# Updates on TES Activities with Low-Energy Electrons

Benedetta CorcioneHobey GarroneFederico MalnatiEugenio MonticoneFrancesco PandolfiCarlo PepeMauro Rajteri





Istituto Nazionale di Fisica Nucleare





# Mozzarella in Carrozza (MiC) Setup





# **TES to Detect Single Electrons**



# CNTs as Cold Electron Source





original idea by Alice Apponi

- Carbon nanotubes (CNTs): graphene 'straws'
  - diameter ~ 20 nm
  - length  $\sim 100 \ \mu m$
- > Tip factor  $\gamma \sim 10^3$   $10^4$  enhances local electric field
- Can be used as field emitters

# CNTs as Cold Electron Source



original idea by Alice Apponi

- Carbon nanotubes (CNTs): graphene 'straws'
  - diameter ~ 20 nm
  - length ~ 100  $\mu$ m
- > Tip factor  $\gamma \sim 10^3$   $10^4$  enhances local electric field
- Can be used as field emitters





Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024

5

$$E_e = (eV_{cnt} - \varphi_{cnt}) + (\varphi_{cnt} - \varphi_{tes}) = eV_{cnt} - \varphi_{tes}$$

5



5





Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024

#### Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024

# Shield against Unwanted Electron Hits

- > CNT surface (3 mm × 3 mm) > TES active area (100  $\mu$ m × 100  $\mu$ m)
- Need to avoid electron hits on:
  - wiring (signal interferences)
  - insulating substrate (charge accumulation)



TES





# Electron Signals Registered by the TES









Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024

















Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024

#### What Are We Working on Now?



# What Are We Working on Now?



TES





shield

TES

shield

TES









Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024

# 1. Local Heating Effect


### Higher Energy ⇒ Higher Temperature

13

Field-emission current from CNTs



## Higher Energy ⇒ Higher Temperature

13

Field-emission current from CNTs



# Higher Energy $\Rightarrow$ Higher Temperature



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024

### 14/11/2024: First Attempt

Adding **gold wire bondings** between the shield and the MiC plate seem to facilitate thermalization!



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024

### 14/11/2024: First Attempt



Adding **gold wire bondings** between the shield and the MiC plate seem to facilitate thermalization!



# 15/11/2024: Back to the Starting Point...



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024

# 2. Energy Resolution smaller TES



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024

100  $\mu m \ x \ 100 \ \mu m \$  **60 \mu m \ x \ 60 \ \mu m** 



100 μm x 100 μm TES to work with 100 eV electrons as the smaller the TES, the lower its saturation energy

#### $100 \ \mu m \ x \ 100 \ \mu m \$ & 60 $\mu m \ x \ 60 \ \mu m$



- 100 μm x 100 μm TES to work with 100 eV electrons as the smaller the TES, the lower its saturation energy
- ► Energy resolution dependences:

$$\Delta E \propto \sqrt{\frac{T_c^3 \cdot Area}{\alpha}} \qquad \qquad \alpha = \frac{T}{R} \frac{dR}{dT}$$
transition sharpness

### $100 \ \mu m \ x \ 100 \ \mu m \ \& \ 60 \ \mu m \ x \ 60 \ \mu m$



- 100 μm x 100 μm TES to work with 100 eV electrons as the smaller the TES, the lower its saturation energy
- ► Energy resolution dependences:

$$\Delta E \propto \sqrt{\frac{T_c^3 \cdot Area}{\alpha}} \qquad \alpha = \frac{T}{R} \frac{dR}{dT}$$
  
transition sharpness

> 100 μm x 100 μm — 60 μm x 60 μm energy resolution improvement of 40%

### $100 \ \mu m \ x \ 100 \ \mu m \ \& \ 60 \ \mu m \ x \ 60 \ \mu m$



- 100 µm x 100 µm TES to work with 100 eV electrons as the smaller the TES, the lower its saturation energy
- ► Energy resolution dependences:

$$\Delta E \propto \sqrt{\frac{T_c^3 \cdot Area}{\alpha}} \qquad \alpha = \frac{T}{R} \frac{dR}{dT}$$
  
transition sharpness

> 100 μm x 100 μm — 60 μm x 60 μm energy resolution improvement of 40%

electrons of 100 eV don't saturate these smaller devices!

# 3. Energy Resolution noise reduction

Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024

### New MiC Setup to Reduce Noise

- > Too much noise in the signals: CNT power supply and 'flying wires' between TES and SQUID
- ► New MiC 2.0 designed:

### New MiC Setup to Reduce Noise

- > Too much noise in the signals: CNT power supply and 'flying wires' between TES and SQUID
- ► New MiC 2.0 designed:



### New MiC Setup to Reduce Noise

Too much noise in the signals: CNT power supply and 'flying wires' between TES and SQUID
 New MiC 2.0 designed:



### what happens to electrons?





21









Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024



22



22





Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024




























### **TES Readout Circuit**



$$\tau_{eff} = \tau_{th} \left\{ 1 + \frac{\alpha}{n} \left( 1 - \frac{T_{bath}^n}{T_c^n} \right) \right\}^{-1} \approx \frac{n}{\alpha} \tau_{th} \approx \frac{C}{G} \propto T_c^{-3}$$

$$\Delta E_{FWHM} = 2.36 \sqrt{4k_B T_c^2} \frac{C}{\alpha} \sqrt{\frac{n}{2}} \propto T_c^{3/2}$$

energy FWHM

$$E_{sat} = C\Delta T_{sat} = \frac{C}{\alpha} \frac{\Delta R_{sat}}{R} T_c \propto T_c$$

energy saturation

 $\alpha = \frac{T}{R} \frac{dR}{dT}$ 

transition sharpness



## Electric Field does not have any Effect



E

Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024

# **Background Sources**

F





Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024

#### Electrons on Characterization Curve



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024



Benedetta Corcione - PTOLEMY Genova Meeting, 21.11.2024

#### Paper published on October 29th by Physics Review Applied!

Phys. Rev. Applied 22, L041007

#### Detection of Low-Energy Electrons with Transition-Edge Sensors

Carlo Pepe,<sup>1, 2</sup> Benedetta Corcione,<sup>3, 4</sup> Francesco Pandolfi,<sup>4, \*</sup> Hobey Garrone,<sup>1, 2</sup> Eugenio Monticone,<sup>1</sup> Ilaria Rago,<sup>4</sup> Gianluca Cavoto,<sup>3, 4</sup> Alice Apponi,<sup>5</sup> Alessandro Ruocco,<sup>5</sup> Federico Malnati,<sup>6</sup> Danilo Serazio,<sup>1</sup> and Mauro Rajteri<sup>1</sup> <sup>1</sup>Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy <sup>2</sup>Politecnico di Torino - Dipartimento di Elettronica e Telecomunicazioni, Corso Duca degli Abruzzi 24, 10129 Torino, Italy <sup>3</sup>Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy <sup>4</sup>Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy <sup>5</sup>Dipartimento di Scienze Università degli Studi Roma Tre, and Istituto Nazionale di Fisica Nucleare - Sezione di Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy <sup>6</sup>Dipartimento di Fisica, Università di Torino, via Pietro Giuria 1, 10125, Torino, Italy

> We present the first detection of electrons with kinetic energy in the 100 eV range with transitionedge sensors (TESs). This has been achieved with a  $(100 \times 100) \ \mu\text{m}^2$  Ti-Au bilayer TES, with a critical temperature of about 84 mK. The electrons are produced directly in the cryostat by an innovative cold source based on field emission from vertically-aligned multiwall carbon nanotubes. We obtain a Gaussian energy resolution between 0.8 and 1.8 eV for fully-absorbed electrons in the (90-101) eV energy range, which is found to be compatible with the resolution of this same device for photons in the same energy range. This work opens new possibilities for high-precision energy measurements of low-energy electrons.

# **Cambridge Results**

4K



Benedetta Corcione - thesis discussion, 25.10.2024