Rare and CP violating Kaon Decays SM Prediction and NP Sensitivity

4th Workshop on Flavour Physics Capri 11.6.2012

Based on work done with: J. Brod, S. Casagrande, E. Stamou

Martin Gorbahn TU München Universe Cluster



Kaons: 500 MeV to 10 TeV

Kaon physics involves many different energy scales

Hierarchy of scales \rightarrow Potential QCD pollution

clean Observables: $\epsilon_{K} \& K \rightarrow \pi \upsilon \upsilon$

also interesting but no time: $K \rightarrow (\pi)I^+I^-, \epsilon'/\epsilon$, Unitarity, K_{μ}/K_e

Rare and CP violating Kaon Decays

FCNCs which are dominated by top-quark loops:

 $\begin{array}{ll} b \rightarrow s: & b \rightarrow d: & s \rightarrow d: \\ |V_{tb}^* V_{ts}| \propto \lambda^2 & |V_{tb}^* V_{td}| \propto \lambda^3 & |V_{ts}^* V_{td}| \propto \lambda^5 \end{array}$

CKM suppression: enhanced sensitivity to NP

 $V_{ts}^* V_{td} + V_{cs}^* V_{cd} = -V_{us}^* V_{ud}$ λ^5 λ

how are the light quark suppressed?

Quadratic GIM: $\lambda \frac{m_c^2}{M_{TT}^2}$

CP violation: $Im(V_{cs}^*V_{cd})$

Potential Operators

modified Z-Penguin for $K \rightarrow \pi \upsilon \upsilon \quad Q_{\nu}^{L/R} = (\bar{s}\gamma_{\mu}d_{L/R})(\bar{\nu}\gamma^{\mu}\nu_{L})$ (& Box type contribution)

∈_K: Eight Operators
(Q₁-Q₅ and 3 chirality flipped)

Coefficients constrained by $|\epsilon_{K}| = 2.228(11) \times 10^{-3} \&$ $\Delta M_{K} = 5.292(9) \text{ns}^{-1}$

NP Flavour Problem

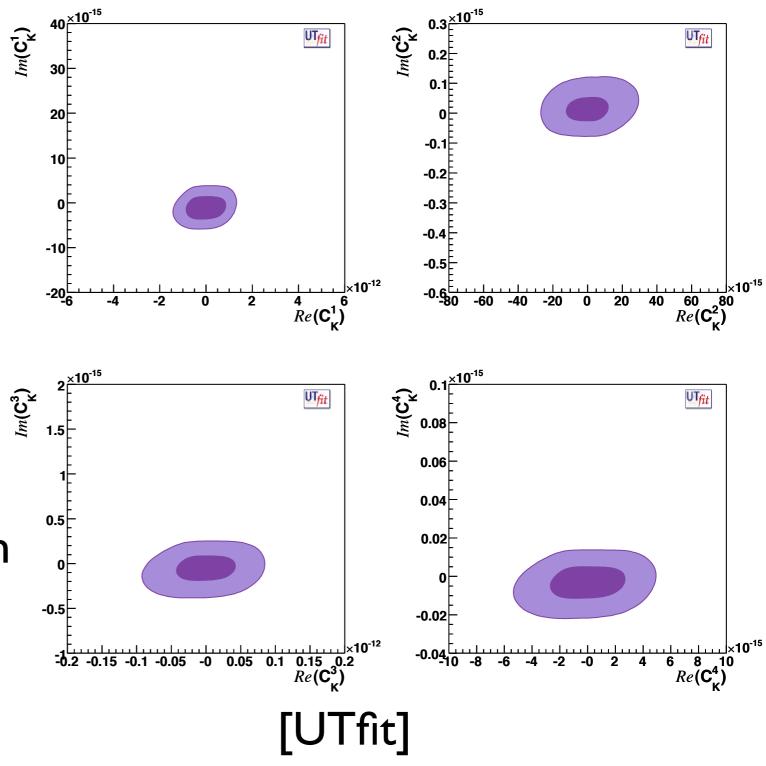
 $O_{1} = (\bar{s}\gamma_{\mu}d_{L})(\bar{s}\gamma^{\mu}d_{L})$ $O_{2} = (\bar{s}^{\alpha}d_{L}^{\alpha})(\bar{s}^{\beta}d_{L}^{\beta})$ $O_{3} = (\bar{s}^{\alpha}d_{L}^{\beta})(\bar{s}^{\beta}d_{L}^{\alpha})$ $O_{4} = (\bar{s}^{\alpha}d_{R}^{\alpha})(\bar{s}^{\beta}d_{L}^{\beta})$ $O_{5} = (\bar{s}^{\alpha}d_{R}^{\beta})(\bar{s}^{\beta}d_{L}^{\alpha})$

Model Independent Constraints

Allowed area quite small

theory & parametric uncertainty \rightarrow size of area

Constraints might be more severe in concrete realisation of a model.



Gauged Flavour Models

Example: $SU(3)_Q \times SU(3)_U \times SU(3)_D$ [Grinstein et. al `10] (Talk by Carlucci)

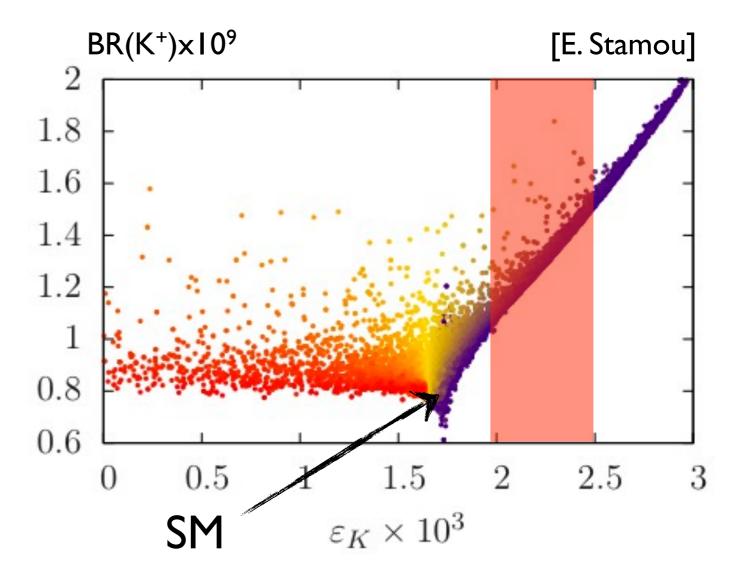
Flavour violation of extra gauge bosons suppressed for Kaons

Mixing of vector like fermions (t–t[']) contributes to $\epsilon_{K} \& K \rightarrow \pi \upsilon \upsilon$

Using results for arbitrary perturbative theories [Brod, Casagrande, MG in preperation]

we find a strong correlation between $\epsilon_{K} \& K \rightarrow \pi \upsilon \upsilon$

Can study minimal extensions of vectors, fermions & scalars



Constraints from E_K in RS

Randall-Sundrum: KK vector bosons flavour violating & intergenerational couplings of vector-like quarks: Z, KK gluon flavour violation

No simple correlation, but ε_{K} constrains size of typical effects.

[Analysis by Bauer, Casagrande, Haisch Neubert `09] [common down-type bulk mass] [10⁻¹¹] 30 $[10^{-11}]$ 30 $\rightarrow \pi^+ \nu \overline{\nu}(\gamma)$ $\pi^+ \nu \overline{\nu}(\gamma)$ 20 $\mathcal{B}(K^{\uparrow})$ [Casagrande] 10^{-3} 10 10^{-} 10^{-3} 10^{-2} 10^{-1} 10 EV

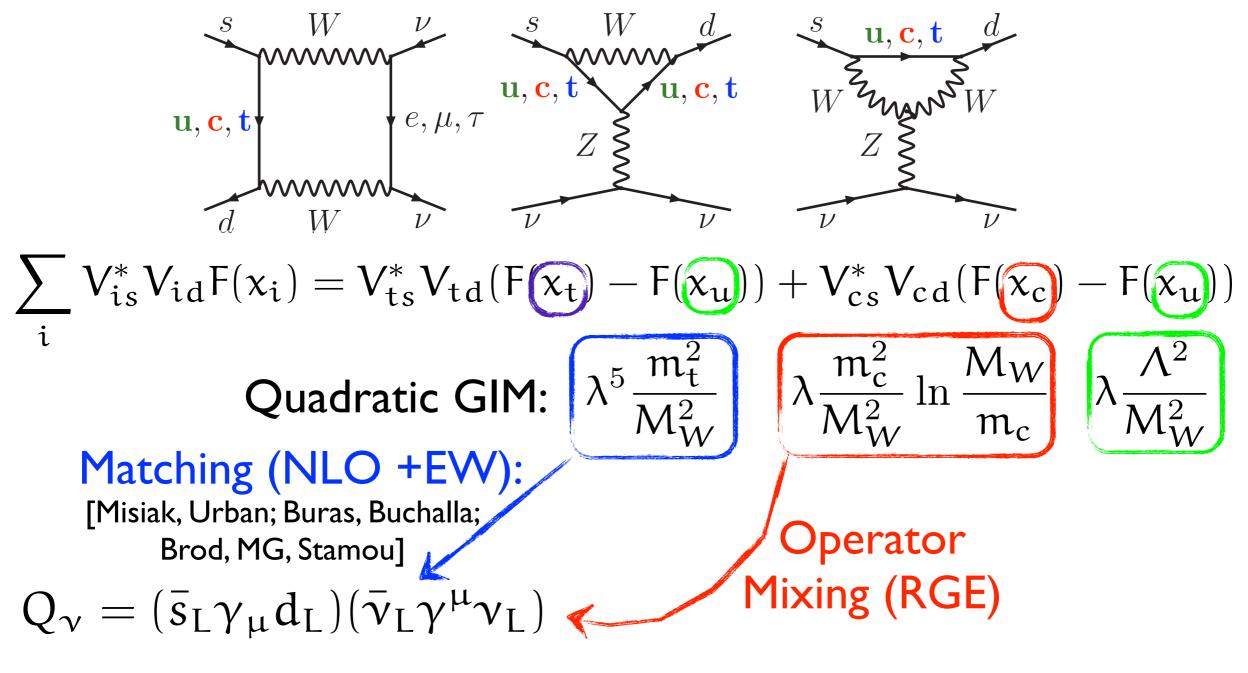
Standard Model

To improve the NP sensitivity improve the SM prediction

In our case:

Perturbative calculation Matching (M_W) RGE (M_W \rightarrow m_c) with Lattice integrating out the charm quark in ?? Non-perturbative calculation (Lattice & ChiPT) Matrix elements Higher dimensional operators (non-local terms)

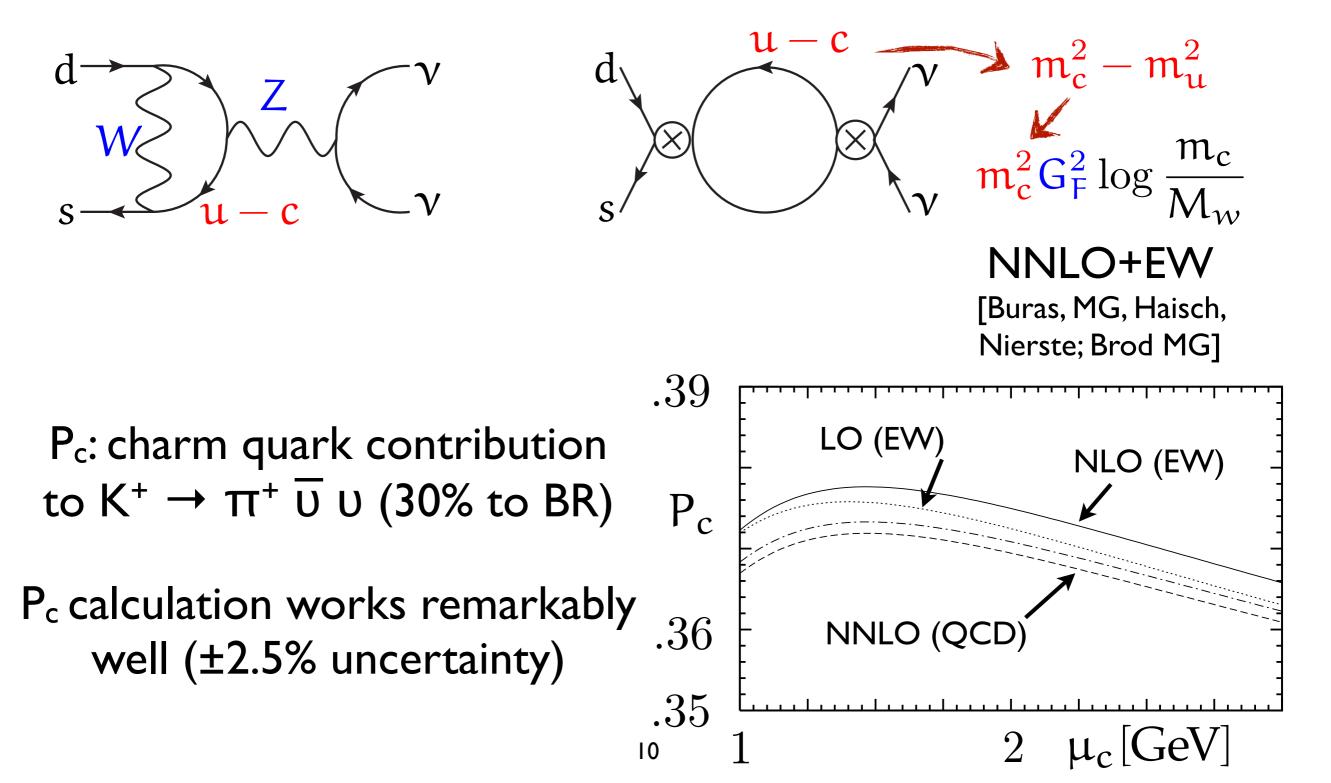
$K^+ \rightarrow \pi^+ \overline{\upsilon} \upsilon \text{ at } M_W$



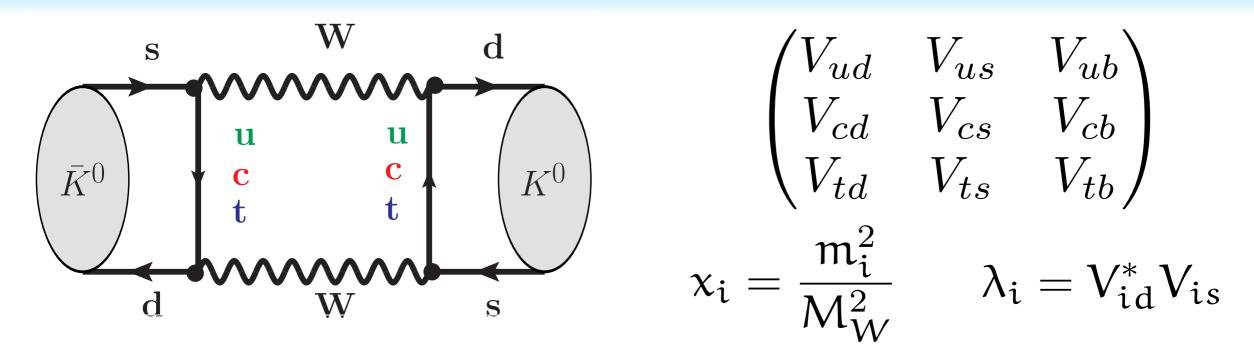
Matrix element from K_{I3} decays (Isospin symmetry: $K^+ \rightarrow \pi^0 e^+ U$) [Mescia, Smith]

GIMnastics at mc

Quadratic GIM suppresses light quark contribution



M_{12} at M_W



Three CKM factors: $\lambda_t = O(\lambda^5 e^{i \delta})$, $\lambda_c = O(\lambda + i \lambda^5)$ and $\lambda_u = O(\lambda)$

$$\begin{aligned} \mathbf{x}_{t} \,\lambda_{t} \lambda_{t} + \mathbf{x}_{c} \log(\mathbf{x}_{c}) \,\lambda_{c} \lambda_{t} + \mathbf{x}_{c} \,\lambda_{c} \lambda_{c} + \frac{\Lambda_{QCD}^{2}}{M_{W}^{2}} \,\lambda_{c} \lambda_{t/c} \\ 2M_{K} M_{12} &= \langle \mathsf{K}^{0} | \,\mathsf{H}^{|\Delta S|=2} \, | \bar{\mathsf{K}}^{0} \rangle - \frac{\mathfrak{i}}{2} \int \mathsf{d}^{4} x \, \langle \mathsf{K}^{0} | \,\mathsf{H}^{|\Delta S|=1}(x) \,\mathsf{H}^{|\Delta S|=1}(0) \, | \bar{\mathsf{K}}^{0} \rangle \\ & \mathsf{dispersive part} \end{aligned}$$

M₁₂, Kaon Mixing & E_K

CP violation in mixing Re(ϵ_{κ}) and interference Im(ϵ_{κ})

$$\varepsilon_{\rm K} = e^{i\phi_{\,\varepsilon}} \sin \phi_{\,\varepsilon} \left(\frac{{\rm Im}(M_{12})}{\Delta m_{\rm K}} + \frac{{\rm Im}(A_0)}{{\rm Re}(A_0)} \right) \qquad A_{\rm I} = \langle (\pi\pi)_{\rm I} | {\rm K}^0 \rangle$$

Δm_K , φ_ϵ : Directly from experiment:

 $Im(A_0)/Re(A_0)$: from ϵ'/ϵ

 $Im(M_{12}) = Im(M_{12})_{SD} + Im(M_{12})_{D=8} + Im(M_{12})_{Non Local}$

Factorize short and long distance: $H^{|\Delta S|=2}=C(\mu)\tilde{Q}$

From lattice: $\hat{B}_{K} = \frac{3b(\mu)}{2f_{K}^{2}M_{K}^{2}} \langle K^{0}|\tilde{Q}|\bar{K}^{0}\rangle$ ($\tilde{Q} = (\bar{s}_{L}\gamma_{\mu}d_{L})(\bar{s}_{L}\gamma^{\mu}d_{L})$)

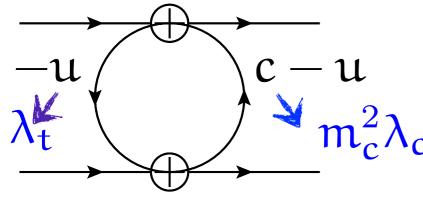
Perturbative Calculation

	CKM	€₽	LO Logs (n≥0)	€ĸ	State
η _{tt} :A(t-u,t-u)	$\lambda_t \lambda_t$	Ο(λ ^ι)	x _t (α _s log x _c) ⁿ	75(±1)%	NLO
η _{ct} :A(t-u,c-u)	$\lambda_t \lambda_c$	Ο(λ ⁶)	x _c log x _c (α _s log x _c) ⁿ	40(±10)%	NNLO
η _{cc} :A(c-u,c-u)	$\lambda_c \lambda_c$	Ο(λ ⁶)	x _c (α _s log x _c) ⁿ	I5(±50)%	NNLO

Lattice results quoted in Renormalisation Group Invariant scheme

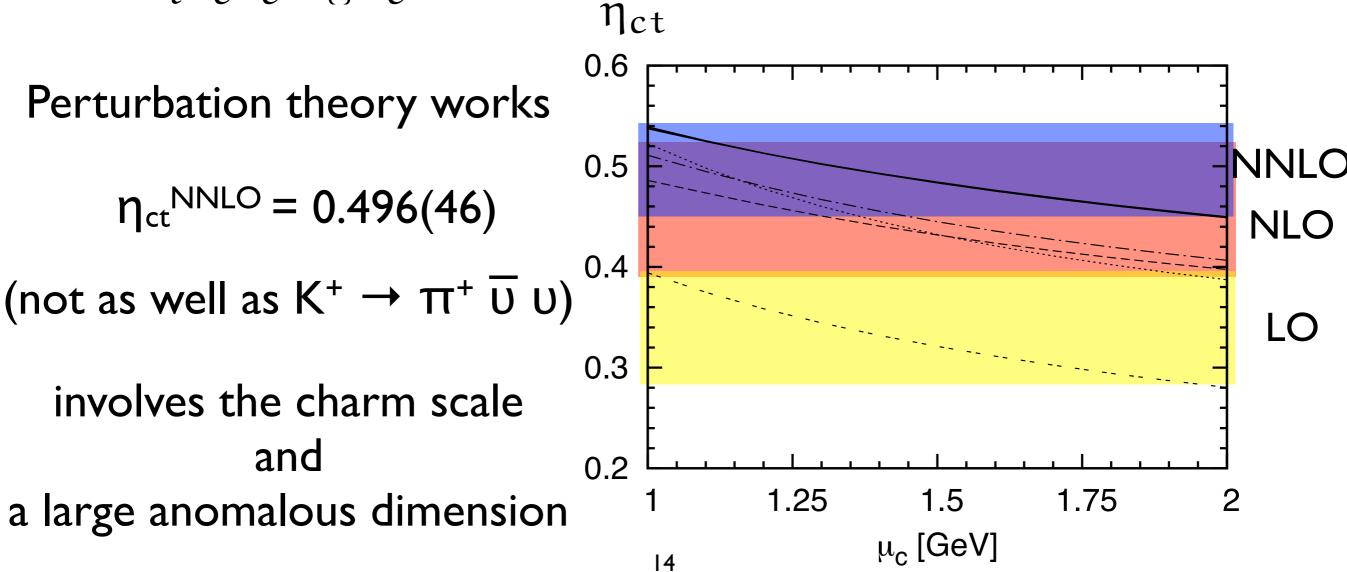
in RGI: multiply by
$$b^{-1}(\mu) = \alpha_s^{2/9}(\mu) \left(1 - \frac{1.9 \alpha_s(\mu)}{4\pi} + \frac{16.4 \alpha_s^2(\mu)}{16\pi^2}\right)$$

 $\eta_{ct}: \alpha_s^{2/9} \lambda_t \lambda_c x_c \log x_c (\alpha_s \log x_c)^n + \dots$

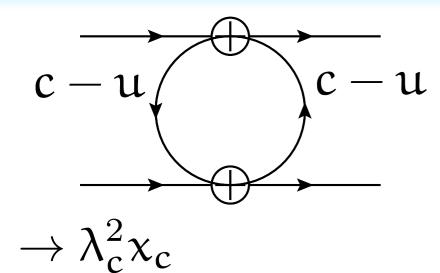


and

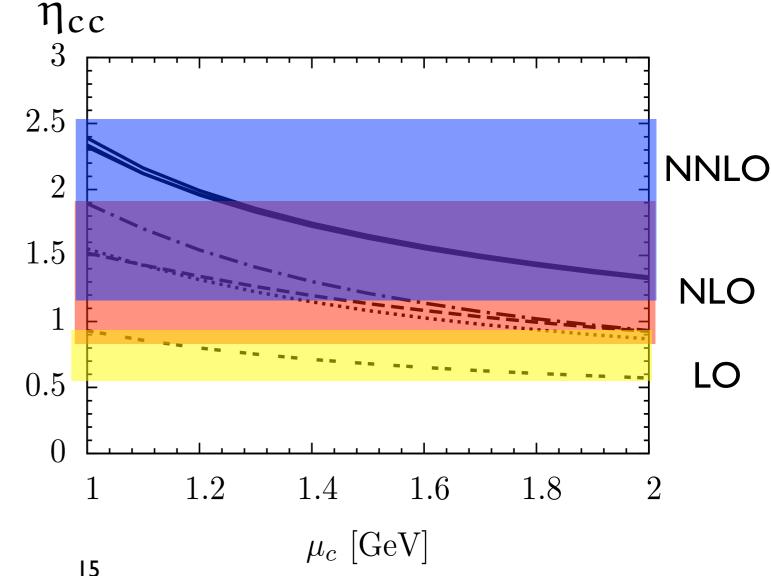
NNLO: 2 loop Matching at $\mu_W \& \mu_c$ and 3 loop running [Brod, MG]



 $\eta_{cc}: \alpha_s^{2/9} \lambda_c^2 x_c (\alpha_s \log x_c)^n + \dots$



NNLO: 3 loop running of current-current Operators and 3 loop Matching at µ_c [Brod, MG]



 $LO \rightarrow NLO \rightarrow NNLO$ shift of similar size

bad convergence

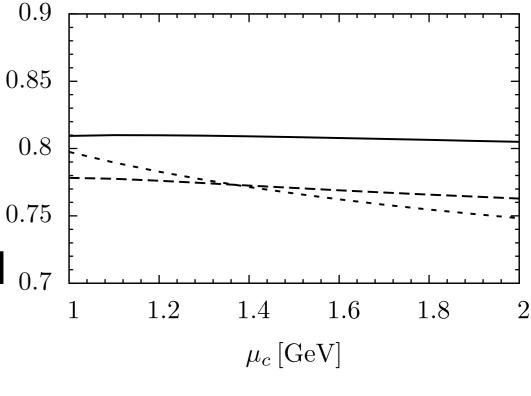
scale uncertainty and shift of similar size: add in quadrature

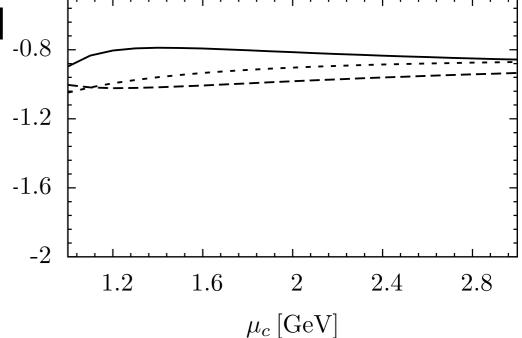
$$\eta_{cc}^{NNLO} = 1.87(76)$$

Why the large shift?

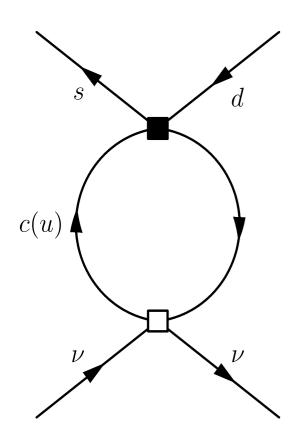
Large ADMs and large finite corrections at μ_c

- If the matrix element at μ_c would contain only logs scale dependence would reduce nicely
- If the matrix element could be calculated $_{0.7}$ on the lattice including charm quarks:
- A (RI-MOM) scheme change would cancel the current-current μ_c dependence
 - RI-MOM matching of B_K does not seem to change the perturbative expansion



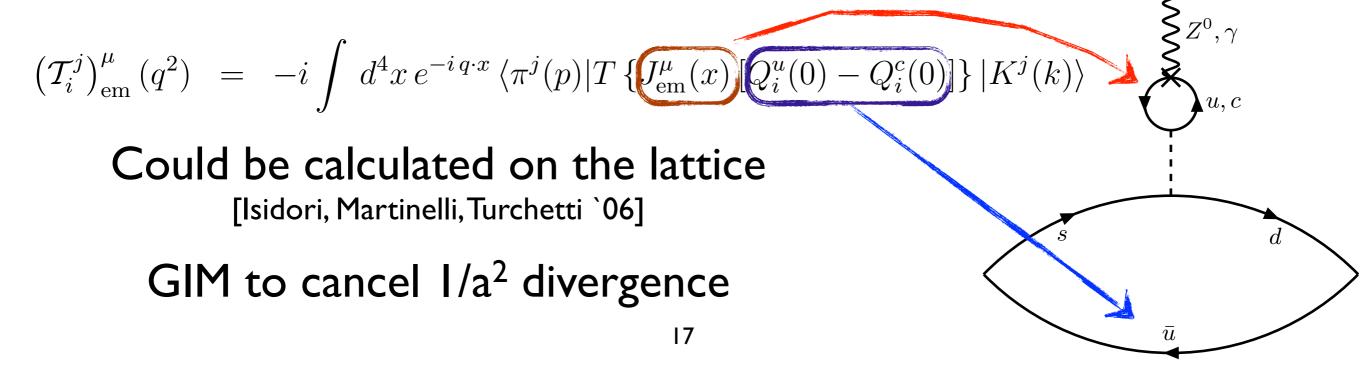


Long Distance $K^+ \rightarrow \pi^+ \overline{\upsilon} \upsilon$

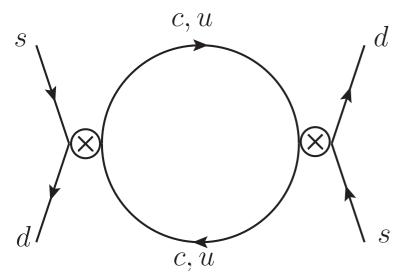


No GIM below the charm quark mass scale higher dimensional operators UV scale dependent One loop ChiPT calculation approximately cancels this scale dependence $\delta P_{c,u} = 0.04 \pm 0.02$

[Isidori, Mescia, Smith `05]

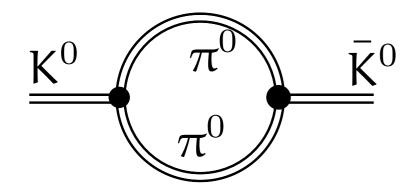


Long Distance E_K



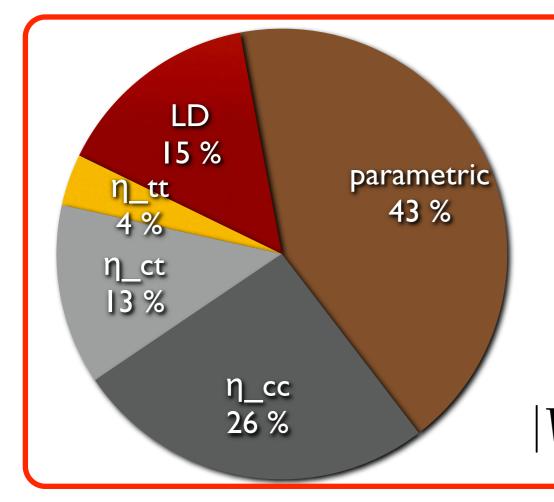
 $\int d^4x \, \langle K^0 | \, H^{|\Delta S|=1}(x) \, H^{|\Delta S|=1}(0) \, |\bar{K}^0 \rangle$ Higher dimensional operator [Cata Peris`04]

Light quark loops in CHPT: π^0 , η tree level vanishes (Gell-Mann-Okuba) η'comes with zero phase [Gerard et.al. `05]

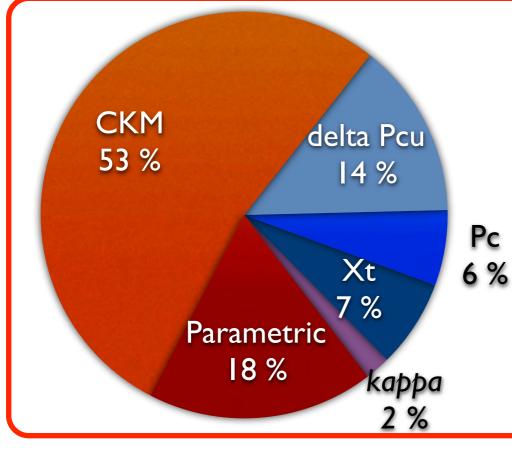


I-loop diagram divergent: estimate from $ln(m_{\pi}/m_{\rho})$ [Buras et.al. 10]

absorptive part $\epsilon_{\mathrm{K}} = e^{\mathrm{i}\phi_{\epsilon}} \sin\phi_{\epsilon} \left(\frac{\mathrm{Im}(\mathcal{M}_{12}^{\mathrm{K}})}{\Delta \mathcal{M}_{\mathrm{K}}} + \frac{\mathrm{Im}(\mathcal{A}_{0})}{\mathrm{Re}(\mathcal{A}_{0})}\right)$ estimated form $\varepsilon^{'}$ Future: Lattice [N. Christ]



$$\epsilon_{\kappa}$$
: SM prediction
 $|\epsilon_{\kappa}| = 1.81(28) \times 10^{-3}$
 $|\epsilon_{\kappa}| \stackrel{\text{exp.}}{=} 2.228(11) \times 10^{-3}$
 $V_{cb}| = 406(13) \times 10^{-4}$



Conclusions

Kaons sensitive to deviations from minimal flavour violation (EW precision, Lepton Universality)

O(I) NP contribution to the clean $K^+ \rightarrow \pi^+ \overline{\upsilon} \upsilon$ decay possible

Perturbative calculation for ϵ_{K} at the limit (improvement could come from lattice)