

How to unravel the youngest Universe: Introduction to the PTOLEMY project

Chris Tully (Princeton University

4 DECEMBER 2024 GENOA, ITALY

Research supported

byohn Templeton ndation

ERA OF AMAZING NEW TELESCOPES

James Webb Space Telescope

Source: Nasa

BBC

Event Horizon Telescope Supermassive Black Hole at Center of Milky Way Galaxy

https://www.space.com /james-webb-space-tel escope-ancient-black-h ole-quasar

At 330,000 years, the Universe is smooth to 10 parts per million

Cosmic Neutrino Background

NOBEL PRIZE IN PHYSICS 2019

Dicke, Peebles^{*}, Roll, Wilk<mark>inson (1965)</mark>

Number density: $n_{i} = 112/cm^{3}$ **Temperature:** T.~ 1.95K Time of decoupling: t ~ 1 second ~50% of the Total Energy Density of the Universe @ 1 sec neutron/proton ratio @start of nucleosynthesis

⁴He ²H (³H e)

Looking Back in Time with Photons

Emission Time -13.8x10⁹ years \sim -4x10⁹ years -200x10⁶ years \sim -2x10⁶ years All of this light arrives at the same time (t=0)

Neutrino Masses from Oscillations

Theory developed by Bruno Pontecorvo

3 mass eigenstates X 3 flavors (electron, muon, tau)

Neutrino Masses from Oscillations

Theory developed by Bruno Pontecorvo

3 mass eigenstates X 3 flavors (electron, muon, tau)

Neutrino Mass Oscillation Observatory

KM3NeT/ORCA (Oscillation Research with Cosmics in the Abyss) determination of the neutrino mass hierarchy (E_v ~ MeV - GeV) low energy neutrinos Depth -2500 m -offshore Toulon (France)

Neutrino Mass Oscillation Observatory

KM3NeT/ORCA (Oscillation Research with Cosmics in the Abyss) determination of the neutrino mass hierarchy (E_v ~ MeV - GeV) low energy neutrinos Depth -2500 m -offshore Toulon (France)

Massive Neutrino Timeline

Einstein rings Predicted by Einstein in 1936

IDEA OF ENRICO FERMI 90 year

Fermi, E. Versuch einer Theorie der β-Strahlen**a. Anderse Beschlerg!** (1934).

https://doi.org/10.1007/BF01351864

The neutrino masses are so tiny, their effects are smaller than atomic transitions in normal materials. (There is a reason that there are no units on this plot.)

PTOLEMY: 2D MATERIAL - GRAPHENE

PTOLEMY: 2D MATERIAL - GRAPHENE

MICRO-CALORIMETER

Based on the expertise of the INRiM an important results have been achieved on electron measurement with TES.

Key elements of the measurements: performing TES and new e-source based on nanostructures

Design Goal (PTOLEMY): $\Delta E_{FWHM} = 0.05 \text{ eV} @ 10 \text{ eV}$

0.02

0.00

-0.04

-0.06

-0.08

-0.10

-0.14

 $\tau_{1} = 137 \text{ ns}$

(mV)

translates to $\Delta E \propto E^{\alpha} \ (\alpha \le 1/3)$ $\Delta E_{FWHM} = 0.022 \text{ eV} @ 0.8 \text{ eV}$

 $\tau_{eff} = 147 \text{ ns}$

 2γ

 $\Delta E = 0.123 \text{ eV}$

1.0

RF MEASUREMENTS NON-DESTRUCTIVE ELECTRON TAG

filter Can we detect the (semi-relativistic) electron on its target way to the micro-calorimeter? 20

RECENT PROJECT 8 TRITIUM RF MEASUREMENT

RF measurement background levels extremely low.

No events observed above endpoint, Setting upper limit on background rate

< 3x10⁻¹⁰ /eV/s (90% CL)

Background Rate < I event per eV in 100 years!

21

ACHIEVED !! KF MEASUREMENTS **NON-DESTRUCTIVE ELECTRON TAG** filter Can we detect the (semi-relativistic) electron on its target way to the micro-calorimeter? R ×10⁻⁶ time [us] 2.4 200 2.2 180 2 160 1.8 140 1.6 120 1.4 1.2 100 80 0.8 60 0.6 40 0.4

0.2

20

535.5

536

536.5

537

537.5

538

538.5

freq.[MHz]

22

TARGET FABRICATION

23

Best in the World!

Hydrogenation of nano-porous graphene (left and center) showing over 90% coverage per carbon atom through the increase of sp³ bonding (blue on right) <u>DOI:</u> <u>10.1021/acs.nanolett.2c00162</u>

T-chamber R side view

Sapienza

Quadrupole Mass Spectrometer: SRS RGA 100

JINST 17 (2022) 05, P05021

 A new electromagnetic filter idea based on RF detection and dynamic F setting

JINST 17 (2022) 05, P05021

 A new electromagnetic filter idea based on RF detection and dynamic E setting VB RF B Ē ANTENNA ³H first measurement of the energy via cyclotron RF emission (~ $10\mu s$ By A. Esposito

JINST 17 (2022) 05, P05021

 A new electromagnetic filter idea based on RF detection and dynamic E setting

JINST 17 (2022) 05, P05021

- A new electromagnetic filter idea based on RF
 - detection and dynamic Epsetting

Zero B field saddle point key feature of the field map

The PTOLEMY Collaboration

The PTOLEMY Collaboration

14 May 2024, Pollica, Italy

CONCLUSION

- PTOLEMY's goal is to eventually detect the cosmic neutrino background
- The detector prototype will be ready at LNGS by the next year
- Prototype baseline option is: T embedded on graphene; New concept EM filter; electron energy resolution measured in several steps (MCP/SDD).
 Ultimately operating TES with sub-eV energy resolution.