Heavy quark expansion in QCD and B phenomenology

N. Uraltsev

Introduction; HQE in QCD

The $1/m_Q$ expansion in QCD can be constructed for a few important cases where we now know quite a bit about its terms

The key information is provided by the Small Velocity heavy quark sum rules, including spin sum rules first established for heavy quarks in QCD

need a scheme respecting physical properties (unitarity,...); it is available!

Allowed to predict values of $\overline{\Lambda}$, μ_{π}^2 , ρ_D^3 , ... based on one number: the hyperfine mass splitting $M_{B^*}-M_B\!\approx\!47\,\mathrm{MeV}$

The most precision applications have been done for inclusive decays

A similar analysis has been extended motivated by the formfactor F(0) in $B \rightarrow D^* \ell \nu$ near zero recoil Gambino, Mannel, N.U. arXiv:1004.2859 [hep-ph] arXiv:1206.xxxx [hep-ph]

Model-independent treatment of heavy mesons The status report (72 pages...)

Arrived at three apparently isolated, yet linked through the HQE, observations for heavy meson phenomenology

- Large negative *overlap* corrections to F(0) driving it down to $F(0) \approx 0.86$
- Large nonlocal correlators of $\bar{Q}\vec{\pi}^2Q$ and $\bar{Q}\vec{\sigma}\vec{B}Q$ in B mesons from the hyperfine splitting ΔM^2 in B vs. D

The enhanced negative corrections in F(0) are related to the 'discrepancy' in the hyperfine splitting ratio between charm and beauty mesons

- Enhanced inclusive yield of radials and 'D-waves' in $b \rightarrow c \, \ell \nu$ Resolve ' $\frac{1}{2} > \frac{3}{2}$ ' paradox
 Account for the missing semileptonic channels
 Predict significance of the $\frac{3}{2}^+$ 'D-wave'
- As a byproduct we find significant corrections to the ground-state factorization; relevant for precision inclusive decays

V_{ch} at zero recoil

$$\mathrm{d}\boldsymbol{w}\left(B\to D^*+\ell\bar{\nu}\right) \sim |G_F^2\cdot|V_{cb}|^2\cdot|\vec{p}|\cdot|F_{B\to D^*}(\vec{p})|^2$$

 $|V_{cb}|$ requires $F_{B\to D^*}(\vec{p})$ – it is shaped by bound-state physics

At $\vec{p} = 0$ ($\vec{p}_e = -\vec{p}_{\bar{\nu}}$) almost nothing happened!

Without isotopic effects (in the heavy quark limit) $F_{\vec{p}=0}=1$:

$$F_{\rm n/p}(0) = 1 + \frac{0}{m_{c,b}} + \mathcal{O}\left(\frac{\Lambda_{
m QCD}^2}{m_{c,b}^2}\right) + \mathcal{O}\left(\frac{\Lambda_{
m QCD}^3}{m_{c,b}^3}\right) + \dots$$

No $1/m_{b,c}$ -corrections

(cf. Ademollo-Gatto)

1986 Voloshin, Shifman 1990 Luke Challenge to theory: corrections to F(0)=1 are driven by $1/m_c$, potentially significant!

HQET predicted them to be only about -0.02

prior to 05/1994

In fact, (05/1994) deviations from the symmetry limit in QCD are considerably larger in QCD (05/1994) Shifman, N.U., Vainshtein

$$\delta_{1/m^2}F \approx -0.09$$

The typical folklore around sum rules for F_{D^*} is irrelevant...

The QCD approach

$$T^{zr}(q_0) = \int d^3x \int dx_0 \ e^{-iq_0x_0} \frac{1}{2M_B} \langle B | \frac{1}{3} \ iT \ \{ \bar{c} \gamma_k \gamma_5 b(x) \ \bar{b} \gamma_k \gamma_5 c(0) \} | B \rangle$$
$$q_0 = M_B - M_D^* - \epsilon$$

The QCD approach |

$$T^{zr}(q_0) = \int d^3x \int dx_0 \ e^{-iq_0x_0} \frac{1}{2M_B} \langle B| \frac{1}{3} \ iT \ \{ \bar{c}\gamma_k \gamma_5 b(x) \ \bar{b}\gamma_k \gamma_5 c(0) \} |B\rangle$$
$$q_0 = M_B - M_D^* - \epsilon$$

$$I_0(\mu) = -\frac{1}{2\pi i} \oint_{|\epsilon| = \mu} T^{\mathsf{zr}}(\epsilon) \,\mathrm{d}\epsilon$$

 $T^{\rm zr}(\epsilon)$ can be calculated in the short-distance expansion at $|\epsilon| \gg \Lambda_{\rm occ}$ expansion parameters are $\frac{\mu_{\text{hadr}}}{\epsilon}$, $\frac{\mu_{\text{hadr}}}{2m_c+\epsilon}$, $\frac{\mu_{\text{hadr}}}{2m_b-\epsilon}$ and α_s at the related scale hence OPE for $I_0(\mu)$

The QCD approach

$$T^{zr}(q_0) = \int d^3x \int dx_0 \ e^{-iq_0x_0} \frac{1}{2M_B} \langle B | \frac{1}{3} \ iT \ \{ \bar{c} \gamma_k \gamma_5 b(x) \ \bar{b} \gamma_k \gamma_5 c(0) \} | B \rangle$$
$$q_0 = M_B - M_D^* - \epsilon$$

$$I_0(\mu) = -\frac{1}{2\pi i} \oint_{|\epsilon| = \mu} T^{\mathsf{zr}}(\epsilon) \,\mathrm{d}\epsilon$$

 $T^{\rm zr}(\epsilon)$ can be calculated in the short-distance expansion at $|\epsilon| \gg \Lambda_{\rm qco}$, expansion parameters are $\frac{\mu_{\rm hadr}}{\epsilon}$, $\frac{\mu_{\rm hadr}}{2m_c+\epsilon}$, $\frac{\mu_{\rm hadr}}{2m_b-\epsilon}$ and α_s at the related scale hence OPE for $I_0(\mu)$

Using analytic properties of $T^{zr}(\epsilon)$ and the unitarity

$$I_0(\mu) = rac{1}{\pi} \int_0^\mu \operatorname{Im} \, T^{\mathsf{zr}}(\epsilon) \, \mathrm{d}\epsilon = |F_{D^*}|^2 + \sum_{\epsilon < \mu} |F_{B o n}|^2$$

OPE in QCD

$$\sum_{f \neq D^*}^{\epsilon_f < \mu} |F_{_{B \to f}}|^2 \equiv w_{\text{inel}}(\mu)$$

$$F_{D^*} = \sqrt{I_0(\mu) - w_{\text{inel}}(\mu)} < \sqrt{I_0(\mu)}$$

OPE:

$$I_0(\mu) = \xi_A^{\mathsf{pert}}(\mu) - \Delta_{\frac{1}{m_Q^2}} - \Delta_{\frac{1}{m_Q^3}} - \Delta_{\frac{1}{m_Q^4}} - \dots$$

$$\Delta_{\frac{1}{m_{o}^{2}}} = \frac{\mu_{G}^{2}}{3m_{c}^{2}} + \frac{\mu_{\pi}^{2} - \mu_{G}^{2}}{4} \left(\frac{1}{m_{c}^{2}} + \frac{1}{m_{b}^{2}} + \frac{2}{3m_{c}m_{b}} \right)$$

$$\Delta_{\frac{1}{m_Q^3}} = \frac{\rho_D^3 - \frac{1}{3}\rho_{LS}^3}{4m_c^3} + \frac{\rho_D^3 + \rho_{LS}^3}{6m_cm_b} \left(\frac{1}{m_c} - \frac{1}{2m_b}\right)$$

N. Uraltsev

Brief synopsis

$$F_{D^*} = \sqrt{\xi_A^{
m pert} - \Delta_{
m power} - w_{
m inel}}$$
 QM: $F_{D^*} = \sqrt{\xi_A^{
m pert}} - \langle \delta J^A
angle - \delta \langle \Psi_{D^*}^\dagger \Psi_B
angle$

$$\sqrt{\xi_A^{\mathsf{pert}}} \simeq 0.98 \quad \mathsf{at} \ \mu \simeq 0.8 \, \mathsf{GeV}, \qquad -\Delta_{\frac{1}{m_Q^2}} - \Delta_{\frac{1}{m_Q^3}} \simeq -0.13$$

$$F_{D^*} \leq 0.92$$
 – upper bound

w_{inel} - wavefunction overlap deficit - is more significant than expected N.U. hep-ph/0312001

Relate it to the hyperfine splitting in B and D: $w_{\text{inel}} \gtrsim 0.14$

$$F_{D^*} \approx 0.86$$
 - prediction GMU 2010; 2012

How well is the OPE under control?

Perturbative corrections: small numerically

$$\sqrt{\xi_A} \simeq 1 - 0.022 + (0.005 - 0.004) + 0.0022 - 0.0014 + \dots$$
 applies only to Wilsonian $\xi_A^{\text{pert}}(\mu)!$

Assume $\mu = \varepsilon_M$ around 0.8 GeV

$$\sqrt{\xi_A} \simeq 0.98$$
 at $\alpha_s(m_b) = 0.22$

How to:

• The recipe to calculate the whole μ -dependence of the Wilson coefficient is nontrivial:

Allows to obtain $\xi_A(\mu)$ without explicitly considering the powersuppressed operators, yet ensures the cancellation of μ -dependence

coefficient

Convergence

• Power corrections to I_0 :

Take the low-end expectation values $\mu_{\pi}^2 \simeq 0.4 \, {\rm GeV^2}$, $\rho_D^3 \simeq 0.15 \, {\rm GeV^3}$:

$$-\Delta_{\frac{1}{m_Q^2}} \simeq -0.095$$
 $-\Delta_{\frac{1}{m_Q^3}} \simeq -0.028$ $-\Delta_{\frac{1}{m_Q^4}} \simeq 0.02$ $-\Delta_{\frac{1}{m_Q^5}} \simeq 0.01$

• α_s -corrections to the coefficients of power-suppressed terms

Calculated for μ_π^2 , correction is small (cancellation) Expect mild effect for μ_G^2 ; in $1/m_Q^3$ even a 30% renormalization would not produce a significant change

$$\sqrt{1-\Delta^A}\lesssim 0.94\pm 0.01$$
 the upper bound seems safe at 1% level

Would expect formfactor about 0.92 if no overlap deficit were there

Wavefunction overlap deficit in the language of Quantum Mechanics Required to turn the upper bound for F_{D^*} into an estimate

Model-independent analysis:

$$dw_{\text{inel}}(\omega) = \left(\frac{1}{2m_c} - \frac{1}{2m_b}\right)^2 \frac{\rho_p^{(\frac{1}{2}^+)}(\omega)}{\omega^2} + \left(\frac{1}{2m_c} - \frac{1}{2m_b}\right) \left(\frac{1}{3m_c} + \frac{1}{m_b}\right) \frac{\rho_{pg}^{(\frac{1}{2}^+)}(\omega)}{\omega^2} + \frac{1}{4} \left(\frac{1}{3m_c} + \frac{1}{m_b}\right)^2 \frac{\rho_g^{(\frac{1}{2}^+)}(\omega)}{\omega^2} + \frac{1}{6m_c^2} \frac{\rho_g^{(\frac{3}{2}^+)}(\omega)}{\omega^2}$$

- The four spectral densities $\rho^{(+)}(\omega)$ form a positive set
- Factorization properties
- The $1/m_Q$ correction to the hyperfine splitting is expressed through

$$\rho_{\mathsf{hp}} = \int \frac{\mathrm{d}\omega}{\omega} \; \left(\frac{\rho_{\mathsf{g}}^{(\frac{3}{2}^+)}(\omega)}{2} + 2\rho_{\mathsf{pg}}^{(\frac{1}{2}^+)}(\omega) - \frac{2\rho_{\mathsf{g}}^{(\frac{1}{2}^+)}(\omega)}{3} \right)$$

A simple illustration:

$$\begin{split} I_1(\mu) &= -\frac{1}{2\pi i} \oint_{|\epsilon| = \mu} T^{\rm zr}(\epsilon) \; \epsilon \, \mathrm{d}\epsilon = \sum_{\epsilon < \mu} \epsilon_n |F_{\mathcal{B} \to n}|^2 \\ w_{\rm inel}(\mu) &= \frac{I_1(\mu)}{\bar{\epsilon}(\mu)} \qquad \bar{\epsilon}(\mu) \; - \; \text{`average excitation energy' (up to μ)} \end{split}$$

 $I_1(\mu)$ is calculated in the OPE similar to $I_0(\mu)$:

$$I_1 = \underbrace{\frac{-(\rho_{\pi G}^3 + \rho_A^3)}{3m_c^2}}_{\text{BPS limit}} + \underbrace{\frac{-2\rho_{\pi \pi}^3 - \rho_{\pi G}^3}{3m_c m_b}}_{(\delta \, \text{BPS})^1} + \underbrace{\frac{\rho_{\pi \pi}^3 + \rho_{\pi G}^3 + \rho_S^3 + \rho_A^3}{4}}_{(\delta \, \text{BPS})^2} \left(\frac{1}{m_c^2} + \frac{2}{3m_c m_b} + \frac{1}{m_b^2}\right) + \mathcal{O}\left(\frac{1}{m_Q^3}\right)$$

$$I_1^{(\mathsf{BPS})} = rac{-\left(
ho_{\pi\,G}^3 +
ho_A^3
ight)}{3m_c^2} + \mathcal{O}\!\left(rac{1}{m_c^3}
ight)$$

 $(
ho_{\pi G}^3 +
ho_A^3) -
ho_{LS}^3$ determines ΔM^2 to order $1/m_Q$

Extract comparing B and D mesons a technical point of the analysis

 $\delta^{(2)} \emph{I}_1$ is positive; $\delta^{(1)} \emph{I}_1$ comes with small coefficient $1/3m_cm_b$ and the minimum is very shallow:

$$I_1/I_1^{(BPS)} = 1 - \underbrace{(1 - \nu_{3/2}) \frac{m_c^2}{m_b^2}}_{< 0.07} + [...]^2 \qquad \nu_{3/2} > 0$$

Nearly a functional relation between $\delta \Delta M^2$ and w_{inel}

$$w_{\mathsf{inel}} = rac{0.45\,\mathsf{GeV}^3 + ilde{\kappa}\,0.35\,\mathsf{GeV}^3}{3m_c^2\,\epsilon_{\mathsf{rad}}} \simeq 14\%$$

Analysis of hyperfine splitting: $|\tilde{\kappa}|\!\lesssim\!0.15$

A 6% decrease in F_{D^*}

The way to evaluate $\sum |F_{B\to n}|^2$ through I_1 in the 't Hooft model yields almost exact number

Continuum |

Excited states should predominantly be resonances (radial excitations)

Continuum is $1/N_c$ -suppressed and is usually smaller

 $D^{(*)}\pi$ inelastic contributions can be estimated for soft pions The complete estimate yields a significant contribution:

$$g_{B^*B\pi}/g_{D^*D\pi} = 1, 0.8, 0.6 \text{ and } 0.4$$

Id around 4% in
$$\sum |F_{\rm p}|^2$$

Altogether we expect $D^{(*)}\pi$ piece to yield around 4% in $\sum |F_{B\to n}|^2$, about a fourth of the resonance-based estimate $\delta F_{D^*} \simeq -2\%$

F_{D^*} summary

QCD lower bound:

$$F_{D^*} < 0.92$$

$$F_{D^*} < 0.9$$
 including continuum estimate

The unbiased predicted value

$$F_{D^*} \lesssim 0.86$$

The central number has about 2% e-bars it may lower if μ_π^2 turns out larger

Central value goes down for increasing μ_{π}^2 yet the corrections from higher power terms also increase

$B \rightarrow D \ell \nu$ near zero recoil

Experimentally challenging theoretically advantageous

$$\langle D(p_2)|ar{c}\gamma_{
u}b|B(p_1)
angle = f_+(p_1+p_2)_{
u}+f_-(p_1-p_2)_{
u} \qquad \qquad f_\pm\equiv f_\pm(\vec{q}^{\,2})$$
 $F_+\equiv rac{2\sqrt{M_BM_D}}{M_B+M_D}\,f_+\quad {\sf has}\; 1/m_Q\; {\sf corrections...}$

$$F_{+} = 1 + \left(\frac{\overline{\Lambda}}{2} - \overline{\Sigma}\right) \left(\frac{1}{m_{c}} - \frac{1}{m_{b}}\right) \frac{M_{B} - M_{D}}{M_{B} + M_{D}} - \mathcal{O}\left(\frac{1}{m_{Q}^{2}}\right)$$

$$\overline{\Lambda} = M_{B} - m_{b}, \quad \overline{\Sigma} = \dots$$

$$\frac{2\sqrt{M_B M_D}}{M_B + M_D} f_+(0) = 1.04 \pm 0.01 \pm 0.01$$

N.U. 2003

All orders in 1/m in 'BPS', to $1/m^2 \cdot 1/\mathrm{BPS^2}$, α_s^1

The bulk 3% is the perturbative factor, only 1% comes from power terms

$$F_{+}(0)$$

Taking V_{cb} from $\Gamma_{sl}(B)$:

$$F_+(0) \simeq 1.021 \pm 0.019 \pm 0.041 \pm \delta_{\mathrm{incl}}$$

Good agreement with the dynamic heavy quark expansion in QCD

Using
$$|V_{cb}|$$
 from $\Gamma_{\rm sl}(B)$ I predicted $|V_{cb}|F_+(0)=43.\%\cdot 10^{-3}$

There is no tension between *inclusive* and exclusive V_{ch}

rather a remarkable agreement

('Radials')

Estimated D^{**} contribution around 15% of the D^{*} at zero recoil

These are 'radial' excitations
$$(j^P = \frac{1}{2}^+)$$
 or 'D-wave' states $(j^P = \frac{3}{2}^+)$

Prediction: $\gtrsim 7 \div 8\%$ of Γ_{sl} over the full phase space Why?

The dominant amplitude is not the HQET one $\propto \mathbf{v}^2 \ll 1$, but $1/m_c!$

$$A(B \to D^{(n)^+}) = G_F V_{cb} \left[r N^2 + P_c \left[\frac{\mu_{\text{hadr}}}{m_c} \right] + P_b \frac{\mu_{\text{hadr}}}{m_b} + \dots \right]$$

Sum of the squared for the latter is fixed by w_{inel} at zero recoil

$$\mathsf{BR}_{\mathsf{'rad'}} \propto w_{\mathsf{inel}} = \xi_{\mathcal{A}}^{\mathsf{pert}} - F_{D^*}^2 - \Delta_{\mathcal{A}}$$

We can evaluate w_{inel} well enough and do not need a phenomenological extraction

Using a certain trick radically simplifies the inclusive calculation

('Radials')

Production of concrete excited mesons is unreliable: heavy quark symmetry works poorly for excited charmes states

The total yield, in particular summed over the 'radials' and 'D-waves' is stable and well constrained

$$\frac{\Gamma_{\mathsf{sl}}(B \!\to\! \mathcal{R}^{(1)}) + \Gamma_{\mathsf{sl}}(B \!\to\! \mathcal{D}^{(1)})}{\Gamma_{\mathsf{sl}}} \gtrsim 7\%$$

Probably the charm mesons with $M\simeq 2.6\,{\rm GeV}$ are $\frac{1}{2}^+$ and with $M\simeq 2.75\,{\rm GeV}$ are $\frac{3}{2}^+$

Hyperfine splitting in D vs. B

We have already encountered: the second negative correction to $F_{D^*}(0)$

$$M_{B^*}^2 - M_B^2 \simeq M_{D^*}^2 - M_D^2 \simeq M_{K^*}^2 - M_K^2 \simeq M_\rho^2 - M_\pi^2$$

If these were exact and if perturbative corrections could be discarded

$$-(-\rho_{LS}^3 + \rho_{\pi G}^3 + \rho_A^3) \simeq 2\overline{\Lambda}\mu_G^2 (1+\kappa)$$

The final outcome: $\kappa \approx -0.2$ and $-(\rho_{\pi G}^3 + \rho_A^3) \approx 0.45 \, \text{GeV}^3 - \text{large!}$

$$\rho_{\pi\pi}^3 + \rho_S^3 = -(\rho_{\pi G}^3 + \rho_A^3) + \int \frac{\mathrm{d}\omega}{\omega} \left[\rho_p^{\frac{1}{2}+} - 2\rho_{pg}^{\frac{1}{2}+} + \rho_g^{\frac{1}{2}+} \right] > -(\rho_{\pi G}^3 + \rho_A^3)$$

Equality is attained in the BPS limit

We can use the existing precision fits to semileptonic moments to determine $\rho_{\pi\pi}^3 + \rho_S^3$; the preliminary result is

$$ho_{\pi\pi}^3 +
ho_S^3 \gtrsim (0.33 \pm 0.17) \, \mathrm{GeV}^3$$

Another intriguing consistency of the completely different analyses

Summary

Comprehensive heavy quark expansion can say much about nonperturbative effects in certain cases

Inequalities or positivity properties are essential, require a physical renormalization scheme — it is available!

Heavily exploit physical behavior of the correlators in Minkowski domain

- $F_{D^*} \approx 0.86$; uncertainty about 2% at known μ_π^2 , ρ_D^3 , plus effect of higher-order power terms. Central value goes down for larger μ_π^2 , yet higher power corrections become significant
- \bullet Large overlap deficit decreasing F_{D^*} by 6% Close to the BPS estimate
- Large nonlocal correlators $\rho_{...}^3$ from the hyperfine splittings 'Discrepancy' in the splitting for B and D is settled
- Large inclusive yield of 'radials' plus 'D-waves', $7\div 10\%$ of $\Gamma_{\rm sl}$ Resolve $\frac{1}{2}$ vs. $\frac{3}{2}$ problem May provide missing semileptonic channels

Lattice $F_{D^*}(0)$

$$F_{D^*} = 0.924 \pm 0.012 \pm 0.019$$
 FNAL: arXiv:0710.1111 [hep-lat] GMU: arXiv:1004.2859 [hep-ph] FNAL: arXiv:1011.2166 [hep-lat] 0.902 FNAL: arXiv:1011.2166 [hep-lat] A Kronfeld: 2012 undocumented

This is not a first-principle calculation of F_{D^*} – it is considered in an effective theory very different from the QCD nonrelativistic theory

All effects $1/m_Q^k$ are different, driven by different masses rather than by a single m_Q ; renormalization is $\mathcal{O}(1)$ rather than $\mathcal{O}(\alpha_s)$ in QCD

'Matching' is done only at tree level! only for $1/m_O^2$

lattice $\alpha_s(m_c)$... the hardest scale

A.Kronfeld: 2012, undocumented

The FNAL lattice evaluation of F_{D^*} seemed to violate unitarity once we apply the $1/m_Q$ expansion of the scattering amplitude and consider known inelastic channels

Lattice $F_{D^*}(0)$

FNAL lattice			OPE in QCD	
effect	accuracy	allocated error bar	accuracy	magnitude
η_{pert}	$lpha_{\mathbf{s}}$ @BLM	±0.003	$\alpha_s^2 + \alpha_s^3$ (BLM)	-0.004
$1/m_Q^2$ in overlap	tree	±0.005	tree	-0.06
$1/m_Q^2$ in J_μ	tree (?)	£0.009	α_s	±0.012
$1/m_Q^3$ in J_μ	ad hoc	±0.009	tree	-0.015
$1/m_Q^4$ in J_μ	ad hoc	0	tree	0.012
$1/m_Q^5$ in J_μ	ad hoc	0	tree	0.006
$1/m_Q^{3+}$ in overlap	ad hoc	0	_	?

Simply adding systematics linearly more than doubles the error bar! If we applied the same error rules we would have ended up with

$$F_{D^*}(0) = 0.85 \pm 0.009 \pm 0.005$$

or even smaller error bars (there is nearly no model-dependence to order $1/m_Q^2$)