

HBS Tantalum Target Development for Neutron Production at HiCANS

International Workshop on future research program with the high power Cyclotron of SPES-LNL

13th May 2025 I Johannes Baggemann, Eric Mauerhofer, Thomas Gutberlet, Jingjing Li, Ulrich Rücker, Paul Zakalek

JCNS – Jülich Centre for Neutron Science

Neutrons for Users

Institute Laue-Langevin 1+2 Instruments operated by 3 employees (IN12, D23, IN22)

Heinz Maier-Leibnitz Zentrum

11 instruments operated (2 from RWTH Aachen),2 ready for commissioning

European Spallation Source

Jülich contributes to the design and construction of 4 instruments

NEUTRON PRODUCTION

Nuclear fission

Spallation

Proton Capture

Reactor based neutron source

(ILL, FRM II, NIST, JINR, ANSTO a.m.m.)

Spallation based neutron source (ESS, SNS, J-PARC, ISIS, SINQ, CSNS)

Ion Energy > 800 MeV Stopping range: around 500 mm

Accelerator based

neutron source

(LENS, RANS, HUNS, NUANS, IREN, a.o.)

Ion Energy < 100 MeV Stopping range: few millimeter

HIGH-CURRENT ACCELERATOR-DRIVEN NEUTRON SOURCE

AN INNOVATIVE APPROACH TO RELEASE NEUTRONS

- Energy in low MeV range
- High peak current
- Regional national source
- Efficient neutron source
- Target multiplexing straight forward and affordable
- Large instrument suite possible

HBS (Germany) ICONE (France) ARGITU (Spain) LENOS (Italy)

HBS: A HiCANS facility

High current linear accelerator

- 90 mA, 70 MeV pulsed proton beam
- Variable frequency

Several target stations

- Optimize pulse structure (length, rep. rate)
- Optimize thermal spectrum

Small shielding

- Neutron guide close (~40 cm) to cold source
- Chopper at < 2 m from target

Every beam port serves only 1 Instrument

- Optimize cold source spectrum
- Optimize geometry
- Integrate neutron optics with beam port

*to compensate for the initial lower neutron yield

HBS Tantalum Target

- Designed to operate with
 - 70 MeV proton beam
 - 90 mA_{cw} proton current
 - 1.6 % duty cycle
 - \rightarrow 100 kW pulsed thermal load

target fabricated out of a single piece tantalum to operate inside vacuum of proton beam line

in total ~ 4 kg Tantalum

Microchannel Cooling is inspired by the LENOS (LEgnaro NeutrOn Source) target

out

in

https://doi.org/10.1016/j.phpro.2012.03.034

Impinging Proton beam direction

Mitglied der Helmholtz-Gemeinschaf

What we would like to measure with high power Cyclotron of SPES-LNL

- Measurement of the ratio of stopped to penetrated protons behind the first layer at 70 MeV in order to verify the effectiveness of the counter measure against hydrogen embrittlement
- II) Angle dependent neutron spectrum of Tantalum at 70 MeV
- III) Measurement of the temperature distribution on the back side of the target to verify the coolant capability at real operation conditions

Proton fluence and energy deposition of one fishbone element

• Proton flux

- 4.6% of protons accumulate in the metal target
- 94.6% of protons stop in the beamstop
- 0.5% of protons stops in the Ta wall behind the beamstop
- Neutron production of this thin target can be as high as 99% of a thick target

FLUKA 2020.0, cross section: ENDF/B-8R0 and JENDL40-HE

I) Measurement of the ratio of stopped to penetrated protons

blistering caused by hydrogen implantation is one of the major challenges in the development of CANS Tagets.

our main measures:

Mitglied der Helmholtz-Gemeinschaft

- target is made of tantalum which can
 - absorb a high amount of hydrogen (0.76 H/Ta atom) and
 - retains its properties up to 0.175 H/Ta atom
- Thickness of the target (tantalum and water) is smaller than the penetration thickness of 70 MeV protons

II) Angle dependent neutron spectrum of Ta at 70 MeV

Total neutron spectra for a bare Ta target irradiated with 45 MeV protons, obtained with MCNP6 and PHITS along with different physical models and cross-section databases

Forschungszentrum

Experiment Testing of Cooling Performance

- Homogeneous beam scanning exposure of central area (8 x 6 cm²)
- stationary heat load in steps up to 10 MW/m² (1 kW /cm²) \rightarrow 48 kW in total
- JUDITH-2 is an electron beam facility
 - \rightarrow Surface heating!

beam direction	
	Electron beam heating

Exemplary temperature distribution from CFD

- only about a quarter of the coolant interface area contributes to the heat removal in case of electron gun heating
- \rightarrow very conservative heat load conditions at experiment

SPES – LNL Workshop

Proton beam heating

Judith-2 basic design [IEK-4]

Comparison of CFD Simulation and Experimentas

III) Temperature distribution on the back side of the target

Summery:

We would like to measure with SPES-LNL Cyclotron

- Measurement of the ratio of stopped to penetrated protons behind the first layer at 70 MeV in order to verify the effectiveness of the counter measure against hydrogen embrittlement
- II) Angle dependent neutron spectrum of Tantalum at 70 MeV
- III) Measurement of the temperature distribution on the back side of the target to verify the coolant capability at real operation conditions

HBS Team

J. Baggemann Th. Brückel M. El Barbari J. Chen T. Claudio-Weber T. Cronert (+) Q. Ding P.-E. Doege T. Gutberlet J. Li K. Lieutenant Z. Ma D. Maharai E. Mauerhofer N. Ophoven T. Randriamalala I. Pechenizkiy U. Rücker N. Schmidt

Mitglied der Helmholtz-Gemeinschaft

- A. Schwab
- D. Shabani
- E. Vezhlev
- J. Voigt
- P. Zakalek

JÜLICH Forschungszentrum

ZEA-1: Y. Bessler R. Hanslik R. Achten F. Löchte M. Strothmann E. Rosenthal R. Rings

- Engineering

IKP-4:

O. Felden R. Gebel A. Lehrach M. Rimmler R. Similon - Nuclear physics

B. Neumaier

S. Böhm J.P. Dabruck R. Nabbi - Nuclear simul.

C. Lange T. Langnickel Ch.Haberstroh M. Klaus S. Eisenhut

- AKR-2, liquid H₂

HighNess L. Zanini J. I. Marquez N. Rizzi cea F. Ott M. A. Paulin Helmholtz-Zentrum hereon G. Nowak J. Plewka C. Jacobsen R. Kumar J. Fenske Technical University of Munich A. Lasko A. Wolfertz - JULIC Neutron **Platform Experiments**

Forschungszentrum

Induced radioactivity from 70 MeV protons on tantalum target

- Target geometry (cylinder)
 - Thickness: 0.5 cm
 - Radius: 3.88 cm
 - 400 g Tantalum
- Proton beam
 - 70 MeV
 - 1 nA
 - Beam illuminated radius: 0.2 cm
 - Irradiation time: 1h
 - Decay time: 1h

Induced radioactivity from 70 MeV protons on tantalum target

- Target geometry (cylinder)
 - Thickness: 0.5 cm
 - Radius: 3.88 cm
 - 400 g Tantalum
- Proton beam
 - 70 MeV
 - 1 nA
 - Beam illuminated radius: 0.2 cm
 - Irradiation time: 1h
 - Decay time: 1h

• dominant nuclides (top 10)
•••Activity••
• no. nuclide • • • [Bq/cc] • • • • [Bq] • rel. err. • • [%] • •
···1···W·179···1.1157E+06·2.6370E+07·5.1520E-03··39.44··
···2···W·179m··2.8557E+05·6.7494E+06·9.6020E-03··10.09··
····3····W·177····2.8070E+05·6.6343E+06·5.0330E-03····9.92··
····4····W·176····2.0967E+05·4.9556E+06·5.5130E-03····7.41··
····5····W·175····2.0128E+05·4.7572E+06·9.5340E-03····7.11··
····6····Hf178m··1.5874E+05·3.7518E+06·7.5981E-03····5.61··
····7····Ta178····1.5774E+05·3.7283E+06·6.5200E-03····5.58··
····8····Ta178m··1.3398E+05·3.1667E+06·1.3915E-02····4.74··
····9····Ta180····1.3287E+05·3.1403E+06·4.0998E-03····4.70··
··10···Ta182m··6.3144E+04·1.4924E+06·3.7164E-03···2.23··

Mitglied der Helmholtz-Gemeinschaft

Improved fabrication process

Sinker EDM and wire erosion (EMD) process

Fabrication at JCNS-PGA-TA and ZEA

HIGH

BRILLIANCE

Forschungszentrum

Target consists of 3 parts

- Main body made out of one single piece
- Welds between the three parts outside proton beam

<u>180° turnaround</u> for coolant flow

