Quantum Hall effect in hydrogenated graphene

21 November 2024 Inge van Rens Radboud University Nijmegen, the Netherlands

Why?

- Understanding graphene and the effect of hydrogen on the system
 - If we know the band structure, we can predict behaviour
- Low resistivity to limit potential differences
 - Influenced by temperature, magnetic field and doping
 - Fully hydrogenated graphene is an insulator

Why & how?

- Understanding graphene and the effect of hydrogen on the system
 - If we know the band structure, we can predict behaviour
- Low resistivity to limit potential differences
 - Influenced by temperature, magnetic field and doping
 - Fully hydrogenated graphene is an insulator
- Temperature dependence
- Magnetic field effects
- Band structure simulations

Graphene Field Effect Transistor

Hydrogenation process

- Start with annealed sample
- Exposed 1 mbar hydrogen plasma for 5 minutes
- Exposed to air for 10 minutes
- Repeat until we reach the wanted state

Neutrality point shifted ٠ 0T Temperature dependence similar ٠ 4.2K 6 10K From vrh fit: band gap 2.6±1.1K ٠ 5 15K Resistance (kΩ) 25K Variable-range hopping fit for band gap in state 2 10.0 300.0 100.0 4.2 91K 50.0 20.0 130K $T_0 = 2.6 \pm 1.1 \text{K} = 0.23 \pm 0.09 \text{meV}$ $\frac{R_0}{R} = e^{-\left(\frac{T_0}{T}\right)^{\frac{1}{3}}}$ $(G)_{peak}$ 1 -40-2020 40 60 -600 Errorbars x 100 Gate voltage (V) 4×10^{3} 0.2 0.3 0.4 0.5 0.6 | 7 $T^{-\frac{1}{3}}(K^{-\frac{1}{3}})$

- Compare samples g12 and g3
- Similar band gap opening
- Band gap is far smaller than for a fully hydrogenated graphene sample (Elias *et al.*, Science 323, 610-613 (2009))

Magnetic field effects

A. J. M. Giesbers, U. Zeitler, M. I. Katsnelson, L. A. Ponomarenko, T. M. Mohiuddin, and J. C. Maan, Quantum-Hall Activation Gaps in Graphene. In PRL 99, 206803 (2007) 9

Quantum Hall Effect

Quantum Hall Effect

Activation energy

 $R \propto exp(-\Delta_a/k_BT)$

Activation energy

- Activation gap depends on Landau level broadening and peak-to-peak distance
- Effective electron mass can be extracted from the slope of the activation gap
- 25 minutes of plasma exposure, filling factor -2: $m^* = 0.24 \pm 0.04 m_e$
- 30 minutes of plasma exposure, filling factor -2: $m^* = 0.4 \pm 0.1 m_e$
- For pristine graphene, $\Delta \propto \sqrt{B}$

Simulations

Simulations

| 15

Simulations

Implications for PTOLEMY

- H-graphene resistance depends on temperature, magnetic field, electric field, doping and coverage
- A small electric field at the target might help reduce the resistance, and the risk of potential differences on the surface, significantly
- We might be able to reduce the resistance by doping the sample or applying a electric field

Implications for PTOLEMY

- H-graphene resistance depends on temperature, magnetic field, electric field, doping and coverage
- A small electric field at the target might help reduce the resistance, and the risk of potential differences on the surface, significantly
- We might be able to reduce the resistance by doping the sample or applying a electric field
- Contact with KIT for tritium measurements

BACKUP SLIDES

Quantum hall resistance

- $\rho_{xx} = \frac{\sigma_{xx}}{\sigma_{xx}^2 + \sigma_{xy}^2}$
- Only localised states:
 - $\sigma_{\chi\chi} = 0$
 - σ_{xy} finite

The Nijmegen Group

Uli Zeitler (RU HFML-FELIX) Oleksandr Zheliuk Nicolo de Groot (RU HFML-FELIX) (RU IMAPP)

ot Nicoleta Cucu-Laurenciu (RU IMAPP) Inge van Rens (RU IMAPP)

And our students:

Martijn VeldersBram BreugelmansThomas Derks(RU IMAPP)(RU HFML-FELIX)(RU HFML-FELIX)

Institute for Mathematics, Astrophysics and Particle Physics Radboud University

10 seconds of hydrogen exposure, 0T

Quantum Hall effect

Transfer curves after hydrogenation

Compare simulations to hydrogenation results

Hexposure

Hexposure

Hexposure

Hydrogen exposure may increase or decrease resistance