sites.lngs.infn.it/doku.php?id=ptolemy:org:biweekly:2024-07-03


Backup slides



Data analysis 
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Data analysis 

HITsCluster={hits in same frequency}

HIT
Frequency
Power
Time
Date (time from RUN start)

time

frequency
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Cluster integrated power vs frequency

IF[MHz]

A.U.

clusters with most power at 
400-445MHz
520-570MHz

64



Cluster integrated power vs frequency

IF[MHz]

A.U.

clusters with most power at 
400-445MHz
520-570MHz

Power cut
=0.0035
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Clusters drift time
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No cut

Electron trap is 20cm long
We are searching for long tracks

Electrons are very fast in 
bouncing geometry!!!



Cluster power v drift time

Drift time cut=35 mus
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Expected electron drift time: montecarlo

5/June/2024 68Federico Virzi on behalf of LNGS group

Majority of electrons should have 
drift time < 200 mus.

In particular 50 mus



Montecarlo: potential well effect

5/June/2024 Federico Virzi on behalf of LNGS group 69
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3) Data analysis
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We have the RF analysis1.1 
package for raw Data 
analysis: 
from raw data to cluster 
tree

11/Sep/2024 Federico Virzi on behalf of LNGS group

ElectronTrapAnalysis.C 
root macro for cluster 
analysis with(or without) 
time coincidence

Graphics part: 
Mini_SauronPlot.C 
root macro for 
sauron plot of  
selected clusters



3) Data analysis: RFAnalysis from 1.1 to 1.2
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V 1.1

11/Sep/2024 Federico Virzi on behalf of LNGS group

• Cluster and hit power 
in arbitrary units 
(what power are we 
cutting?)

• Cluster power 
dependent by avg 
noise (light)

• hit power in SNR units 
with respect to avg noise 
(avg on 5MHz and on 
time of the spectrogram)

• Track finder

V 1.2

Better power cuts

https://wiki.sites.lngs.infn.it/doku.php?id=ptolemy:org:biweekly:2024-07-03


3) Data analysis: ElectronTrapAnalysis.C

7311/Sep/2024 Federico Virzi on behalf of LNGS group

We are studyng the time shift that is acceptable between carrier and sidebands signals



5)Electron motion

x

• S1: no Zdrift, bottom of potential 
well

• S2: Zdrift, top of potential well

S1,Dt1

S2,Dt2

10 mm0

z
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5)Electron motion
• Drift only during S2 (10<|x|<15, close to bouncing electrodes)  

• Vz=3*10^-4cm/ns   

S2

S1

Time[ns]

Time[ns]

X

Zgcs

E_y

X[mm]
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Vz=E_y/B



5)Electron motion: bouncing period
• t1≈76.5-71=5.5ns

• t2≈81.5-76.5=5ns  T_b=10.534ns  
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5)Electron energy
• If electron start at X=0   K(S1)=K_perp+K_l=K’ 

 K(S2)=K_perp=K’-ΔV

 

ΔV
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5)Port signals

• Periodicity of S1 every 
T_b

• FM modulation with 
signal of frequency 
1/T_b=Δ1

• High order armonics 
at +-n/T_b=+-nΔ1 
from carrier

ns

W^1/2
T_b
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S2
S1

S1

• Period(S1)=period(S2)=T_b

• It is like S1*cos(Δω*t)->right shift of about Δω=1/T_b= Δ= Δ1

5)Carrier Frequency right shift
Those are the first ns of the simulation
The right shift it is at stationary regime
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5) Frequency Right shift at stationary regime

S1 S1

S2

S1

S2

z
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T_b

10^4 samples=67 ns, T_b=10.53ns

Time[samples]

frequency

5) Wavelet

The signal goes to stationary 
regime in 300ns

Confirmation of S1-S2 
motion

We could measure T_b also 
here
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D

D0

D1 D1

Carrier modulation in 
frequency from K in pot. 
well

Armonics from FMRight Shift from cos(Δω*t) 
term

5)CST simulation
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6) Experimental procedure

• Let’s think that these 
are experimental data->measure K,KL

• We expect: T_b=10.53ns , K=32151.6eV, KL=43.2eV

1. Measure Δ1=1/T_b by FM modulation

2. Shift carrier frequency to the left by Δ1

3. Measure S1->K

4. Measure KL by T_b and K
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6) Experimental procedure
• F(S1)=26,0165 (7) GHz

• F(S2)=26,0260 (7) GHz
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6)Experimental procedure: measure T_b

• F(1D,L)=25,9215 (7) GHz 0,095 

• F(2D,R)=26,2060 (7) GHz 0,09475

• F(1D,R)=26,1110 (7) GHz 0,0945

• F(2D,L)=25,8270 (7) GHz 0,09475

F(S1)-F(nΔ,L/R)= Δ

<Δ>=0,09475 GHz

T_b=1/<Δ>=10,554 ns

T_b(expected)=10,534 ns

In real life some of them will be hidden below thermal 
noise
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6)Measure of K

• F(S1)- <Δ>=25,9218 (7) GHz->K=32193.7eV=K1

• K(expected)=32151,6eV

K1

F(S1)

One could also estimate KL by F(S2)- <Δ> but it is 
not accurate

F(S2)- <Δ> =25,9312 GHz->K=31994,7eV=K2

K1-K2=KL=199eV->Ɵ=85.5°

K2

F(S2)
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6)Measurement of KL

Y=0
Y=-1
Y=-3

• KL=Kcos^2(theta)
• Plot T_b(cos^2(theta))

• We don’t know Y a priori

• T_b=10.554ns

• KL(Y=0)=35,39eV->88,1°
• KL(Y=-3)=30,02eV->88,25°

• KL(expected)=43.17eV->87,9°

Cos^2(theta) * K (measured)

10,554

Obtained from tracker simulations
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