In silico optimization of tritiated graphene for Ptolemy

LESGO

PTOLEM

Valentina Tozzini Istituto Nanoscienze - CNR (Pisa –Italy) INFN Sez Pisa

Italiadomani

THE Tuscany Health Ecosystem

> Ministero dell'Università e della Ricerca

dall'Unione europea

Guido Menichetti UniPi, IIT Angelo Esposito UniRomal Andrea Casale Comumbia Univ Luca Bellucci NANO-CNR Francesca Maria Pofi GSSI CINECTOLEMY

collaborati

Outline

✓ What happens *during* 3H decay

 $\hfill Optimized Potential of tritium on graphene <math display="inline">\rightarrow$ quantum uncertainty corrections

✓ What happens after decay(/capture)
 □ Electronic structure relaxation
 □ He dynamics and interaction with the material
 □ Interaction of β electrons with the material
 → Energy loss function & MC simulations

How do we optimize the material?
 Structure of the popporous coefford

Timeline

CNR**NANO**

NFN

On the ultra-fast time s

Before

CNRNANO

decay/capture: n(r) is relaxed in the electronic ground state

- The T interaction potential U(z) is calculated within BO-DFT moving a T atom
- T binding energy ranges from 5 eV to ~O depending on T loading, local curvature of the sheet, on E-B external

- ³H becomes He⁺ and the electronic structure has not time to rearrange
- Sudden approximation : U(z) evaluated with n(r) frozen at the configuration with T
 The potential is strognly

After electronic relaxation:

✓ Electrons move to He (He⁺ → He)
 ✓ The potential turns strongly repulsive

The relaxation time depends on the opto-electronic properties of

The repulsive potential produces He release

The He release excites specific modes of the

- **After He is released, the vacant site is distorted** and its relaxation excite **specific vibrational modes**
- These are visible in the beats and involve: stretching-bending and rocking + out of plane mode of the sheet
- Specific frequencies may appear as enhanced peaks in IR or Raman
- ✓ The frequencies however, depends on the amount and distribution of tritium
- Vibrational spectra calculations are in

The β electrons interact with the material

In the low energy range (up to 20-100K) electrons interact with the material and release energy with several mechanisms

- Primary scattering
- Production of secondaries and scattering
 - Dissipation by interactions with electrons of the material
- Dissipation by interaction with phonons of the material

Moleculary dynamics simulations (L Bellucci) were previously done for EMB electron beams (20keV) with very large fluence (5x10 ° el/nm² sec) considering only primary scattering and other effects a producing an average gradual eating in the local soot of the beam

Operability timescale of defect-engineered graphene Nicola Melchioni ^{a,*}, Luca Bellucci ^a, Alessandro Tredicucci ^{b,c}, Federica Bianco ^{a,*} ^{*}NEST Laboratory, Istituto Nanoscienze CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 1-S6127, Pisa, Italy ^bIstituto Nanoscienze CNR, Piazza San Silvestro 12, 1-S6127, Pisa, Italy ^cIbartimeto di Fisca ^{TE}. Ferrat'. Università di Pisa, Laroo Panno Pontecoro 3, 1-S6127, Pisa, Italy

- The single scattering event can transfer to C
 ~3eV
- ⇒ This cannot generally break C=C bonds
- However, the local heat up of the sheet due to secondaries and dissipation can combine with the scattering and

with the scattering and International worksbreateroferetering and

The $\boldsymbol{\beta}$ electrons interact with the material

In the low energy range (up to 20-100K) electrons interact with the material and release energy with several mechanisms

- Primary scattering
- Production of secondaries and scattering
- ✓ Dissipation by interactions with electrons of the material
- Dissipation by interaction with phonons of the material

In our case

- The primary scattering can release up to 15 eV
 to ³H (due to smaller mass) and possibly break
 C-H bond
- ✓ On the other hand, we have much lower fluence (10⁻⁷ el/nm² sec) but we want to properly consider the distribution of secondaries and their scattering into the material
- Additionally, we have a complex material , both in composition and structure, and we must consider the dissipation both by electronic

$$E_{t} = \left\{ 1 - \left(\frac{m_{e} \cos \omega' + \sqrt{m_{c}^{2} - m_{e}^{2} \sin^{2} \omega'}}{m_{e} + m_{c}} \right)^{2} \right\} \frac{(E + 2m_{e}c^{2})}{2m_{e}c^{2}} E,$$
See e.g. Asayama et al. LVac Sci Tech B 30.06fi02 2012 (2)

The β electrons interact with the material

In the low energy range (up to 20-100K) electrons interact with the material and release energy with several mechanisms

- Primary scattering
- Production of secondaries and scattering
- Dissipation by interactions with electrons of the material
- Dissipation by interaction with phonons of the material IDEA: combine Monte Carlo (NEBULA) with MD
- From MC simulation calculate the energy distribution in the structure
- Use that energy distribution to create the starting condition of in a structurally realistic model and evlove it with MD

Issues:

- Interview of the the test of te
- Tritiated graphene is two dimensional, nano-porous and disordered

The β electrons interact with the material

- Primary scattering
- Production of secondaries and scattering
- **Electronic structure** Dissipation by interactions with electrons of the material
- Dissipation by interaction with phonons of the metremonal dispersion
- Issues:
- The effects to be described in MC simulations DEPEND on the material composition AND structure
- Tritiated graphene is two dimensional, nano-porous

CNB**NANO**

 $\operatorname{Im}\left[\frac{-1}{\varepsilon(q,\omega)}\right]$

(cm⁻¹)

Solution 400 200

graphite : anisotropic conductor **graphene**: conductor 2D graphAne : insulator 2D

graphite: extremely anisotropic and dominated by plasmon peak graphene/graphane : 2D, and strongly dependent on mographite trafstaly anysotropic **graphene**: quadratic branch graphAne: quadratic branch and specific C-H

International workshop of PTOLEMY collaboration, Genoa Nov 20-22 2024

Chemical composition

The "real" material and its properties

- ✓ Our material is 2D → Some of the properties are intrinsically different (density of states, phonons dispersion, conductivity, FLF)
- conductivity, ELF)
 Our material is not entirely graphene
 or graphAne
- ✓ Our material is not even regularly loaded, but probably disordered
 → Properties like conductance, ELF,
 vibrational spectra are a mixture of
 those of graphene/graphAne, depending
 on loading and configuration of tritium

Graphene is **nanoporous**

 \rightarrow tritium loading, diffusion of He, β electrons interaction and vibrational properties are influenced by the structure

influenced by the structure Everything depends on **graphene structure**, on **tritium loading** level and **distribution** !

coverage (%)

Summary

loading

- The ³H-He potential for the rate calculation depends on loading level and distribution of tritium
- He detaches and diffuses through the structure
- Specific vibrational modes are activated that could be detected in coincidence with the decay/capture
- β electrons may create defects in the material in very specific conditions
- β electrons interaction and effect depends on thitiam luaiding and distribution and is under the provide the first of t
- Simulations are in the course to optimize

Thank you for your attention Guido Menichetti UniPi, IIT

PTOLEM

LESGO

Angelo Esposito UniRomal Andrea Casale Columbia Univ

Luca Bellucci NANO-Cnr Francesca Maria Pofi GSSI

📒 Italiadomani

atior

Tuscany Health Ecosystem

Ministero dell'Università

Electrons interaction with the hydrogenated

- However, the sub-breaking energy is transferred to the material, which heats up . . With the fluency of EM beams (fluence ~ 5x10 ° el/nm² sec) the heat up is fast and defects occurs when local temperature reaches high values.
- Secondary electrons effect is not considered in this work, and the Ekin distribution is very roughly described
- **In our case:** we have a probability of decay (and fluence of electrons) that is about 10⁻⁷ el/nm² sec) 17 orders of magnitude less -> fast heat up is certainly not likely

But:

- We have additional heating caused by **He release and diffusion within the structure** : each event distributes 2-4 eV of energy per nm² resulting in a heat up of 300-500 K/event = at most 500Kx10⁻⁷ sec⁻¹ (i.e. 300K /year)
- C-T bonds can be directly **broken by the primary electrons**
- We can properly evaluate the kinetic energy distribution by MC simulations, inc electrons
- ->NEBULA calculations allow to include the material properties.

Gap vs coverage

Band gap generally decreases with T loading

But data from calculations (and exp as well) are very messy mainly because of different hydrogenation modality

- one or two side
- clusters or random
- geometry of hydrogenation (strips, islands, ...)

Gap vs coverageocusing on simple geometries: Tritiation per

CNR**NANO**

Neutrino capture

$\nu_e + {}^3\mathrm{H} \rightarrow {}^3\mathrm{He^+} + e^-$

A=3.5 (8) w*=1. W=40Å. δ=3Å

80

coverage (%)

exp)

(GW,

2

100

#

electron

energy

³H

³He⁺

Requirements

1. The material **must be conductive** for high precision β peak

The band gap and conductance depend on distribution of T on

→ optimization of the material is in the course

2. The quantum uncertainty on the ${}^{3}H/He$ momentum spoils the resolution

E_{gap} (eV) N

Density Functional Theory

colors of the ory

$$E[n,\mathbf{R}] = E_k[n] + E_{xc}[n] + E_H[n] + \int V_N(\mathbf{R},\mathbf{r})n(\mathbf{r})d\mathbf{r} + E_{NN}(\mathbf{R})$$

- → $BO \rightarrow self consistent calculation for$ *n*at given**R**
- → Frozen electrons: non self consistent calculation at given n with variable R
- Calculations
 - → Electron density $\rho(r)$ and full electronic structure \rightarrow Bands&gaps, Fermi level, optical properties, transport...
 - → Electron spin density $\zeta(r) \rightarrow$ magnetism
 - Forces on nuclei → vibrational properties and molecular dynamics
- Calculation setup

calculations)

- Density Functional E_{xc}[n(r)] = Generalized Gradient
 Corrected (PBE) + vdW correction + spin resolved
- → Augmented Plane Wave expansion (periodic boundary conditions) Quantum Espresso Code, vs 7.2
- → Steered, damped or free molecular dynamics for the conformational space exploration
- Run on Leonardo@CINECA 4-8 nodes (4 GPUxnode, 32 core x node) → 128-256 Cores, 14-24 GPUs, or local nodes (test

Focus on the beta decay

$$^{3}\text{H} \rightarrow ^{3}\text{He}^{+} + e^{-} + \bar{\nu}_{e}$$

 $M \sim \int d\mathbf{x} \Psi_{0} \Psi_{f}^{*} e^{i\mathbf{p}_{el}\cdot\mathbf{x}}$

Starting state Ψ_0 : T is relaxed on the substrate

- ✓ BO standard DFT for evaluation of orthogonal and lateral potential
- ✓ The binding energy depends on loading level and distribution, and on the local geometry of the substrate
- A barrier can be present especially in presence of spin polarization or in concavitiesNFN

CNRNANO

Neutrino captureand quantum tech

→ Encapsulation into nanotubes or fulle

The need for high concentration of tritium can be recovered compacting tubes into **bundles** or fullerene into **fullerite**

→ These systems are also considered as bases for quantum bits encoded into the encapsulated atom spin

elusive particles ever.

PHYSICAL REVIEW D 106, 053002 (2022)

Heisenberg's uncertainty principle in the PTOLEMY project: A theory update

A. Apponi,^{1,2} M. G. Betti,^{3,4} M. Borghesi,^{5,6} A. Boyarsky,⁷ N. Canci,⁸ G. Cavoto,^{3,4} C. Chang,^{9,10} V. Cheianov,⁷ Y. Cheipesh,⁷ W. Chung,¹¹ A. G. Cocco,¹² A. P. Colijn,^{13,14} N. D'Ambrosio,⁸ N. de Groot,¹⁵ A. Esposito,¹⁶ M. Faverzani,^{5,6} A. Ferella,^{8,17} E. Ferri,⁵ L. Ficcadenti,^{3,4} T. Frederico,¹⁸ S. Gariazzo,¹⁹ F. Gatti,²⁰ C. Gentile,²¹ A. Giachero,^{5,6} Y. Hochberg,²² Y. Kahn,^{10,23} M. Lisanti,¹¹ G. Mangano,^{12,24} L. E. Marcucci,^{25,26} C. Mariani,^{3,4}
M. Marques,¹⁸ G. Menichetti,^{26,27} M. Messina,⁸ O. Mikulenko,⁷ E. Monticone,^{19,28} A. Nucciotti,^{5,6} D. Orlandi,⁸ F. Pandolfi,³
S. Parlati,⁸ C. Pepe,^{19,28,29} C. Pérez de los Heros,³⁰ O. Pisanti,^{12,24} M. Polini,^{26,13,22} A. D. Polosa,^{3,4} A. Puiu,^{8,33} I. Rago,^{3,4}
Y. Raitses,²¹ M. Rajteri,^{19,28} N. Rossi,⁸ K. Rozwadowska,^{8,33} I. Rucandio,³⁴ A. Ruocco,^{1,2} C. F. Strid,³⁵ A. Tan,¹¹ L. K. Teles,¹⁸ V. Tozzini,³⁶ C. G. Tully,¹¹ M. Viviani,²⁵ U. Zeitler,¹⁵ and F. Zhao¹¹

Neutrin ... are "elusivend

- **S**Their mass is "almost" null and paknown (R.5=0.8 eV)
- They are neutral and interact only "wealkly" with

Their cosmic background bears extremely interesting information on the early universe (decoupled 1 sec after Big Bang)

Microwave

background (> 380Kyears, 2.7K)

Gravitational wave cosmic background (VIRGO)

I sec after Big Bang **Relic neutrinos background** (density ~53 cm⁻³, energy~10⁻⁴ eV) Interaction with Tritium (³H) to explore neutrinos

```
Neutrino

capture JHe^+ + e^-
```

Tritium β decay $^{3}\text{H} \rightarrow ^{3}\text{He}^{+} + e^{-} + \bar{\nu}_{e}$

Neutrinos interaction with Tritium

Both process can measure neutrino mass

collection

mancurament

CNRNANO

- Mhegettertoph detect the relic
- -nelectron of tritium for high event rate
- → High exposure of tritium for efficient e⁻

ΔV Tritium on onducting material for accuracy in energy International workshop of PTOLEivIY collaboration, Genoa Nov 20-22 2024

Tritium on

- Grate of tritium for high event
- High exposure of tritium for efficient e⁻

terial for accuracy in energy Nanoporous graphene can be loaded up to 90% Betti et al Nanolett 2024 0.019 µg/cm² = 0.19mg/m² 0.1g/cm³ = 100 kg/m³ Accessible surface 2630 MgH2electron mobility x 1000 of Cu

Neutrino captu $\nu_e + {}^{3}\text{H} \rightarrow {}^{3}\text{He}^+ + e^-$ Tritium β decay $^{3}\text{H} \rightarrow ^{3}\text{He}^{+} + e^{-} + \bar{\nu}_{e}$ electron energy $M \sim \int d\mathbf{x} \, \Psi_0 \, \Psi_f^* e^{i\mathbf{p}_{el} \cdot \mathbf{x}}$

Graphene satisfies the requirements,

PHE-substrate effects must be included in the reactions!

- $\checkmark \Psi_0(^{3}H)$ and $\Psi_f(^{3}He^+)$ are influenced by the substrate
- ✓ The **spectra turns out considerably different** from the case *in vacuo*
- \checkmark The interaction potential of H/He⁺ with graphene must be known with high precision
- ✓ The conduction properties of the material must be known during reactions

Density Functional Theory calculations in on-standard conditions

International workshop of PTOLEMY collaboration, Genoa Nov 20-22 2024

m

CNRNANO