'Is there anybody in there?'

Federico Virzi on behalf of LNGS group

Table of contents

- 1. Introduction
- 2. Electron trap setup
- 3. Data analysis
- 4. Systematics
- 5. Outlook

What it is and why we need that?

Details about the setup

First data taking Comments on results obtained What we need for a paper?

Sistematics: what we have understood

Next steps

Introduction: PTOLEMY RF region

Tritium target

Filter trigger K and O, fast and rough measurement

Energy Drain +filter $\sigma_{\rm K}$ =50 meV

Electron Trap goals

- Study RF pattern of electrons in bouncing motion
- Reconstruction of K, K_L by f_c and T_b
- σ_{E} and $T_{obs} = O(drift time)$?
- What could be a good range of pitch angle in PTOLEMY RF Region?

Electron Trap concept

- We need to design a test setup ->electron trap
- Rectangular waveguide (for RF collection) with inside electrodes (ptolemy-like electron motion)

Electron trap:state of art

1. Electron trap design

LNGS

meeting

- 2. Electron trap simulation
- 3. Identify K, K_L reconstruction method from f_c, T_b
- 4. Design of Test Setup 👘
- 5. Assembly of electron trap test setup

Electron trap:state of art

- 1. Electron trap design
- Nap
 - Naples meeting
- 2. Electron trap simulation
- 3. Identify K, K_L reconstruction method from f_c, T_b

LNGS meeting

- Design of Test Setup
- 5. Assembly of electron trap test setup
- 6. Data taking: phase 1

4.

7. Data taking: phase 2

Pollica meeting

Genova meeting

The Krypton source

 τ_{Kr} =158.1min Main lines:

L=30.4keV M=31.9keV

Line	K [eV]	BR [%]
K	17824.2(5)	24.8(5)
L1	30226.8(9)	1.56(2)
L2	30419.5(5)	24.3(3)
L3	30472.2(5)	37.8(5)
M1	31858.7(6)	0.249(4)
M2	31929.3(5)	4.02(6)
M3	31936.9(5)	6.24(9)
M4	32056.4(5)	0.0628(9)
M5	32057.6(5)	0.0884(12)
N1	32123.9(5)	0.0255(4)
N2	32136.7(5)	0.300(4)
N3	32137.4(5)	0.457(6)

Electron Trap: 3D Geometry

- Rectangular WG (37x15) mm with inside bouncing electrodes
- Left: Kr source inlet
- Right: RF readout

• Inside:

electron in cyclotron motion+ bouncing motion+ Z drift

P=4E-9 mBar

ra

=23K

LNA

τų.

n

Ĩ

S

Electron motion in electron Trap

• Potential well

• $V_z = V_z(y)$

NO Y drift

v -12 -18 -24 -30 HIGH Z -36 drift -42 -50

• Pitch angle acceptance

Motion: cyclotron + bouncing + Z drift (snake-like GCS trajectory)

Electron RF emission

$$f_c = \frac{1}{2\pi} \frac{|q|B}{m} \frac{1}{K/m+1}$$

During the motion: cyclotron emission in potential well **K** variation **Frequency** variation Measure <K>

$$P = \frac{1}{4\pi\epsilon_0} \frac{2q^2\omega_0^2}{3c} \frac{p_{\perp}^2/E^2}{1 - p^2/E^2}$$

Non trivial frequency pattern

f=26GHz P=2fW

Simulation of single electron emission

14

Simulation of single electron emission

Simulation of single electron emission

16

Montecarlo: Expected Pattern RF

What is the extected RF pattern for all Kr lines for N electrons?

Electron Trap: readout electronics

RTO64 used for trigger task

Dedicated downconverter developed @ NIKHEF

DAQ with FPGA trigger under development @ NIKHEF

f(IF)=f(downc.)-f(RF)+0.45GHz

Trigger: how it works

- 1. Take the avg noise
- 2. Draw the trigger area
- 3. Shift up in power by the desired SNR
- 4. If FFT(signal) =inside trigger area->save time series

Data analysis

How to show electron tracks: The Sauron Plot

• Spectrogram: method to plot a FFTs over time

Sauron plot: Bkg

Thermal noise (short time window) with 50 μs FFT->50 μs track

Sauron plot: electron signal (project 8)

 Project8 designed for long tracks

> You expect to see variation of frequency over time

 Electron trap: designed for short track (fast trigger goal)

FIG. 2. Spectrogram of the first CRES event detected from a tritium beta decay electron. Raw time-series data are Fourier-transformed in time bins of $40.96 \,\mu$ s, yielding 24.41 kHz frequency bins.

Sauron plot: electron signal

- Electron trap: designed for short track (fast trigger goal)
- Electron in potential well
- Do you expect to see df/dt?

FIG. 2. Spectrogram of the first CRES event detected from a tritium beta decay electron. Raw time-series data are Fourier-transformed in time bins of $40.96 \,\mu$ s, yielding 24.41 kHz frequency bins.

Results of electron trap phase 1

- A lot of short tracks: Is something like that an electron or BKG event?
- Trigger rate: Kr evidence
- RF pattern(statistical basis)

Electron Trap: Krypton lifetime

- Trigger on expected frequency
- Source was open by several hrs
- Time=0 source closed

Trigger rate: 'rise-decrease' plot

28

What can emulate this rise-decrease trigger rate?

140

120

100

- LNA gain depends by temperature
- Cyrcadian variation of temperature

FFTmag(C1) RBW: 20 kHz -35 dBm

What can emulate this 'rise-decrease' trigger rate?

What can emulate this 'rise-decrease' trigger rate?

- This is a strong evidence that we where triggering something related to Krypton source(beginning of summer)
- After those measurements the trigger becomes broken
- Trigger repaired few weeks ago

Measured Pattern RF

Downconverted frequency

- 2.4

2.2

Sauron Plot37

[sn]

200

What can emulate this results?

• The Gain of the electronics is not flat(histogram obtained by flat cut)

...but there is a good evidence of good signals at backup slide 65...

Montecarlo vs data

Narrow sideband (L1) in trigger zone
Montecarlo vs data

Double peak structure (carrier)

Montecarlo vs data

Rise of right sideband

Pattern RF and Gain variation

Downconverted frequency

Candidate distribution of left sideband of M lines

Branching fraction ratio

MC simulation: spectrum for $f \in [0.3, 0.65]$ GHz

RUN 11-12: full IF cluster spectrum in range IF \in [580; 680] MHz

An example of a (nice) Sauron Plot

Carrier and secondary candidates

Sideband candidate

Electron trap phase 1: do we have measured electrons?

- Kripton lifetime mesurement
- Pattern RF
- Short tracks (and so no df/dt due to radiation emission) why?
- Hard background rejection

Electron trap: systematics

...Yes, the talk is almost concluded

Understanding the systematics of electron trap setup

- Effective Magnetic field
- Relative angle trap-magnet
- Bended electrodes
- Variation of gain during the day

Field map: Bx

Need to implement the true field map on CST

Field map: By

• Need to implement the true field map on CST

Magnetic field effective volume

- We have seen (with an home-made probe) that the effective volume of magnetic field is half of the expected
- Centering of the trap is crucial

We are buying a 3000 E probe for magnetic field measurement for field map task

Bended electrodes

- Electrodes of phase 1 were lightly bended
- Possible effect on electron drift?

Relative angle between trap and magnet

• Possible sisyematics for pitch angle, bouncing period and Vz?

Temperature improvements

- Better insulation between phase 1 and 2 (best temperature T=23K)
- Still have cyrcadian modulation->PID

Electron trap: outlook

Ok, now the talk is really almost concluded

Electron Trap phase 2

- Goal: obtain material for a convincent Paper
- Longer tracks?
- Higher SNR?

New RF flange

 Better vacuum pressure thanks to new RF flange(x2)

STAINIE

New electrodes support and thin electrodes

- Half of conductor volume
- ¼ of dielectric volume
- Less power loss (5.5dB instead of 8.3dB)->Better rejection

Electron trap phases (march?)

- Wire electrodes (much less Vz->longer tracks)
- High activity source

Conclusions

60

PHASE 4 :

Injection with e-gun

Need more activity, new source?

Backup slides

Data analysis

Sauron Plot269

Cluster integrated power vs frequency

Clusters.power

clusters with most power at

Clusters.power:Clusters.frequency

400-445MHz 520-570MHz

Cluster integrated power vs frequency

Clusters.power

clusters with most power at

Clusters.power:Clusters.frequency

400-445MHz 520-570MHz

Clusters drift time

Electron trap is 20cm long We are searching for long tracks Electrons are very fast in bouncing geometry!!!

Cluster power v drift time

Clusters.power:drift_time

Expected electron drift time: montecarlo

time_drift

Montecarlo: potential well effect

Clusters.frequency {cut=Clusters.power>3000 [Integrated_SNR]}

3) Data analysis

We have the RF analysis1.1 package for raw Data analysis: from raw data to cluster tree

ElectronTrapAnalysis.C root macro for cluster analysis with(or without) time coincidence Graphics part: Mini_SauronPlot.C root macro for sauron plot of selected clusters Debugging

3) Data analysis: RFAnalysis from 1.1 to 1.2

V 1.1

- Cluster and hit power in arbitrary units (what power are we cutting?)
- Cluster power dependent by avg noise (light)

317124

- hit power in SNR units
 with respect to avg noise
 (avg on 5MHz and on
 time of the spectrogram)
- Track finder

Better power cuts
3) Data analysis: ElectronTrapAnalysis.C

We are studyng the time shift that is acceptable between carrier and sidebands signals

5)Electron motion

- S1: no Zdrift, bottom of potential well
- S2: Zdrift, top of potential well

5)Electron motion

- Drift only during S2 (10<|x|<15, close to bouncing electrodes)
- Vz=3*10^-4cm/ns

5)Electron motion: bouncing period

• t1≈76.5-71=5.5ns

5)Electron energy

• If electron start at X=0

 $K(S1)=K_perp+K_l=K'$ $K(S2)=K_perp=K'-\Delta V$

5)Port signals

- Periodicity of S1 every T_b
- FM modulation with signal of frequency 1/T_b=Δ1
- High order armonics at +-n/T_b=+-n∆1 from carrier

5)Carrier Frequency right shift

• Period(S1)=period(S2)=T_b

• It is like S1*cos($\Delta \omega$ *t)->right shift of about $\Delta \omega$ =1/T_b= Δ = Δ 1

Those are the first ns of the simulation The right shift it is at stationary regime

5) Frequency Right shift at stationary regime

Z

S2

5) Wavelet

10^4 samples=67 ns, T_b=10.53ns

10000

50 000

Time[samples]

frequency

11

30 0 00

40 000

20 0 00

The signal goes to stationary regime in 300ns

Confirmation of S1-S2 motion

We could measure T_b also here

6) Experimental procedure

- Let's think that these are experimental data->measure K,KL
- We expect: T_b=10.53ns , K=32151.6eV, KL=43.2eV
- 1. Measure $\Delta 1=1/T_b$ by FM modulation
- 2. Shift carrier frequency to the left by $\Delta 1$
- 3. Measure S1->K
- 4. Measure KL by T_b and K

6) Experimental procedure

6)Experimental procedure: measure T_b

- F(1D,L)=25,9215 (7) GHz
- F(2D,R)=26,2060 (7) GHz
- F(1D,R)=26,1110 (7) GHz
- F(2D,L)=25,8270 (7) GHz

T_b(expected)=10,534 ns

In real life some of them will be hidden below thermal noise

6)Measure of K

$$f_c = \frac{1}{2\pi} \frac{|q|B}{m} \frac{1}{K/m+1}$$

×10⁻¹⁵

TMath::Abs(V) 1010 1000 K2 990 980 970 🔄 960 K1/ 950 940 -15 -10 -5 0 5 10 15

- F(S1)- <Δ>=25,9218 (7) GHz->K=32193.7eV=K1
- K(expected)=32151,6eV

One could also estimate KL by F(S2)- $<\Delta>$ but it is not accurate

```
F(S2)- <Δ> =25,9312 GHz->K=31994,7eV=K2
```

```
K1-K2=KL=199eV->Θ=85.5°
```

6)Measurement of KL

- KL=Kcos^2(theta)
- Plot T_b(cos^2(theta))

Obtained from tracker simulations

87