Nebula: a Powerful Tool for Low Energy **Electrons Simulations**

Presentation for PTOLEMY International Meeting - Genova, 20-22 November 2024

Francesca Maria Pofi - GSSI, INFN LNGS Valentina Tozzini - Istituto Nanoscienze - CNR (Pisa), INFN Pisa

Why Nebula?

What is: open-source software package with first-principle physical models for electron Monte Carlo simulations developed by L. van Kessel et al. (<u>10.1016/j.softx.2020.100605</u>)

Main Goal: Scanning Electron Microscope (SEM) images simulation

Accurate description of <u>low energy</u> (< 1000 keV) electrons behaviour</p>

 \checkmark Material file generation tool to keep into account <u>material parameters</u>

induced deposition, electron beam lithography & electron detection (>15 works)

Can run on GPUs for fast simulations, or on multi-core CPUs if there is no GPU available

Francesca M. Pofi

- b Used for a <u>variety of different applications</u> in the fields of electron microscopy, electron beam

What Can Happen to an Electron?

Three types of event:

- 1. Inelastic scattering

 - Secondary electron generation
- 2. Elastic scattering

 - for E > 200 eV: Mott scattering -> cross section with ELSEPA
- 3. Material crossing
 - \bullet

Francesca M. Pofi

for E < 100 eV: electron-acoustic phonon scattering (Schreiber and Fitting model)

Refraction or reflection I transmission coefficient with step function model potential

Ingredients for a Simulation

Three **types of input**:

- 1. Geometry
 - List of triangles + materials on either side
 - \bullet

2. Primary Electrons

- List of starting positions, directions, energies & tags
- 3. Material File(s)

Francesca M. Pofi

Detector implemented as "special material" $\leftarrow \rightarrow$ electron information storage:

- 100% efficiency
- no energy broadening

stored in a numpy datatype: with distributions —> more realistic beams simulation

	 1

Silicon

name: density:	silicon 2.3290 g/cm³					
elements: Si: { count	: 1, Z: 14, M	: :	28.0855 g/mol }			
<pre>band_structure: model: valence: band_gap: affinity:</pre>	semiconducto 7.27 eV 1.12 eV 4.05 eV	r				
optical: df_file:	elf/df_Si.da	t				
phonon: lattice: m_dos: m_eff:	5.430710 Å 1.08 m_e 0.26 m_e					
longitudina alpha: c_s: ac_def:	l: 2.00e-7 m²/s 9130 m/s 9.2 eV	# #	Landolt–Bornstein Landolt–Bornstein	Vol. Vol.	III/41A1a III/41A1a	8
transversal alpha: c_s: ac_def:	: 2.26e-7 m ² /s 5842 m/s 5.0 eV	# #	Landolt-Bornstein Landolt-Bornstein	Vol. Vol.	III/41A1a III/41A1a	8

Francesca M. Pofi

Gold

name: density:	gold 19.30 g/cm³
elements: Au: { count: 1,	Z: 79, M: 196.97 g/mol }
<pre>band_structure: model: fermi: work_function:</pre>	metal 5.53 eV 5.38 eV
optical: df_file:	elf/df_Au.dat
phonon: model: lattice:	dual 4.0782 Å
isotropic: resistivity:	2.44e-8 Ω m
<pre>longitudinal: c_s:</pre>	3240 m/s
<pre>transversal: c_s:</pre>	1200 m/s

372 548

Silicon			Gold		
name: density:	silicon 2.3290 g/cm³		name: density:	gold 19.30 g/cm³	/
elements: Si: { count	:: 1, Z: 14, M	: 28.0855 g/mol }	elements: Au: { count: 1,	Z: 79, M: 196.97 g/m	ol}
<pre>band_structure: model: valence: band gap:</pre>	semiconducto 7.27 eV 1.12 eV		band_structure: model: fermi: work_function:	metal 5.53 eV 5.38 eV	
affinity:	4.05 eV	Generic Parameters (name,	density)		
df_file:	elf/df_Si.d	Element list: for each aloma	nt		
lattice: m_dos:	5.430710 Å 1.08 m_e		; L 		
m_err: longitudina	0.26 m_e	 counτ = # atoms pe 	r unit cell		
alpha: c_s: ac def:	2.00e-7 m ² / 9130 m/s 9.2 eV	 Z = atomic number 			
transversal		 M = average atomic 	mass		
alpha: c_s: ac_def:	2.26e-7 m²/s 5842 m/s 5.0 eV	<pre># Landolt-Bornstein Vol. III/41A1a 872 # Landolt-Bornstein Vol. III/41A1a 648</pre>	transversal: c_s:	1200 m/s	
Eropoooo M	Dofi				

Francesca IVI. Poti

🖻 Silic Þ B	and struct	ure:	
name: density	Metals: s	ingle band = cc	nduction ba
element Si:	Semicon	ductors & insula	ators: valenc
<pre>band_structure model: valence: band_gap: affinity:</pre>	semiconducto 7.27 eV 1.12 eV 4.05 eV	٥r 	
optical: df_1		• model:s	emiconduct
phonon: lattice:	5.430710 Å		
• va	lence (ba	ind width)	
• ba	nd_gap		
• af	finity =	bottom of cond	Juction
ba	nds wrt va	acuum	
c_s: ac_def	5842 m/s 5.0 eV	<pre># Landolt-Bornstein # Landolt-Bornstein</pre>	Vol. III/41A1a 87 Vol. III/41A1a 64

Francesca M. Pofi

and

ce and conduction bands, band gap in between

Francesca M. Pofi

- alpha = band bending of phonon dispersion relation near Brillouin zone edge

	2234,004	phonon: model: lattice:	dual 4.0782 Å
72		isotropic: resistivity:	2.44e-8 Ω m
48		<pre>longitudinal: c_s:</pre>	3240 m/s
72 48		transversal: c_s:	1200 m/s

Silicon silicon name: 2.3290 g/cm³ density: elements: Si: { count: 1, Z: 14, M: 28.0855 g/mol } band_structure: model: semiconductor valence: 7.27 eV band_gap: 1.12 eV affinity: 4.05 eV optical: df_file: elf/df_Si.dat phonon: 5.430710 Å lattice: Optical: m_dos: **1.08** m_e m_eff: 0.26 m_e longitudinal: alpha: 2.00e-7 m²/s # Landolt-Bornstein Vol. III/41A1a 872 c_s: 9130 m/s ac_def: 9.2 eV # Landolt-Bornstein Vol. III/41A1a 648 transversal: alpha: 2.26e-7 m²/s c_s: 5842 m/s # Landolt-Bornstein Vol. III/41A1a 87 ac_def: 5.0 eV # Landolt-Bornstein Vol. III/41A1a 648

Francesca M. Pofi

Gold	
name: density:	gold 19.30 g/cm ³
elements: Au: { count: 1,	Z: 79, M: 196.97 g/mol }
<pre>band_structure: model: fermi: work_function:</pre>	metal 5.53 eV 5.38 eV
optical: df_file:	elf/df_Au.dat
phonon: model: lattice:	dual 4.0782 Å
<pre>phonon: model: lattice: • df_file = op pu pu in</pre>	dual 4.0782 Å ptical data to represent robability of electron energy los a material
<pre>phonon: model: lattice:</pre>	dual 4.0782 Å ptical data to represent robability of electron energy los a material 3240 m/s
<pre>phonon: model: lattice: off_file = of pr pr in C_s: transversal: C_s:</pre>	dual 4.0782 Å ptical data to represent obability of electron energy los a material 3240 m/s

Energy Loss Function from Optical File

Optical data to represent probability of electron energy loss

• dielectric function ϵ to compute Energy Loss Function as

$$ELF = Im\left(-\frac{1}{\epsilon}\right)$$

HOW IS TREATED

- q dependent ELF expanded from q=0 one in terms of Lindhard function
- Single pole approx. of Lindard function used (Penn algorithm)
- Can also take as input ELF tabulated over very large range of energies (e.g. Si optical file)

Francesca M. Pofi

GS SI

A First Trial: Bulk Silicon REELS

Aims:

- Try simulation tool with a material already available on it
- Compare results with experimental ones from literature
- Geometry:
 - 1 μ m x 1 μ m x 10 μ m Silicon sample
 - Detector at 10 nm distance from sample surface, // to it
 - Terminator surface on bottom, mirror surfaces on sides
- Primary Electrons:
 - 3000 eV & 5000 eV monochromatic electrons
 - 10 millions, emitted perpendicular to surface at 5 nm distance

Francesca M. Pofi

Good Agreement with Experimental Results

- Comparison with REELS Si spectra from L. H. Yang et al., <u>10.1103/PhysRevB.100.245209</u>
- Good agreement with theoretical & measured bulk plasmon peaks energies (~17 eV & multiples)
- Slightly lower relative peaks intensities (e.g. 2nd/1st peak @ 3000 eV: 1/2 vs 2/3 experimental)

Looking for Graphite Parameters

A First Trial: Bulk Silicon REELS

Geometry:

- Same of first simulation but with bulk graphite as sample
- Primary Electrons:
 - 1000 eV monochromatic electrons
 - 10 millions, emitted perpendicular to surface at 5 nm distance
- Energy loss function:
 - Already available on Nebula

Francesca M. Pofi

S S

Well Reproduced Energy Loss

Francesca M. Pofi

S

Recap & Next Step

We found good agreement with literature for bulk graphite REELS

- Some parameters still to be well understand and better defined
- Just q-in-plane graphite component for now, should be weighted with q-out-of-plane one

Work ongoing, still lot of improvements to achieve!

Next steps: improve graphite --> simulate graphene --> simulate graphane

- What are the parameters?
- Possible comparison with experimental energy loss for low primary energy (<1 keV)

Francesca M. Pofi

S . 7

