Rare and CP violating Kaon Decays SM Prediction and NP Sensitivity

4th Workshop on Flavour Physics
Capri II.6.20I2

Based on work done with: J. Brod, S. Casagrande, E. Stamou

Martin Gorbahn
TU München
Universe Cluster

Kaons: 500 MeV to 10 TeV

Kaon physics involves many different energy scales

M_{k} : ChiPT, Lattice QCD m_{c} : GIM
Mw: SM
MNP: ?
Hierarchy of scales \rightarrow Potential QCD pollution
clean Observables: $\epsilon_{K} \& K \rightarrow \pi \cup \cup$
also interesting but no time:
$K \rightarrow(\pi) I^{+} I, \epsilon^{\prime} / \epsilon$, Unitarity, K_{μ} / K_{e}

Rare and CP violating Kaon Decays

FCNCs which are dominated by top-quark loops:

$$
\begin{array}{ccc}
\mathrm{b} \rightarrow \mathrm{~s}: & \mathrm{b} \rightarrow \mathrm{~d}: & \mathrm{s} \rightarrow \mathrm{~d}: \\
\left|\mathrm{V}_{\mathrm{tb}}^{*} \mathrm{~V}_{\mathrm{ts}}\right| \propto \lambda^{2} & \left|\mathrm{~V}_{\mathrm{tb}}^{*} \mathrm{~V}_{\mathrm{td}}\right| \propto \lambda^{3} & \left|\mathrm{~V}_{\mathrm{ts}}^{*} \mathrm{~V}_{\mathrm{td}}\right| \propto \lambda^{5}
\end{array}
$$

CKM suppression: enhanced sensitivity to NP

$$
\begin{gathered}
V_{t s}^{*} V_{t d}+V_{c s}^{*} V_{c d}=-V_{u s}^{*} V_{u d} \\
\lambda \\
\lambda
\end{gathered}
$$

how are the light quark suppressed?
Quadratic GIM: $\lambda \frac{m_{c}^{2}}{M_{W}^{2}}$
CP violation: $\operatorname{Im}\left(V_{c s}^{*} V_{c d}\right)$

Potential Operators

modified Z-Penguin for $K \rightarrow \pi \cup \cup \quad Q_{\nu}^{L / R}=\left(\bar{s} \gamma_{\mu} d_{L / R}\right)\left(\bar{v} \gamma^{\mu} \nu_{L}\right)$ (\& Box type contribution)
ϵ_{K} : Eight Operators
($Q_{1}-Q_{5}$ and 3 chirality flipped)
$\mathrm{O}_{1}=\left(\bar{s} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}\right)\left(\bar{s} \gamma^{\mu} \mathrm{d}_{\mathrm{L}}\right)$
Coefficients constrained by

$$
\begin{gathered}
\left|\varepsilon_{\mathrm{k}}\right|=2.228(\mathrm{II}) \times 10^{-3} \& \\
\Delta M_{\mathrm{K}}=5.292(9) \mathrm{ns}^{-1}
\end{gathered}
$$

NP Flavour Problem
$\mathrm{O}_{2}=\left(\bar{s}^{\alpha} \mathrm{d}_{\mathrm{L}}^{\alpha}\right)\left(\bar{s}^{\beta} \mathrm{d}_{\mathrm{L}}^{\beta}\right)$
$\mathrm{O}_{3}=\left(\bar{s}^{\alpha} \mathrm{d}_{\mathrm{L}}^{\beta}\right)\left(\bar{s}^{\beta} \mathrm{d}_{\mathrm{L}}^{\alpha}\right)$
$\mathrm{O}_{4}=\left(\bar{s}^{\alpha} \mathrm{d}_{\mathrm{R}}^{\alpha}\right)\left(\bar{s}^{\beta} \mathrm{d}_{\mathrm{L}}^{\beta}\right)$
$\mathrm{O}_{5}=\left(\bar{s}^{\alpha} \mathrm{d}_{\mathrm{R}}^{\beta}\right)\left(\bar{s}^{\beta} \mathrm{d}_{\mathrm{L}}^{\alpha}\right)$

Model Independent Constraints

Allowed area quite small
theory \& parametric

 uncertainty \rightarrow size of area

Constraints might be more severe in concrete realisation of a model.

[UTfit]

Gauged Flavour Models

Example: $\operatorname{SU}(3) \mathrm{Qx} \operatorname{SU}(3) \mathrm{Ux} \mathrm{SU}(3) \mathrm{D}$ [Grinstein et.al ${ }^{10]}$ (Talk by Carlucci)
Flavour violation of extra gauge bosons suppressed for Kaons
Mixing of vector like fermions ($\mathrm{t}-\mathrm{t}^{\prime}$) contributes to $\epsilon_{\mathrm{K}} \& K \rightarrow \Pi \mathrm{UU}$

Using results for arbitrary perturbative theories [Brod, Casagrande, MG in preperation]
we find a strong correlation between $\epsilon_{K} \& K \rightarrow \pi$ Uu

Can study minimal extensions of vectors, fermions \& scalars

Constraints from ϵ_{K} in RS

Randall-Sundrum: KK vector bosons flavour violating \& intergenerational couplings of vector-like quarks:

Z, KK gluon flavour violation
No simple correlation, but ϵ_{K} constrains size of typical effects.
[Analysis by Bauer, Casagrande, Haisch Neubert ${ }^{`} 09$ [[common down-type bulk mass]

Standard Model

To improve the NP sensitivity improve the SM prediction In our case:

Perturbative calculation
Matching (Mw)
RGE ($\mathrm{Mw}_{\mathrm{w}} \rightarrow \mathrm{m}_{\mathrm{c}}$) with Lattice
integrating out the charm quark in ??
Non-perturbative calculation (Lattice \& ChiPT)
Matrix elements
Higher dimensional operators
(non-local terms)

$K^{+} \rightarrow \Pi^{+} \bar{U} U$ at M_{w}

Matrix element from K_{13} decays
(Isospin symmetry: $K^{+} \rightarrow \Pi^{0} e^{+} U$)
[Mescia, Smith]

GIMnastics at m_{c}

Quadratic GIM suppresses light quark contribution

NNLO+EW
[Buras, MG, Haisch,
Nierste; Brod MG]

M_{12} at M_{w}

$$
\begin{gathered}
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \\
x_{i}=\frac{\mathrm{m}_{\mathrm{i}}^{2}}{\mathrm{M}_{\mathrm{W}}^{2}} \quad \lambda_{\mathrm{i}}=\mathrm{V}_{\mathrm{id}}^{*} \mathrm{~V}_{\mathrm{is}}
\end{gathered}
$$

Three CKM factors: $\lambda_{t}=O\left(\lambda^{5} e^{i \delta}\right), \lambda_{c}=O\left(\lambda+i \lambda^{5}\right)$ and $\lambda_{u}=O(\lambda)$

$$
x_{\mathrm{t}} \lambda_{\mathrm{t}} \lambda_{\mathrm{t}}+\mathrm{x}_{\mathrm{c}} \log \left(\mathrm{x}_{\mathrm{c}}\right) \lambda_{\mathrm{c}} \lambda_{\mathrm{t}}+\mathrm{x}_{\mathrm{c}} \lambda_{\mathrm{c}} \lambda_{\mathrm{c}}+\frac{\Lambda_{\mathrm{Q} C D}^{2}}{M_{W}^{2}} \lambda_{\mathrm{c}} \lambda_{\mathrm{t} / \mathrm{c}}
$$

$2 M_{K} M_{12}=\left\langle K^{0}\right| H^{|\Delta S|=2}\left|\bar{K}^{0}\right\rangle-\frac{\mathfrak{i}}{2} \int \mathrm{~d}^{4} \chi\left\langle\mathrm{~K}^{0}\right| \mathrm{H}^{|\Delta S|=1}(x) \mathrm{H}^{|\Delta S|=1}(0)\left|\bar{K}^{0}\right\rangle$

M_{12}, Kaon Mixing \& ϵ_{K}

CP violation in mixing $\operatorname{Re}\left(\epsilon_{\mathrm{K}}\right)$ and interference $\operatorname{Im}\left(\epsilon_{\mathrm{K}}\right)$

$$
\epsilon_{K}=e^{i \phi_{\epsilon}} \sin \phi_{\epsilon}\left(\frac{\operatorname{Im}\left(M_{12}\right)}{\Delta m_{K}}+\frac{\operatorname{Im}\left(A_{0}\right)}{\operatorname{Re}\left(A_{0}\right)}\right) \quad A_{I}=\left\langle(\pi \pi)_{\mathrm{I}} \mid K^{0}\right\rangle
$$

$\Delta m_{\kappa}, \phi_{\varepsilon}$: Directly from experiment:
$\operatorname{Im}\left(A_{0}\right) / \operatorname{Re}\left(A_{0}\right)$: from $\epsilon^{\prime} / \epsilon$
$\operatorname{Im}\left(M_{12}\right)=\operatorname{Im}\left(M_{12}\right)_{s D}+\operatorname{Im}\left(M_{12}\right)_{D=8}+\operatorname{Im}\left(M_{12}\right)_{\text {Non Local }}$
Factorize short and long distance: $H^{|\Delta S|=2}=C(\mu) \widetilde{Q}$
From lattice: $\quad \hat{B}_{K}=\frac{3 \mathrm{~b}(\mu)}{2 f_{K}^{2} M_{K}^{2}}\left\langle\mathrm{~K}^{0}\right| \tilde{\mathrm{Q}}\left|\bar{K}^{0}\right\rangle \quad\left(\quad \tilde{\mathrm{Q}}=\left(\bar{s}_{\mathrm{L}} \gamma_{\mu} \mathrm{d}_{\mathrm{L}}\right)\left(\bar{s}_{\mathrm{L}} \gamma^{\mu} \mathrm{d}_{\mathrm{L}}\right)\right)$

Perturbative Calculation

	$C K M$	CP	LO Logs $(n \geq 0)$	ϵ_{K}	State
$\eta_{t \mathrm{t}:} A(t-u, t-u)$	$\lambda_{t} \lambda_{t}$	$O\left(\lambda^{10}\right)$	$x_{t}\left(\alpha_{s} \log x_{c}\right)^{n}$	$75(\pm \mathrm{I}) \%$	NLO
$\eta_{c t:} A(t-u, c-u)$	$\lambda_{t} \lambda_{c}$	$O\left(\lambda^{6}\right)$	$x_{c} \log x_{c}\left(\alpha_{s} \log x_{c}\right)^{n}$	$40(\pm 10) \%$	NNLO
$\eta_{c c}: A(c-u, c-u)$	$\lambda_{c} \lambda_{c}$	$O\left(\lambda^{6}\right)$	$x_{c}\left(\alpha_{s} \log x_{c}\right)^{n}$	$15(\pm 50) \%$	NNLO

Lattice results quoted in Renormalisation Group Invariant scheme in RGI: multiply by $\mathrm{b}^{-1}(\mu)=\alpha_{s}^{2 / 9}(\mu)\left(1-1.9 \frac{\alpha_{s}(\mu)}{4 \pi}+16.4 \frac{\alpha_{s}^{2}(\mu)}{16 \pi^{2}}\right)$

$\eta_{c t}: \alpha_{s}^{2 / 9} \lambda_{t} \lambda_{c} x_{c} \log x_{c}\left(\alpha_{s} \log x_{c}\right)^{n}+\ldots$

$\rightarrow \lambda_{t} \lambda_{c} x_{c} \log x_{c}$

NNLO: 2 loop Matching at $\mu_{\mathrm{w}} \& \mu_{c}$ and 3 loop running [Brod,MG]

$\eta_{c c}: \alpha_{s}^{2 / 9} \lambda_{c}^{2} x_{c}\left(\alpha_{s} \log x_{c}\right)^{n}+\ldots$

$\rightarrow \lambda_{c}^{2} \chi_{c}$
$\mathrm{LO} \rightarrow \mathrm{NLO} \rightarrow$ NNLO shift of similar size bad convergence
scale uncertainty and shift of similar size: add in quadrature

Why the large shift?

Large ADMs and large finite corrections at μ_{c}
If the matrix element at μ_{c} would contain only logs scale dependence would reduce nicely

A (RI-MOM) scheme change would cancel the current-current μ_{c} dependence

RI-MOM matching of B_{k} does not seem to change the perturbative expansion

Long Distance $\mathrm{K}^{+} \rightarrow \Pi^{+} \overline{\mathrm{u}} \mathrm{U}$

No GIM below the charm quark mass scale
higher dimensional operators UV scale dependent
One loop ChiPT calculation approximately cancels this scale dependence $\delta \mathrm{P}_{\mathrm{c}, \mathrm{u}}=0.04 \pm 0.02$
[Isidori, Mescia, Smith `05]

Long Distance ϵ_{K}

ces ces

$$
\int d^{4} x\left\langle K^{0}\right| H^{|\Delta S|=1}(x) H^{|\Delta S|=1}(0)\left|\bar{K}^{0}\right\rangle
$$

Higher dimensional operator [Cata Peris`04] Light quark loops in CHPT: \(\pi^{0}, \eta\) tree level vanishes (Gell-Mann-Okuba) \(\eta^{\prime}\) comes with zero phase [Gerard et.al. `05]

I-loop diagram divergent: estimate from $\ln \left(m_{\pi} / m_{\rho}\right)$ [Buras et.al. ` 10] absorptive part

$$
\epsilon_{K}=e^{i \phi_{\epsilon}} \sin \phi_{\epsilon}\left(\frac{\operatorname{Im}\left(M_{12}^{K}\right)}{\Delta M_{K}}+\frac{\operatorname{Im}\left(A_{0}\right)}{\operatorname{Re}\left(A_{0}\right)}\right)<\quad \begin{gathered}
\text { Future: Lattice } \epsilon^{\prime} \\
\text { [N. Christ] }
\end{gathered}
$$

ϵ_{K} : SM prediction

parametric

$$
43 \text { \% }
$$

$$
\begin{gathered}
\left|\epsilon_{K}\right|=1.81(28) \times 10^{-3} \\
\left|\epsilon_{K}\right| \stackrel{\exp .}{=} 2.228(11) \times 10^{-3} \\
\left|V_{c b}\right|=406(13) \times 10^{-4}
\end{gathered}
$$

Conclusions

Kaons sensitive to deviations from minimal flavour violation (EW precision, Lepton Universality)
$\mathrm{O}(\mathrm{I}) \mathrm{NP}$ contribution to the clean $\mathrm{K}^{+} \rightarrow \pi^{+} \overline{\mathrm{U}} \mathrm{U}$ decay possible
Perturbative calculation for ϵ_{κ} at the limit (improvement could come from lattice)

