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Kaons: 500 MeV to 10 TeV
Kaon physics involves many different 

energy scales

MK: ChiPT, Lattice QCD
mc: GIM
MW: SM
MNP: ?

Hierarchy of scales → Potential 
QCD pollution

clean Observables: ϵK & K → π υ υ

also interesting but no time:
K→(π)l+l-, ϵ´/ϵ, Unitarity, Kμ/Ke
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Rare and CP violating Kaon Decays

b→ s :
|V∗

tbVts| ∝ λ2
b→ d :

|V∗
tbVtd| ∝ λ3

s→ d :
|V∗

tsVtd| ∝ λ5

FCNCs which are dominated by top-quark loops:

CKM suppression: enhanced sensitivity to NP
V ∗
tsVtd + V ∗

csVcd = −V ∗
usVud

λ λλ5

how are the light quark suppressed?

λ
m2

c

M2
W

Quadratic GIM: Im(V ∗
csVcd)CP violation:
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Potential Operators
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modified Z-Penguin for K → π υ υ
(& Box type contribution)

ϵK: Eight Operators
(Q1–Q5 and 3 chirality flipped)

Coefficients constrained by
|εK| = 2.228(11)×10-3 & 
ΔMK=5.292(9)ns-1

NP Flavour Problem

O1 = (s̄γµdL)(s̄γ
µdL)

O2 = (s̄αdα
L )(s̄

βdβ
L )

O3 = (s̄αdβ
L )(s̄

βdα
L )

O4 = (s̄αdα
R)(s̄

βdβ
L )

O5 = (s̄αdβ
R)(s̄

βdα
L )

QL/R
ν = (s̄γµdL/R)(ν̄γ

µνL)



Model Independent Constraints
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FIG. 3: Allowed ranges in the ReCi
K -ImCi

K planes in GeV−2. Light (dark) regions correspond to

95% (68%) probability regions.

Allowed area quite small

theory & parametric
uncertainty → size of area

Constraints might be more 
severe in concrete realisation 

of a model.

[UTfit]

Insensitive to correlations beyond SU(2)xU(1) invariance



Gauged Flavour Models
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Example: SU(3)Qx SU(3)Ux SU(3)D [Grinstein et. al `10] (Talk by Carlucci)

Flavour violation of extra gauge bosons suppressed for Kaons

Mixing of vector like fermions (t–t´) contributes to ϵK & K → π υυ 

Using results for arbitrary 
perturbative theories

[Brod, Casagrande, MG in preperation]

we find a strong correlation
between ϵK & K → π υυ

Can study minimal extensions
of vectors, fermions & scalars 

BR(K+)x109 [E. Stamou]

SM



Constraints from ϵK in RS
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Randall-Sundrum: KK vector bosons flavour violating &
intergenerational couplings of vector-like quarks: 

Z, KK gluon flavour violation
No simple correlation, but ϵK constrains size of typical effects. 

[common down-type bulk mass][Analysis by Bauer, Casagrande, Haisch Neubert `09]

[Casagrande]



Standard Model
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To improve the NP sensitivity improve the SM prediction

In our case:

Perturbative calculation
Matching (MW)
RGE (MW →mc)

integrating out the charm quark

Non-perturbative calculation (Lattice & ChiPT)
Matrix elements

Higher dimensional operators
(non-local terms)

with Lattice
in ??

years



K+ → π+ ῡ υ at MW

W

s

d

sν

ν ν

Z

u, c, ts dd

ν ν ν

Z

W W

W We, µ, τ
u, c, t u, c, t

u, c, t
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�

i

V∗
isVidF(xi) = V∗

tsVtd(F(xt) − F(xu)) + V∗
csVcd(F(xc) − F(xu))

Qν = (s̄LγµdL)(ν̄LγµνL)

λ5 m2
t

M2
W

Quadratic GIM:

[Misiak, Urban; Buras, Buchalla;
Brod, MG, Stamou]

Matching (NLO +EW): 

λ
Λ2

M2
W

Matrix element from Kl3 decays
(Isospin symmetry: K+→π0 e+ υ)

[Mescia, Smith]

λ
m2

c

M2
W

ln
MW

mc

Operator
Mixing (RGE)



GIMnastics at mc

Quadratic GIM suppresses light quark  contribution

m2
c − m2

u

m2
cG2

F log
mc

Mw

NNLO+EW
[Buras, MG, Haisch, 
Nierste; Brod MG]

 No quadratic suppression for

10

s

d
u − c

W
Z

u − c

d

s

ν

ν ν

ν

Pc

µc[GeV]1 2
.35

.39

.36 NNLO (QCD)

NLO (EW)
LO (EW)Pc: charm quark contribution

to K+ → π+ ῡ υ (30% to BR)

Pc calculation works remarkably
well (±2.5% uncertainty)



M12 at MW

Three CKM factors:  λt = O(λ5 ei δ), λc = O(λ + i λ5) and λu = O(λ)

xt λtλt + xc log(xc) λcλt + xc λcλc +            λcλt/c

s

d s

d

u

c

t

u

c

t

W

W

K̄0 K0




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





xi =
m2

i

M2
W

λi = V∗
idVis

Λ2
QCD

M2
W
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2MKM12 = �K0|H|∆S|=2 |K̄0�− i

2

�
d

4
x �K0|H|∆S|=1(x)H|∆S|=1(0) |K̄0�

dispersive part



M12, Kaon Mixing & ϵK 
CP violation in mixing Re(ϵK) and interference Im(ϵK)

�K = eiφ� sinφ�

�
Im(M12)

∆mK
+

Im(A0)

Re(A0)

�

AI = �(ππ)I|K0�

12

ΔmK, ϕε: Directly from experiment:

Im(A0)/Re(A0): from ϵ´/ϵ

Im(M12) = Im(M12)SD + Im(M12)D=8 + Im(M12)Non Local 

Factorize short and long distance:                        .

From lattice:                                        (                                     ).B̂K =
3b(µ)

2f2KM2
K

�K0|Q̃|K̄0�

H
|∆S|=2 = C(µ)Q̃

Q̃ = (s̄LγµdL)(s̄Lγ
µdL)



Perturbative Calculation
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CKM CP LO Logs (n≥0) ϵK State

ηtt: A(t-u,t-u) λtλt O(λ10) xt (αs log xc)n 75(±1)% NLO

ηct: A(t-u,c-u) λtλc O(λ6) xc log xc (αs log xc)n 40(±10)% NNLO

ηcc: A(c-u,c-u) λcλc O(λ6) xc (αs log xc)n 15(±50)% NNLO

Lattice results quoted in Renormalisation Group Invariant scheme

in RGI: multiply by

 b(μ) -1 = αs(μ)2/9(1 - 1.9 αs/4π + 16.4 αs2/16π2)

b−1(µ) = α2/9
s (µ)

�
1 − 1.9αs(µ)

4π + 16.4α2
s(µ)

16π2

�
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ηct : α
2/9
s λtλcxc log xc(αs log xc)n + . . .

c− u−u

λt m2
cλc

→ λtλcxc log xc

Perturbation theory works

ηctNNLO = 0.496(46)

(not as well as K+ → π+ ῡ υ)

involves the charm scale
and

a large anomalous dimension

NNLO: 2 loop Matching at μW & μc 
and 3 loop running [Brod, MG]

NLO

NNLO

ηct

LO

 0.2

 0.3

 0.4

 0.5

 0.6

 1  1.25  1.5  1.75  2

ct

!c [GeV]
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LO → NLO → NNLO shift
of similar size

bad convergence

scale uncertainty and shift of 
similar size: add in quadrature

ηccNNLO = 1.87(76)

ηcc : α2/9
s λ2

cxc(αs log xc)n + . . .

c− uc− u

→ λ2
cxc

ηcc

0

0.5

1

1.5

2

2.5

3

1 1.2 1.4 1.6 1.8 2

η c
c

µc [GeV]

NNLO: 
3 loop running of current-current Operators 

and 3 loop Matching at μc [Brod, MG]

NNLO

NLO

LO



Large ADMs and large finite corrections at μc

Why the large shift?

If the matrix element at μc would 
contain only logs

scale dependence would reduce nicely

If the matrix element could be calculated 
on the lattice including charm quarks:

A (RI-MOM) scheme change would cancel 
the current-current μc dependence

RI-MOM matching of BK does not seem 
to change the perturbative expansion

16
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Figure 2: Naive scale independence without and with finite parts.

2 Discussion

We observe a bad convergence of the series expansion of η1 in the strong coupling constant
αs. Here we discuss two strategies how to improve the theory prediction of �K :

• short-term strategy: Utilize RI-SMOM scheme to improve convergence

• long-term strategy: Can we match onto the lattice in the four-quark theory?

We focus on η1, but for the second strategy we will have to think about η3, too.
It seems to me that the definition of the RGI η factors were devised in a time when they

were calculated quite independently from the lattice results, but today we should combine
lattice and PQCD in a more efficient way.

2.1 Strategy 1

The effective Hamiltonian valid below the charm-quark threshold contains only the sin-
gle operator Q̃S2. The renormalisation-group evolution of the Wilson coefficient C̃cc

S2 is
described by the evolution matrix corresponding to the anomalous dimension of Q̃S2:

C̃cc
S2(µ) = U(µ, µc)C̃

cc
S2(µc) . (2.1)

We express the coefficient ηcc in a scale-independent way as

ηcc =
1

m2
c (mc)

C̃cc
S2 (µc) [αs (µc)]

a+ K−1
+ (µc) . (2.2)

The remaining scale dependence present in (2.1) is absorbed into

b (µ) = [αs (µ)]
−a+ K+(µ) , (2.3)

where, up to second order in αs,

K+(µ) = 1 + J (1)
+

αs (µ)

4π
+ J (2)

+

�
αs (µ)

4π

�2

, (2.4)

2

and the exponent a+ = 2/9 is the so-called magic number for the operator Q+. This scale

dependence is cancelled by the corresponding scale dependence of the hadronic matrix

element, conventionally parameterised by

B̂K =
3

2
b(µ)

�K̄0|Q̃S2|K0�
f 2

KM
2

K

. (2.5)

Now the idea is that instead of using the RGI quantities ηcc and B̂K , we use the lattice

result for BK in a suitably chosen RI-SMOM scheme and “transform ηcc into this scheme”.

By this we mean, strictly speaking, that we use the following full combination

3

2

�K̄0|Q̃S2|K0�(µL)

f 2

KM
2

K

Z
MS→RI-SMOM

C̃cc
S2(µL) (2.6)

evaluated in a RI-SMOM scheme.

Include numerical example for invented J’s for illustration.

2.2 Strategy 2

To get a feeling of what we can expect by matching above the charm scale, let’s play the

naive game again.

Let’s assume we get the matrix elements of the double insertion from somewhere –

a future lattice calculation. Again the logarithms are fixed, they cancel the logs of the

running of C±. Setting the constant parts to zero results in the left picture of Fig. 3 –

good cancellation of scale dependence. Inventing large coefficients (right side) results in

stronger scale dependence, but not quite as bad as in matching in the three-quark theory.

Maybe also we don’t need to go to such low values of µ in the four-quark theory.

-2

-1.6

-1.2

-0.8

1.2 1.6 2 2.4 2.8

η

µc [GeV]

-2

-1.6

-1.2

-0.8

1.2 1.6 2 2.4 2.8

η

µc [GeV]

Figure 3: Naive scale independence without and with finite parts above the charm scale. Short-

dashed lines – LO; long-dashed lines – NLO; solid lines – NNLO.

I think to assess if it is worth the effort for the lattice community to perform the

four-flavour matching, one should think (at least) about the following.
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Long Distance K+ → π+ ῡ υ

ν

d

ν

c(u)

s

d ν

c(u) "

s ν

Figure 1: One-loop diagrams corresponding to the T-products in Eqs. (2)–(4).

the other hand, we differ from these works in the last step, namely the removal of the
charm as dynamical degrees of freedom. In this case we proceed as in Ref. [9], matching
the operator product expansion of the T-products into an effective theory which includes
also dimension-8 operators. The structure of the local terms, for µIR

<
∼ mc, takes the form

of the following effective Hamiltonian density

H(6+8)
eff (µIR) =

GF√
2

α

2π sin2 θW
λc

∑

l=e,µ,τ

[

X l
c(xc)Q

(6)
l +

1

M2
W

∑

i

C l
i(µIR)Q(8)

il

]

. (9)

Neglecting neutrino masses, the only Q(8)
il with non-vanishing coefficients to lowest order

in αs(mc) are

Q(8)
1l = s̄γµ(1 − γ5)d ∂2 [ν̄lγµ(1 − γ5)νl] ,

Q(8)
2l = (s̄

←−
Dα)γµ(1 − γ5)(

−→
Dαd) ν̄lγµ(1 − γ5)νl ,

Q(8)
3l = (s̄

←−
Dα)γµ(1 − γ5)d

[

ν̄l(
←−
∂α −

−→
∂α)γµ(1 − γ5)νl

]

. (10)

The operator Q(8)
1l arises by the neutral-current coupling (left diagram in Figure 1), while

Q(8)
2l and Q(8)

3l are generated by the charged-current coupling (right diagram in Figure 1).

The operator Q(8)
3l , which has been considered first in Ref. [8], is the only term which can

induce a CP-conserving contribution to the K2 → π0νlν̄l transition. In agreement with
the results of Ref. [8, 9], we find

C l
1(µIR) =

1

12

(

1 −
4

3
sin2 θW

)

log
(

m2
c/µ

2
IR

)

[3C1(µc) + C2(µc)]

Ce,µ
2 (µIR) =

1

2
log

(

m2
c/µ

2
IR

)

CB(µc) (11)

Cτ
2 (µIR) = −

1

4
f

(

m2
c/m

2
τ

)

CB(µc)

C l
3(µIR) = −C l

2(µIR)

4

No GIM below the charm quark mass scale

higher dimensional operators UV scale dependent

One loop ChiPT calculation approximately cancels 
this scale dependence δPc,u = 0.04± 0.02

[Isidori, Mescia, Smith `05]
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s

ū

u, c

d

Z0, γ

Figure 1: One-loop topology which can originate power-like singularities to the Green
function (21) for x → 0. The dotted line denotes the generic insertion of Qu,c

i , with
possible Fierz re-arrangements.

The additional problem which arises in this case is the possibility that the Green
function itself diverges because of the short distance behavior when x → 0. By dimen-
sional arguments, this divergence can at most be quadratic. At fixed lattice spacing a,
this would imply potential contributions to the Green function of O(1/a2). Fortunately
this never happens, since the strongest divergence associated to the diagram in figure 1
is independent of the quark masses and is canceled by the GIM mechanism. However,
this cancellation does not guarantee the absence of linear divergences, which are naturally
present when using lattice actions which break explicitly chiral invariance.

3.1 The electromagnetic current

Even if the chirality of the fermion action is explicitly broken, we are still able to define
a conserved vector current on the lattice, which we can identify with the electromagnetic
one. For example, with Wilson fermions we have

Ĵµ
V =

1

2

[

q̄(x + µ)Uµ†(x)(r + γµ)q(x) − q̄(x)Uµ(x)(r − γµ)q(x + µ)
]

, (23)

where Uµ is the link variable. With a conserved current, gauge invariance is strong
enough to protect the Green functions from the appearance of both quadratic and linear
divergences. This remains true even when the Wick contractions correspond to a vacuum
polarization diagram of the type in figure 1, where only one of the two currents is the lattice
conserved one, and the other is a local vector current originating from the weak four-
fermion operator. We have verified this argument by an explicit perturbative calculation
using Wilson, Clover and twisted mass fermions. Since the results of this calculation
(more precisely of the subdiagram in figure 2) could be useful for other applications, we
give them below for the Wilson and Clover cases.

7

very small non-perturbative contributions (estimated to be below 1% at the amplitude
level in the K+ → π+νν̄ case and even smaller in all the other channels), which can be
reliably estimated within CHPT [9, 16]. Thus the main problem are the contractions of
Qu,c

1,2 with a neutral current, as outlined in eq. (1).
So far, this problem has been addressed with the following two-step procedure: i)

integrating out the charm as dynamical degree of freedom; ii) constructing the chiral real-
ization of the corresponding effective Hamiltonian with light quarks only. This procedure
suffers from two sources of theoretical errors: slow convergence of perturbation theory be-
cause of the low renormalization scale of the effective Hamiltonian (µ < mc); uncertainties
associated to the new low-energy couplings appearing in the effective theory. Both these
sources of uncertainties are naturally reduced in the lattice approach, where the effective
Hamiltonian is renormalized above the charm scale and the T -products are evaluated in
full QCD.

We now discuss separately electromagnetic and neutrino amplitudes in more detail.

2.1 K → π#+#−

The main non-perturbative correlators relevant for these decays are those with the elec-
tromagnetic current. In particular, the relevant T -product in Minkowski space is [7, 8]

(

T j
i

)µ

em
(q2) = −i

∫

d4x e−i q·x 〈πj(p)|T {Jµ
em(x) [Qu

i (0) − Qc
i(0)]} |Kj(k)〉 , (11)

Jµ
em =

2

3

∑

q=u,c

q̄γµq − 1

3

∑

q=d,s

q̄γµq (12)

for i = 1, 2 and j = +, 0. Thanks to gauge invariance we can write

(

T j
i

)µ

em
(q2) =

wj
i (q

2)

(4π)2

[

q2(k + p)µ − (m2
k − m2

π)qµ
]

. (13)

The normalization of (13) is such that the O(1) scale-independent low-energy couplings
a+,0 defined in [8] can be expressed as

aj =
1√
2
V ∗

usVud

[

C1w
j
1(0) + C2w

j
2(0) +

2Nj

sin2 θW
f+(0)C7V

]

. (14)

where f+ is the K → π vector form factor and {N+, N0} = {1, 2−1/2} [3]. To a good
approximation, the decay rates of the CP-conserving transitions K+ → π+#+#− and
KS → π0#+#− are proportional to the square of these effective couplings [8]:

B(K+ → π+e+e−) ≈ 6.6 a2
+ × 10−7 , B(KS → π0e+e−) ≈ 10.4 a2

0 × 10−9 . (15)

At present, we are not able to predict a+,0 with sufficient accuracy: we simply fit their O(1)
values from the measured rates of the corresponding decay modes (an updated numerical
analysis can be found in [17]). Being completely dominated by long distance contributions,

4

Could be calculated on the lattice 
[Isidori, Martinelli, Turchetti `06]

GIM to cancel 1/a2 divergence



Long Distance ϵK

s

d

d

s

c, u

c, u

�
d
4
x �K0|H |∆S|=1(x)H |∆S|=1(0) |K̄0�

Higher dimensional operator [Cata Peris`04]

π0

π0η(η �)

π0

K̄0

K̄0

Light quark loops in CHPT:
 π0,η tree level vanishes (Gell-Mann-Okuba)
η´comes with zero phase [Gerard et.al. `05]

1-loop diagram divergent:
estimate from ln(mπ/mρ) [Buras et.al. `10]

K0

K0

18

absorptive part
estimated form ϵ´

�K = eiφ� sinφ�

�
Im(MK

12)

∆MK
+

Im(A0)

Re(A0)

�

Future: Lattice
[N. Christ]
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parametric
43 %

LD
15 %

η_tt
4 %
η_ct
13 %

η_cc
26 %

|�K | exp.= 2.228(11)× 10−3

|Vcb| = 406(13)× 10−4

|�K| = 1.81(28)× 10−3

ϵK :  SM prediction

kappa
2 %

Xt
7 %

Pc
6 %

delta Pcu
14 %

CKM
53 %

Parametric
18 %

K+ → π+ ῡ υ :  SM prediction

BK+ = 0.822(69)(29)× 10−10

BrK+
exp.
= (1.73+1.15

−1.05)× 10−10

NA62 aims at 10% uncertainty



Conclusions

Kaons sensitive to deviations from minimal flavour violation
(EW precision, Lepton Universality)

O(1) NP contribution to the clean K+ → π+ ῡ υ decay possible 

Perturbative calculation for ϵK at the limit
(improvement could come from lattice)
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