Flavor Phenomenology from Lattice QCD

Elvira Gámiz

Universidad de Granada

International Workshop on Theory, Phenomenology and Experiments in Flavour Physics

- Villa Orlandi, Anacapri, Island of Capri (Italy) 11-13 June 2012.

1. Introduction

Lattice QCD can be used to (relying only on first principles.)

* Non-perturbative input for the study of some theory-experiment discrepancies in UT analyses ($\hat{B}_{K}, f_{B}, f_{B} \sqrt{B_{B}}, \xi \ldots$), processes involving $B_{d, s}^{0}-\bar{B}_{d, s}^{0}$ mixing (like-sign dimuon charge asymmetry), heavy-light decay constants \ldots and also rare decays

Laiho,Lunghí,Van de Water PRD81:034503 (2010)

Error bands are still dominated by theory errors, in particular due to hadronic matrix elements.

1. Introduction

Lattice QCD can be used to (relying only on first principles.)

* Determine fundamental parameters of the SM: quark masses, CKM matrix elements (tensions in inclus.-exclus. determinations of $\left|V_{u b}\right|,\left|V_{c b}\right|$).

$$
V=\left(\begin{array}{ccc}
\left|V_{u d}\right| & \left|V_{u s}\right| & \left|V_{u b}\right| \\
\pi \rightarrow l \nu & K \rightarrow l \nu & B \rightarrow \tau \nu \\
& K \rightarrow \pi l \nu & B \rightarrow \pi \tau \nu \\
\left|V_{c d}\right| & \left|V_{c s}\right| & \left|V_{c b}\right| \\
D \rightarrow l \nu & D_{s} \rightarrow l \nu & B \rightarrow D l \nu
\end{array} \quad \arg \left(V_{u b}^{*}\right) \quad\left\langle K^{0} \mid \bar{K}^{0}\right\rangle\right.
$$

1. Introduction

\# Gold-plated quantities: For stable (or almost stable) hadron, masses and amplitudes with no more then one initial (final) state hadron.

Dificult to study on the lattice: scattering processes, including charmoniun production, inclusive processes, and multihadronic decays

1. Introduction

\# Gold-plated quantities: For stable (or almost stable) hadron, masses and amplitudes with no more then one initial (final) state hadron.

Dificult to study on the lattice: scattering processes, including charmoniun production, inclusive processes, and multihadronic decays
(Starting to appear lattice calculations for non gold-plated quantities)

$$
\text { non-local operators for } D \text { mixing, weak decays to resonances }\left(K^{*}, \rho, \ldots\right) \text {, }
$$

$$
K \rightarrow \pi \pi \ldots
$$

1. Introduction

\# Gold-plated quantities: For stable (or almost stable) hadron, masses and amplitudes with no more then one initial (final) state hadron.

Dificult to study on the lattice: scattering processes, including charmoniun production, inclusive processes, and multihadronic decays
(Starting to appear lattice calculations for non gold-plated quantities)

$$
\text { non-local operators for } D \text { mixing, weak decays to resonances }\left(K^{*}, \rho, \ldots\right) \text {, }
$$

$$
K \rightarrow \pi \pi \ldots
$$

Goal: Precise calculations ($\sim 5 \%$ error)

* Control over systematic errors: including chiral extrapolation, discretization (continuum limit), renormalization, finite volume ...

1. Introduction

\# Gold-plated quantities: For stable (or almost stable) hadron, masses and amplitudes with no more then one initial (final) state hadron.

Dificult to study on the lattice: scattering processes, including charmoniun production, inclusive processes, and multihadronic decays
(Starting to appear lattice calculations for non gold-plated quantities)

$$
\text { non-local operators for } D \text { mixing, weak decays to resonances }\left(K^{*}, \rho, \ldots\right) \text {, }
$$

$$
K \rightarrow \pi \pi \ldots
$$

Goal: Precise calculations ($\sim 5 \%$ error)

* Control over systematic errors: including chiral extrapolation, discretization (continuum limit), renormalization, finite volume ...

\# Unquenched calculations

* Quenching the strange quark could have an error as large as 5\% and need a $N_{f}=2+1$ to have an estimate \rightarrow want $N_{f}=2+1$
* Neglecting sea charm has effects $\mathcal{O}(1 \%)$ (can be estimated with HQET). Starting to need sea charm effects.

1. Introduction: Overview of simulations parameters

Several $N_{f}=2+1$ and even $N_{f}=2+1+1$, and physical quark masses.


```
\(\times \quad\) ETMC '09 (2)
- ETMC '10 ( \(2+1+1\) )
- MILC '10
* QCDSF '10 (2)
- QCDSF-UKQCD '10
- BMWc '10
- PACS-CS '09
- RBC/UKQCD '10
- JLQCD/TWQCD '09
- HSC '08
\(\times \quad\) BGR '10
```

plot by C. Hoelbling,

Lattice 2010, 1102.0410
$\mathrm{N}_{\mathrm{f}}=2+1+1$ Hisq MILC ensembles

1.1. Introduction: Averaging lattice QCD results

\# J. Laiho, E. Lunghi, and R. Van de Water (LLV)
Phys.Rev.D81:034503,2010, most updated results in www.latticeaverages.org

* Phenomenologically relevant light and heavy quantities + UT fits with lattice inputs.
* Include only $N_{f}=2+1$.
* Only published results (including proceedings).
\# Flavianet Lattice Average group: (FLAG)
Eur. Phys. J. C71(2011)1695, updated results in http://itpwiki.unibe.ch/flag
* K and π physics, including LEC's.
* Include separate averages for $N_{f}=2$ and $N_{f}=2+1$.
* Only published results with the exception of update proceedings.
\# Flavor Lattice Averaging Group (FLAG-2): 28 people representing all big lattice collaborations.
* Light and heavy quantities.

First review at the end of 2012

2. Light quarks matrix elements

2.1. f_{K} / f_{π} : Determination of $\left|V_{u s}\right|$
\# Decay constants come from simple matrix element
$\langle 0| \bar{q}_{1} \gamma_{\mu} \gamma_{5} q_{2}|P(p)\rangle=i f_{P} p_{\mu} \rightarrow$ precise calculations

* Even higher precision for ratios due to cancellation of statistics and systematics uncertainties

2. Light quarks matrix elements

2.1. f_{K} / f_{π} : Determination of $\left|V_{u s}\right|$

\# Decay constants come from simple matrix element $\langle 0| \bar{q}_{1} \gamma_{\mu} \gamma_{5} q_{2}|P(p)\rangle=i f_{P} p_{\mu} \rightarrow$ precise calculations

* Even higher precision for ratios due to cancellation of statistics and systematics uncertainties ($0.6-2 \%$ errors, 0.4% average)
\# Many $N_{f}=2+1$ lattice calculations \rightarrow good test of lattice QCD

$$
f_{K} / f_{\pi}^{\mathrm{LLV}}=1.1936 \pm 0.0053
$$

2. Light quarks matrix elements

2.1. f_{K} / f_{π} : Determination of $\left|V_{u s}\right|$

\# Decay constants come from simple matrix element $\langle 0| \bar{q}_{1} \gamma_{\mu} \gamma_{5} q_{2}|P(p)\rangle=i f_{P} p_{\mu} \rightarrow$ precise calculations

* Even higher precision for ratios due to cancellation of statistics and systematics uncertainties ($0.6-2 \%$ errors, 0.4% average)
\# Many $N_{f}=2+1$ lattice calculations \rightarrow good test of lattice QCD

2. Light quarks matrix elements

2.1. f_{K} / f_{π} : Determination of $\left|V_{u s}\right|$

\# Decay constants come from simple matrix element $\langle 0| \bar{q}_{1} \gamma_{\mu} \gamma_{5} q_{2}|P(p)\rangle=i f_{P} p_{\mu} \rightarrow$ precise calculations

* Even higher precision for ratios due to cancellation of statistics and systematics uncertainties ($0.6-2 \%$ errors, 0.4% average)
\# Many $N_{f}=2+1$ lattice calculations \rightarrow good test of lattice QCD

Physical light quark masses results this summer FNAL/MILC, BMW, PAC-CS ...

2.2. $K \rightarrow \pi l \nu$: Determination of $\left|V_{u s}\right|$

\# $\left|V_{u s}\right|$ can also be extracted from $K_{l 3}$ decay rates via

$$
\Gamma\left[K \rightarrow \pi l \nu_{l}(\gamma)\right]=\frac{G_{F}^{2}}{192 \pi^{3}} C^{2} I_{K}^{l} S_{E W}\left(1+\delta_{K}^{l}\right)\left|V_{u s}\right|^{2} f_{+}^{2}(0)
$$

using $f_{+}(0)$ as calculated with lattice QCD from the 3-point function

$$
\left\langle\pi^{-}\left(p^{\prime}\right)\right| \bar{s} \gamma_{\mu} u\left|K^{0}(p)\right\rangle=\left(p+p^{\prime}\right)_{\mu} f_{+}(t)+\left(p-p^{\prime}\right)_{\mu} f_{-}(t)
$$

2.2. $K \rightarrow \pi l \nu$: Determination of $\left|V_{u s}\right|$
\# $\left|V_{u s}\right|$ can also be extracted from $K_{l 3}$ decay rates via

$$
\Gamma\left[K \rightarrow \pi l \nu_{l}(\gamma)\right]=\frac{G_{F}^{2}}{192 \pi^{3}} C^{2} I_{K}^{l} S_{E W}\left(1+\delta_{K}^{l}\right)\left|V_{u s}\right|^{2} f_{+}^{2}(0)
$$

using $f_{+}(0)$ as calculated with lattice QCD from the 3-point function

$$
\left\langle\pi^{-}\left(p^{\prime}\right)\right| \bar{s} \gamma_{\mu} u\left|K^{0}(p)\right\rangle=\left(p+p^{\prime}\right)_{\mu} f_{+}(t)+\left(p-p^{\prime}\right)_{\mu} f_{-}(t)
$$

$$
f_{+}(0)^{\mathrm{LLV}}=0.9584 \pm 0.0044
$$

$N_{f}=2$ ETMC result included in average because they calculate quenching effects at NLO in ChPT and estimate NNLO effects
2.2. $K \rightarrow \pi l \nu$: Determination of $\left|V_{u s}\right|$
\# $\left|V_{u s}\right|$ can also be extracted from $K_{l 3}$ decay rates via

$$
\Gamma\left[K \rightarrow \pi l \nu_{l}(\gamma)\right]=\frac{G_{F}^{2}}{192 \pi^{3}} C^{2} I_{K}^{l} S_{E W}\left(1+\delta_{K}^{l}\right)\left|V_{u s}\right|^{2} f_{+}^{2}(0)
$$

using $f_{+}(0)$ as calculated with lattice QCD from the 3-point function

$$
\left\langle\pi^{-}\left(p^{\prime}\right)\right| \bar{s} \gamma_{\mu} u\left|K^{0}(p)\right\rangle=\left(p+p^{\prime}\right)_{\mu} f_{+}(t)+\left(p-p^{\prime}\right)_{\mu} f_{-}(t)
$$

$$
f_{+}(0)^{\mathrm{LLV}}=0.9584 \pm 0.0044
$$

$N_{f}=2$ ETMC result included in average because they calculate quenching effects at NLO in ChPT and estimate NNLO effects
\# Limitations of current calculations: one single lattice spacing, $N_{f}=2$, ChPT only at NLO $\ldots \rightarrow$ room for improvemet
2.2. $K \rightarrow \pi l \nu$: Determination of $\left|V_{u s}\right|$
\# In progress:

* $N_{f}=2+1$ staggered calculation on MiLC lattices with twisted boundary conditions at several lattice spacings
FNAL/MILC POS(Lattice 2010)306
* $N_{f}=2+1+1$ staggered calculation on MILC lattices with twisted boundary conditions at several lattice spacings and physical quark masses.
* $N_{f}=2+1$ overlap calculation: JLQCD POS(Lattice 2011)284
(Preliminary) results with physical quark masses this summer: fNAL/MILC

2.1. and 2.2. Test of Unitarity in the first row

\# Experimental averages: M. Antonelli et al., 1005.2323

$$
\begin{array}{r}
\left|V_{u s}\right| /\left|V_{u d}\right| \times f_{K} / f_{\pi}=0.2758(5) \quad\left|V_{u s}\right| f_{+}(0)^{K \rightarrow \pi}=0.2163(5) \\
\text { and } \quad \frac{\left|V_{u s}\right|^{2}}{\left|V_{u d}\right|^{2}} \times \frac{f_{K}^{2}}{f_{\pi}^{2}} \propto \frac{\Gamma\left(K \rightarrow \mu \bar{\nu}_{\mu}(\gamma)\right)}{\Gamma\left(\pi \rightarrow \mu \mu \bar{\nu}_{\mu}(\gamma)\right)} \quad \text { Marciano 2004 }
\end{array}
$$

* Check unitarity in the first row of CKM matrix.

$$
\Delta_{C K M}=\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}-1=-0.0001(6) \mathrm{M} \text {. Antonelli et al }
$$

fits to $K_{l 3}, K_{l 2}$ exper. data and lattice results for $f_{+}(0)^{K \rightarrow \pi}$ and f_{K} / f_{π}
$\rightarrow \mathcal{O}(10 \mathrm{TeV})$ bound on the scale of new physics.

2.1. and 2.2. Test of Unitarity in the first row

\# Experimental averages: M. Antonelli et al., 1005.2323

$$
\begin{array}{r}
\left|V_{u s}\right| /\left|V_{u d}\right| \times f_{K} / f_{\pi}=0.2758(5) \quad\left|V_{u s}\right| f_{+}(0)^{K \rightarrow \pi}=0.2163(5) \\
\text { and } \quad \frac{\left|V_{u s}\right|^{2}}{\left|V_{u d}\right|^{2}} \times \frac{f_{K}^{2}}{f_{\pi}^{2}} \propto \frac{\Gamma\left(K \rightarrow \mu \bar{\nu}_{\mu}(\gamma)\right)}{\Gamma\left(\pi \rightarrow \mu \bar{\nu}_{\mu}(\gamma)\right)} \quad \text { Marciano } 2004
\end{array}
$$

* Check unitarity in the first row of CKM matrix.

$$
\Delta_{C K M}=\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}-1=-0.0001(6) \mathrm{M} . \text { Antonelli et al }
$$

fits to $K_{l 3}, K_{l 2}$ exper. data and lattice results for $f_{+}(0)^{K \rightarrow \pi}$ and f_{K} / f_{π}
$\rightarrow \mathcal{O}(10 \mathrm{TeV})$ bound on the scale of new physics.
\# Look for new physics effects in the comparison of $\left|V_{u s}\right|$ from helicity suppressed $K_{\mu 2}$ versus helicity allowed $K_{l 3}$

$$
R_{\mu 23}=\left(\frac{f_{K} / f_{\pi}}{f_{+}^{K \pi}(0)}\right) \times \text { experim. data on } K_{\mu 2} \pi_{\mu 2} \text { and } K_{l 3}
$$

* In the SM $R_{\mu 23}=1$. Not true for some BSM theories (for exam., charged Higgs)
* Current value $R_{\mu 23}=0.999(7)$, limited by lattice inputs.
2.3. $K^{0}-\bar{K}^{0}$ mixing
\# One of the most stringent constraints in UT analyses.
$\left|\epsilon_{K}\right|=e^{i \phi_{\epsilon}} \kappa_{\epsilon} C_{\epsilon} \hat{B}_{K}\left|V_{c b}\right|^{2} \lambda^{2} \eta\left(\left|V_{c b}\right|^{2}(1-\bar{\rho})+\eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)$
\# Great success of lattice QCD: reducing \hat{B}_{K} errors to $\sim 1.3 \%$

$$
\hat{B}_{K}^{\mathrm{LLV}}=0.7643 \pm 0.0097
$$

* Several fermion formulations and configuration sets.
* Good agreement with $\hat{B}_{K}^{N_{f}=2}=0.729(30) \mathbb{E T M C}, 1009.5606$.
2.3. $K^{0}-\bar{K}^{0}$ mixing
\# One of the most stringent constraints in UT analyses.
$\left|\epsilon_{K}\right|=e^{i \phi_{\epsilon}} \kappa_{\epsilon} C_{\epsilon} \hat{B}_{K}\left|V_{c b}\right|^{2} \lambda^{2} \eta\left(\left|V_{c b}\right|^{2}(1-\bar{\rho})+\eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)$
\# Great success of lattice QCD: reducing \hat{B}_{K} errors to $\sim 1.3 \%$

$$
\hat{B}_{K}^{\mathrm{LLV}}=0.7643 \pm 0.0097
$$

* Several fermion formulations and configuration sets.
* Good agreement with $\hat{B}_{K}^{N_{f}=2}=0.729(30)$ ETMC, 1009.5606.
* \hat{B}_{K} is no longer the dominant source of uncertainty in neutral K mixing.
2.3. $K^{0}-\bar{K}^{0}$ mixing
* Need to include subleading effects: $\kappa_{\epsilon}=0.94 \pm 0.02$
(long-distance contributions and $\phi_{\epsilon} \neq \pi / 4$)
$\left|\epsilon_{K}\right|=$ known $\kappa_{\epsilon} \hat{B}_{K}\left|V_{c b}\right|^{2}\left(\left|V_{c b}\right|^{2}(1-\bar{\rho})+\eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)$

Dominant errors

$\left|V_{c b}\right|$: lattice excl. semil.
$\eta_{1} \equiv \eta_{c c}:$ NNLO pert. QCD
2.3. $K^{0}-\bar{K}^{0}$ mixing

* Need to include subleading effects: $\kappa_{\epsilon}=0.94 \pm 0.02$
(long-distance contributions and $\phi_{\epsilon} \neq \pi / 4$)
$\left|\epsilon_{K}\right|=$ known $\kappa_{\epsilon} \hat{B}_{K}\left|V_{c b}\right|^{2}\left(\left|V_{c b}\right|^{2}(1-\bar{\rho})+\eta_{t t} S_{0}\left(x_{t}\right)+\eta_{c t} S_{0}\left(x_{c}, x_{t}\right)-\eta_{c c} x_{c}\right)$

Dominant errors

$\left|V_{c b}\right|$: lattice excl. semil.
$\eta_{1} \equiv \eta_{c c}:$ NNLO pert. QCD
\# ETMC is calculating the contribution to $K-\bar{K}$ mixing from a complete set of $\Delta S=2$ effective operators (including BSM) with $N_{f}=2+1+1$ configurations
2.4. $K \rightarrow \pi \pi$ and $\varepsilon_{K}^{\prime} / \varepsilon_{K}$

Going beyond gold-plated quantities.
\# $\Delta I=3 / 2$ contribution:

* RBC: First quantitative results at the 20% level from a direct calculation at a small pion mass.
arXiv:1111.1699,1111.4889
* Laiho and Van de Water: New method developed based on combining χ PT (indirect) and direct methods.
arXiv:1011.4524
$\# \Delta I=1 / 2$ contribution:
* RBC: First calculation using the direct method on small volume and large pion mass with a 25%. Feasibility study.

3. Heavy quark phenomenology

\# Problem is discretization errors $\left(\simeq m_{Q} a,\left(m_{Q} a\right)^{2}, \cdots\right)$ if $m_{Q} a$ is large.

* Effective theories: Need to include multiple operators matched to full QCD (NRQCD,HQET,RHQ,static). B-physics $\sqrt{ }$
* Relativistic (improved) formulations:
** Allow accurate results for charm (especially twisted mass, Hisq (Highly improved staggered quarks)).
** Advantages of having the same formulation for light and charm: ratios light/charm, PCAC for heavy-light, ... Also simpler tuning of masses.

One could get the same precision for D as for K
** Also for bottom: Results for $m_{c}-\sim m_{b}$ and extrapolation to m_{b} (twisted mass, HISQ).

3.1. D and D_{s} meson decay constants

\# Experiment: Average of CLEO, BaBar, Belle (use $\left|V_{c S}\right|^{\text {unit. }}=0.97345(22)$)
BES will improve this measurement.

$$
\begin{gathered}
f_{D}^{\mathrm{LLV}}=(213.5 \pm 4.1) \mathrm{MeV} \quad f_{D_{s}}^{\mathrm{LLV}}=(248.6 \pm 3.0) \mathrm{MeV} \\
f_{D_{s}}^{\exp }=(260.0 \pm 5.4) \mathrm{MeV} \rightarrow \text { again } \sim 2 \sigma \text { discrepancy } .
\end{gathered}
$$

3.2. B and B_{s} meson decay constants

\# The measured value of $\operatorname{Br}(B \rightarrow \tau \nu)$ suffers from a tension with the SM at the $2-3 \sigma$ level Laiho,Lunghi,Van de Water, 1204.0791

* Direct comparison of experiment with $f_{B}^{\text {lat }}$ is difficult because we need $\left|V_{u b}\right|$.

3.2. B and B_{s} meson decay constants

\# The measured value of $\operatorname{Br}(B \rightarrow \tau \nu)$ suffers from a tension with the SM at the $2-3 \sigma$ level Laiho, Lunghi, Van de Water, 1204.0791

* Direct comparison of experiment with $f_{B}^{l a t}$ is difficult because we need $\left|V_{u b}\right|$.

Experimental average
Rosner and Stone, 1201.2401

$$
\mathcal{B} r(B \rightarrow \tau \nu)=(1.68 \pm 0.31) \times 10^{-4}
$$

\# In progress: RBC and UKQCD $\left(N_{f}=2+1\right.$, domain wall+RHQ).

3.2. B and B_{s} meson decay constants

\# $B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}$ is a sensitive probe of effects from charged Higgs bosons. $\# \mathcal{L}=V_{u b}^{L} \bar{u}_{L} W b_{L}+V_{u b}^{R} \bar{u}_{R} W b_{R}$

* Leptonic: $(4.95 \pm 0.55) \times 10^{-3}$

$$
\left|V_{u b}\right|=\left|V_{u b}^{L}-V_{u b}^{R}\right|
$$

using f_{B}^{LLV} and experimental average for

* Exclusive: $(3.12 \pm 0.26) \times 10^{-3}$

Laiho,Lunghi, Van de Water,
www.latticeaverages.org

$$
\left|V_{u b}\right|=\left|V_{u b}^{L}+V_{u b}^{R}\right|
$$

* Inclusive: $(4.41 \pm 0.23) \times 10^{-3}$

Vera Luth, FPCP12

$$
\left|V_{u b}\right| \approx\left|V_{u b}^{L}\right|
$$

3.3. $B \rightarrow \pi l \nu$: Exclusive determination of $\left|V_{u b}\right|$

* No new calculations since 2010.

Combined fit of lattice and experimental data from different q^{2} regions using z-expansion.

$$
\left|V_{u b}^{e x c} \cdot\right|^{\mathrm{LLV}}=(3.12 \pm 0.26) \times 10^{-3}
$$

\# In progress:

* FNAL/Milc Similar methodology as used before but many more data, smaller lattice spacings, improvements on parametrization of shape ...
** Also work in progress for $B_{s} \rightarrow K l \nu$.
* RBC/UKQCD $\left(N_{f}=2+1\right)$ and ALPHA $\left(N_{f}=2\right)$: Similar methodology as for $f_{B}, f_{B_{s}}$ calculations.
3.3. Form factors for $B \rightarrow K l^{+} l^{-}$
\# Preliminary results from FNAL/MILC, 1111.0981 and Cambridge group, 1010.2726
* Same light formalism and configurations, but different heavy quark formulations.
* Need three form factors (vector, scalar, tensor).

* FNAL/MILC shape from z-expansion and systematic errors included.
3.3. Form factors for $B \rightarrow K l^{+} l^{-}$
\# Preliminary results from fNAL/MILC, 1111.0981 and Cambridge group, 1010.2726
* Same light formalism and configurations, but different heavy quark formulations.
* Need three form factors (vector, scalar, tensor).

* FNAL/MILC shape from z-expansion and systematic errors included.
\# End of the summer: Near final results from fnal/milc.
\# End of the summer: Updates from HPQCD for $B \rightarrow K\left(K^{*}\right) l \nu$

3.3. Exclusive determination of $\left|V_{c b}\right|$

\# Extraction from exclusive B decays $\left(w=v \cdot v^{\prime}\right.$ is the velocity transfer):

$$
\begin{aligned}
\frac{d \Gamma\left(B \rightarrow D^{*} l \nu\right)}{d w} & =(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(w^{2}-1\right)^{1 / 2}|\mathcal{F}(w)|^{2} \\
\frac{d \Gamma(B \rightarrow D l \nu)}{d w} & =(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(w^{2}-1\right)^{3 / 2}|\mathcal{G}(w)|^{2}
\end{aligned}
$$

\# Updated 2010 fnal/milc determination of \mathcal{F} at zero recoil (blind anlysis) + BaBar and Belle measurements: Will be updated Lattice2012

$$
\left|V_{c b}\right|_{e x c l}=\left(39.7 \pm 0.7_{e x p} \pm 0.7_{L Q C D}\right) \times 10^{-3}
$$

* 2σ tension with inclusive determination $\left|V_{c b}\right|_{\text {incl }} \times=(41.9 \pm 0.8) \times 10^{-3}$

3.3. Exclusive determination of $\left|V_{c b}\right|$

\# At zero recoil hfag 2010

$$
\left|V_{c b}\right| \mathcal{F}(1)=(36.04 \pm 0.52) \times 10^{-3} \quad\left|V_{c b}\right| \mathcal{G}(1)=(42.3 \pm 1.5) \times 10^{-3}
$$

\Longrightarrow Need $B \rightarrow D l \nu$ form factors at non-zero recoil to match $B \rightarrow D^{*} l \nu$ precision in the determination of $\left|V_{c b}\right|$.

3.3. Exclusive determination of $\left|V_{c b}\right|$

\# At zero recoil hfag 2010

$$
\left|V_{c b}\right| \mathcal{F}(1)=(36.04 \pm 0.52) \times 10^{-3} \quad\left|V_{c b}\right| \mathcal{G}(1)=(42.3 \pm 1.5) \times 10^{-3}
$$

\Longrightarrow Need $B \rightarrow D l \nu$ form factors at non-zero recoil to match $B \rightarrow D^{*} l \nu$ precision in the determination of $\left|V_{c b}\right|$.
\# Calculation of non-zero recoil form factors $B \rightarrow D^{(*)} l \nu$ in progress FNAL/MILC, arXiv:1111.0677.
\rightarrow will allow complementary extraction of $\left|V_{c b}\right|$.

3.4. D semileptonic decays

\# Extraction of the CKM matrix elments $\left|V_{c d(c s)}\right|$
still dominated by lattice determination of the relevant form factors.

$$
\frac{d}{d q^{2}} \Gamma(D \rightarrow K(\pi) l \nu) \quad \propto \quad\left|V_{c s(c d)}\right|^{2}\left|f_{+}^{D \rightarrow K(\pi)}\left(q^{2}\right)\right|^{2}
$$

\# Testing lattice QCD: shape of the form factors
\rightarrow use same methodology for other processes like $B \rightarrow \pi l \nu$ or $B \rightarrow K l \bar{l}$
\# Correlated signals of NP to those in leptonic decays.

3.4. D semileptonic decays

\# Extraction of the CKM matrix elments $\left|V_{c d(c s)}\right|$
still dominated by lattice determination of the relevant form factors.

$$
\frac{d}{d q^{2}} \Gamma(D \rightarrow K(\pi) l \nu)
$$

\# Testing lattice QCD: shape of the form factors
\rightarrow use same methodology for other processes like $B \rightarrow \pi l \nu$ or $B \rightarrow K l \bar{l}$
\# Correlated signals of NP to those in Ieptonic decays.
\# New method to calculate $f_{+}(0)$ for semileptonic decays when using the same fermion formulation for all quark flavours HPQCD,
Phys.Rev.D82:114506(2010)

* Use Ward identity to relate $f_{0}\left(q^{2}\right)$ to three-point functions with a scalar (vs. vector) insertion $f_{+}(0)=f_{0}(0)=\frac{m_{c}-m_{q}}{m_{D}^{2}-m_{\pi}^{2}}\langle D| S|K\rangle$

3.4. D semileptonic decays

\# Extraction of the CKM matrix elments $\left|V_{c d(c s)}\right|$
still dominated by lattice determination of the relevant form factors.

$$
\frac{d}{d q^{2}} \Gamma(D \rightarrow K(\pi) l \nu)
$$

\# Testing lattice QCD: shape of the form factors
\rightarrow use same methodology for other processes like $B \rightarrow \pi l \nu$ or $B \rightarrow K l \bar{l}$
\# Correlated signals of NP to those in leptonic decays.
\# New method to calculate $f_{+}(0)$ for semileptonic decays when using the same fermion formulation for all quark flavours $H P Q C D$,
Phys.Rev.D82:114506(2010)

* Use Ward identity to relate $f_{0}\left(q^{2}\right)$ to three-point functions with a scalar (vs. vector) insertion $f_{+}(0)=f_{0}(0)=\frac{m_{c}-m_{q}}{m_{D}^{2}-m_{\pi}^{2}}\langle D| S|K\rangle$
* Very precise determination of $\left|V_{c q}\right|$, but can not get the shape of $f_{+}\left(q^{2}\right)$. Only $f_{0}\left(q^{2}\right)$.

3.4. D semileptonic decays

$$
\begin{aligned}
& \text { error } f_{+}^{D \rightarrow K}: 11 \% \rightarrow 2.5 \% \\
& \text { error } f_{+}^{D \rightarrow \pi}: 10 \% \rightarrow 5 \%
\end{aligned}
$$

$\left|V_{c s}\right|=0.961(11)_{\exp }(24)_{l a t}$ compatible with unitarity value $\left|V_{c s}\right|^{\text {unit. }}=0.97345(16)$
$\left|V_{c d}\right|=0.225(6)_{\exp }(10)_{l a t}$ compatible with unitarity value $\left|V_{c d}\right|^{\text {unit. }}=0.2252(7)$

* competitive with ν scattering determination $\left|V_{c d}\right|^{\nu}=0.230(11)$

3.4. D semileptonic decays: form factors at $q^{2} \neq 0$

* Global fit in SM + experiment $\rightarrow\left|V_{c s(c d)}\right|$ and $f_{+}^{D \rightarrow K(\pi)}\left(q^{2}\right)$
* New results from several lattice groups by the summer/end 2012.

3.4. D semileptonic decays: form factors at $q^{2} \neq 0$

* Global fit in SM + experiment $\rightarrow\left|V_{c s(c d)}\right|$ and $f_{+}^{D \rightarrow K(\pi)}\left(q^{2}\right)$
* New results from several lattice groups by the summer/end 2012.

Jon Bailey, FNAL/MILC 2012
$\operatorname{SU}(3) \chi$ PT Consistency of lattice and experimental $D \rightarrow K l v$ form factor shapes

Jon Bailey, FNAL/MILC 2012
$\mathrm{SU}(3) \chi \mathrm{PT}$
Consistency of lattice and experimental $D \rightarrow \pi l v$ form factor shapes

3.4. D semileptonic decays: form factors at $q^{2} \neq 0$

* Global fit in SM + experiment $\rightarrow\left|V_{c s(c d)}\right|$ and $f_{+}^{D \rightarrow K(\pi)}\left(q^{2}\right)$
* New results from several lattice groups by the summer/end 2012.

Jon Bailey, FNAL/MILC 2012
$\operatorname{SU}(3) \chi$ PT
Consistency of lattice and experimental $D \rightarrow K l v$ form factor shapes

Jon Bailey, FNAL/MILC 2012
$\mathrm{SU}(3) \chi \mathrm{PT}$
Consistency of lattice and experimental $D \rightarrow \pi l v$ form factor shapes

* In progress fNAL/MILC: Study of $D \rightarrow K(\pi) l \nu$ form factors with $N_{f}=2+1+1$ Hisq MILC ensembles with physical light quark masses.

3.4. D semileptonic decays: form factors at $q^{2} \neq 0$

PRELIMINARY

Jonna Koponen, HPQCD 2012
Jonna Koponen, HPQCD 2012

* Form factors for $D \rightarrow K l \nu$ with 1.6% accuracy.
* Best preliminary value: $\left|V_{c s}\right|=0.965(14)$ with 1.4% error from all available experimental data.
\# Working also on $D \rightarrow \pi l \nu$ and $D_{s} \rightarrow K l \nu$.
3.4. D semileptonic decays: form factors at $q^{2} \neq 0$

PRELIMINARY

ETMC, 11104.0869
Good agreement with experiment

3.5. Neutral B-meson mixing

\# Hints of NP in neutral B-meson mixing at the $(2-3) \sigma$ level: UTfit 1010.5089, CKMfitter 1203.0238, like-sign dimuon charge asymmetry $1106.6308+$ UT tensions

3.5. Neutral B-meson mixing

\# Hints of NP in neutral B-meson mixing at the $(2-3) \sigma$ level: UTfit 1010.5089, CKMfitter 1203.0238, like-sign dimuon charge asymmetry 1106.6308 + UT tensions
\# Effective Hamiltonian describing neutral B-meson mixing.

$$
\begin{gathered}
\mathcal{H}_{e f f}^{\Delta F=2}=\sum_{i=1}^{5} C_{i} Q_{i}+\sum_{i=1}^{3} \widetilde{C}_{i} \widetilde{Q}_{i} \\
Q_{1}^{q}=\left(\bar{\psi}_{f}^{i} \gamma^{\nu}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j} \gamma^{\nu}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{j}\right) \quad \text { SM } \\
Q_{2}^{q}=\left(\bar{\psi}_{f}^{i}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{j}\right) \quad Q_{3}^{q}=\left(\bar{\psi}_{f}^{i}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{j}\right)\left(\bar{\psi}_{f}^{j}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{i}\right) \\
Q_{4}^{q}=\left(\bar{\psi}_{f}^{i}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}\left(\mathrm{I}+\gamma_{5}\right) \psi_{q}^{j}\right) \quad Q_{5}^{q}=\left(\bar{\psi}_{f}^{i}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{j}\right)\left(\bar{\psi}_{f}^{j}\left(\mathrm{I}+\gamma_{5}\right) \psi_{q}^{i}\right) \\
\tilde{Q}_{1,2,3}^{q}=Q_{1,2,3}^{q} \text { with the replacement }\left(\mathrm{I} \pm \gamma_{5}\right) \rightarrow\left(\mathrm{I} \mp \gamma_{5}\right)
\end{gathered}
$$

3.5. Neutral B-meson mixing

\# In the Standard Model

* The mass differences $\Delta M_{s(d)}$ depend on a single matrix element.

$$
\left.\Delta M_{q}\right|_{S M}=\frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2}}\left|V_{t q}^{*} V_{t b}\right|^{2} \eta_{2}^{B} S_{0}\left(x_{t}\right) M_{B_{s}} f_{B_{q}}^{2} \hat{B}_{B_{q}}
$$

** Non-perturbative input
$\frac{8}{3} f_{B_{q}}^{2} B_{B_{q}}(\mu) M_{B_{q}}^{2}=\left\langle\bar{B}_{q}^{0}\right| O_{1}\left|B_{q}^{0}\right\rangle(\mu)$ with $\quad O_{1} \equiv\left[\overline{b^{i}} q^{i}\right]_{V-A}\left[\overline{b^{j}} q^{j}\right]_{V-A}$

* $\Delta \Gamma_{s(d)}$ depend on $\left\langle O_{1}\right\rangle$ and $\left\langle O_{3}\right\rangle$ (or, alternatively, $\left\langle O_{1}\right\rangle$ and $\left\langle O_{2}\right\rangle$).

3.5. Neutral B-meson mixing

\# In the Standard Model

* The mass differences $\Delta M_{s(d)}$ depend on a single matrix element.

$$
\left.\Delta M_{q}\right|_{S M}=\frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2}}\left|V_{t q}^{*} V_{t b}\right|^{2} \eta_{2}^{B} S_{0}\left(x_{t}\right) M_{B_{s}} f_{B_{q}}^{2} \hat{B}_{B_{q}}
$$

** Non-perturbative input
$\frac{8}{3} f_{B_{q}}^{2} B_{B_{q}}(\mu) M_{B_{q}}^{2}=\left\langle\bar{B}_{q}^{0}\right| O_{1}\left|B_{q}^{0}\right\rangle(\mu)$ with $\quad O_{1} \equiv\left[\overline{b^{i}} q^{i}\right]_{V-A}\left[\overline{b^{j}} q^{j}\right]_{V-A}$
$* \Delta \Gamma_{s(d)}$ depend on $\left\langle O_{1}\right\rangle$ and $\left\langle O_{3}\right\rangle$ (or, alternatively, $\left\langle O_{1}\right\rangle$ and $\left\langle O_{2}\right\rangle$).
\# Most interesting for phenomenology (UT analyses):

$$
f_{B_{q}} \sqrt{\hat{B}_{B_{q}}} * \quad \xi=\frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}}
$$

* In particular as the role of $\left|V_{c b}\right|$ (reaching is ultimate theoretical accuracy) in UT analyses is being replaced by $\Delta M_{B_{s}}$ and $B \rightarrow \tau \nu$.

3.5. Neutral B-meson mixing: SM

\# Two results for $\sqrt{f_{B} \hat{B}_{B}}$ using MILC $N_{f}=2+1$ but different description of heavy quarks.

$$
f_{B_{s}}{\sqrt{\hat{B}_{B_{s}}}}^{\mathrm{LLV}}=279(15) \mathrm{MeV}
$$

$f_{B_{d}}{\sqrt{\hat{B}_{B_{d}}}}^{\mathrm{LLV}}=227(19) \mathrm{MeV}$
Results for $\xi=\frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}}$

$$
\xi^{\text {lat }}=1.251 \pm 0.032
$$

3.5. Neutral B-meson mixing: SM

\# Two results for $\sqrt{f_{B} \hat{B}_{B}}$ using MiLC $N_{f}=2+1$ but different description of heavy quarks.

$$
f_{B_{s}}{\sqrt{\hat{B}_{B_{s}}}}^{\mathrm{LLV}}=279(15) \mathrm{MeV}
$$

$f_{B_{d}}{\sqrt{\hat{B}_{B_{d}}}}^{\mathrm{LLV}}=227(19) \mathrm{MeV}$
Results for $\xi=\frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}}$

$$
\xi^{\text {lat }}=1.251 \pm 0.032
$$

* FNAL/MILC calculation with the same choice of actions but improved statistics, discret. errors, and analysis techniques is in progress. New (better) results by end of summer

3.5. Neutral B-meson mixing: BSM

\# SM predictions + BSM contributions $=$ experiment
\rightarrow constraints on BSM building Dobrescu and Krnjaic, 1104.2893; Altmannshofer and Carena, 1110.0843; Buras and Girrbach, 1201.1302

* Need matrix elements of all the operators in $\mathcal{H}_{e f f}^{\Delta B=2}$

3.5. Neutral B-meson mixing: BSM

\# SM predictions + BSM contributions $=$ experiment
\rightarrow constraints on BSM building Dobrescu and Krnjaic, 1104.2893; Altmannshofer and Carena, 1110.0843; Buras and Girrbach, 1201.1302 ...

* Need matrix elements of all the operators in $\mathcal{H}_{\text {eff }}^{\Delta B=2}$
\Longrightarrow FNAL/MILC will have final results by the end of the year

	B_{d}^{0}		B_{s}^{0}	
$\left[\mathrm{GeV}^{2}\right]$	BBGLN	BJU	BBGLN	BJU
$f_{B_{q}}^{2} B_{B_{q}}^{(1)}$	$0.0411(75)$	$0.0559(68)$		
$f_{B_{q}}^{2} B_{B_{q}}^{(2)}$	$0.0574(92)$	$0.0538(87)$	$0.086(11)$	$0.080(10)$
$f_{B_{q}}^{2} B_{B_{q}}^{(3)}$	$0.058(11)$	$0.058(11)$	$0.084(13)$	$0.084(13)$
$f_{B_{q}}^{2} B_{B_{q}}^{(4)}$	$0.093(10)$	$0.135(15)$		
$f_{B_{q}}^{2} B_{B_{q}}^{(5)}$	$0.127(15)$	$0.178(20)$		

* $\left\langle Q_{1}\right\rangle,\left\langle Q_{3}\right\rangle$ will also allow new prediction for $\Delta \Gamma_{s}$.

$$
\begin{aligned}
\Delta \Gamma_{s}^{e x p} & =(0.116 \pm 0.019) p s^{-1} \quad \text { LHCb, Moriond } 2012 \\
\Delta \Gamma_{s}^{S M} & =(0.087 \pm 0.021) p s^{-1} \text { Lenz,Nierste, } 1102.4274
\end{aligned}
$$

3.6. Rare decays $\mathcal{B} r\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

\# Bag parameters $B_{B_{s, d}}$ describing B-meson mixing in the SM can be can be used for theoretical prediction of $\mathcal{B} r\left(B \rightarrow \mu^{+} \mu^{-}\right)$

$$
\frac{\mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)}{\Delta M_{q}}=\tau\left(B_{q}\right) 6 \pi \frac{\eta_{Y}}{\eta_{B}}\left(\frac{\alpha}{4 \pi M_{W} \sin ^{2} \theta_{W}}\right)^{2} m_{\mu}^{2} \frac{Y^{2}\left(x_{t}\right)}{S\left(x_{t}\right)} \frac{1}{\hat{B}_{q}}
$$

* Using HPQCD determinations of \hat{B}_{q} Gámiz et al., 0902.1815
$\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.19 \pm 0.19) \times 10^{-9}$ and $\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.02 \pm 0.09) \times 10^{-10}$

3.6. Rare decays $\mathcal{B r}\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

\# Bag parameters $B_{B_{s, d}}$ describing B-meson mixing in the $S M$ can be can be used for theoretical prediction of $\mathcal{B r}\left(B \rightarrow \mu^{+} \mu^{-}\right)$

$$
\frac{\mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)}{\Delta M_{q}}=\tau\left(B_{q}\right) 6 \pi \frac{\eta_{Y}}{\eta_{B}}\left(\frac{\alpha}{4 \pi M_{W} \sin ^{2} \theta_{W}}\right)^{2} m_{\mu}^{2} \frac{Y^{2}\left(x_{t}\right)}{S\left(x_{t}\right)} \frac{1}{\hat{B}_{q}}
$$

* Using HPQCD determinations of \hat{B}_{q} Gámiz et al., 0902.1815
$\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.19 \pm 0.19) \times 10^{-9}$ and $\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.02 \pm 0.09) \times 10^{-10}$
* Improved $f_{B_{s, d}}^{\text {lattice }}$ makes direct theoretical calculation competitive.

Buras and Girrbach,1204.5064

$\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.1 \pm 0.2) \times 10^{-9}$ and $\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.0 \pm 0.1) \times 10^{-10}$

3.6. Rare decays $\mathcal{B} r\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

\# Bag parameters $B_{B_{s, d}}$ describing B-meson mixing in the SM can be can be used for theoretical prediction of $\mathcal{B r}\left(B \rightarrow \mu^{+} \mu^{-}\right)$

$$
\frac{\mathcal{B} r\left(B_{q} \rightarrow \mu^{+} \mu^{-}\right)}{\Delta M_{q}}=\tau\left(B_{q}\right) 6 \pi \frac{\eta_{Y}}{\eta_{B}}\left(\frac{\alpha}{4 \pi M_{W} \sin ^{2} \theta_{W}}\right)^{2} m_{\mu}^{2} \frac{Y^{2}\left(x_{t}\right)}{S\left(x_{t}\right)} \frac{1}{\hat{B}_{q}}
$$

* Using HPQCD determinations of \hat{B}_{q} Gámiz et al., 0902.1815
$\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.19 \pm 0.19) \times 10^{-9}$ and $\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.02 \pm 0.09) \times 10^{-10}$
* Improved $f_{B_{s, d}}^{\text {lattice }}$ makes direct theoretical calculation competitive.

Buras and Girrbach,1204.5064

$\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.1 \pm 0.2) \times 10^{-9}$ and $\mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)=(1.0 \pm 0.1) \times 10^{-10}$
\# Very small in the SM and potentially sensitive to NP
\rightarrow subject of active search at LHC and Tevatron.

* Most stringest experimental bounds LHCb, 1203.4493:

$$
\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)<4.5 \times 10^{-9} \quad \mathcal{B} r\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)<8.1 \times 10^{-10}
$$

3.6. Rare decays $\mathcal{B} r\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

Hadron colliders measure $\mathcal{B r}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$using a normalization channel

$$
\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\mathcal{B} r\left(B_{d} \rightarrow X\right) \frac{f_{d}}{f_{s}} \frac{\varepsilon_{X}}{\varepsilon_{\mu \mu}} \frac{N_{\mu \nu}}{N_{X}}
$$

3.6. Rare decays $\mathcal{B} r\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

Hadron colliders measure $\mathcal{B r}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$using a normalization channel

$$
\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\mathcal{B} r\left(B_{d} \rightarrow X\right) \frac{f_{d}}{f_{s}} \frac{\varepsilon_{X}}{\varepsilon_{\mu \mu}} \frac{N_{\mu \nu}}{N_{X}}
$$

\# Fleischer, Serra, Tuning, 1004.3982 proposed a new strategy to determine f_{s} / f_{d} : use the hadronic decay ratio $\mathcal{B r}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} \pi^{-}\right) / \mathcal{B} r\left(\bar{B}^{0} \rightarrow D^{+} K^{-}\right)$ and factorization

$$
\frac{f_{s}}{f_{d}}=0.0743 \times \frac{\tau_{B^{0}}}{\tau_{B_{s}^{0}}} \times\left[\frac{\varepsilon_{D K}}{\varepsilon_{D_{s} \pi}} \frac{N_{D_{s} \pi}}{\varepsilon_{D K}}\right] \times \frac{1}{\mathcal{N}_{a} \mathcal{N}_{F}} \quad \text { with } \quad \mathcal{N}_{a}=\left[\frac{a_{1}^{(s)}\left(D_{s}^{+} \pi^{-}\right)}{a_{1}^{(d)}\left(D^{+} K^{-}\right)}\right]^{2}
$$

3.6. Rare decays $\mathcal{B} r\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

Hadron colliders measure $\mathcal{B r}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$using a normalization channel

$$
\mathcal{B} r\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\mathcal{B} r\left(B_{d} \rightarrow X\right) \frac{f_{d}}{f_{s}} \frac{\varepsilon_{X}}{\varepsilon_{\mu \mu}} \frac{N_{\mu \nu}}{N_{X}}
$$

\# Fleischer, Serra, Tuning, 1004.3982 proposed a new strategy to determine f_{s} / f_{d} : use the hadronic decay ratio $\mathcal{B r}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} \pi^{-}\right) / \mathcal{B} r\left(\bar{B}^{0} \rightarrow D^{+} K^{-}\right)$ and factorization

$$
\frac{f_{s}}{f_{d}}=0.0743 \times \frac{\tau_{B^{0}}}{\tau_{B_{s}^{0}}} \times\left[\frac{\varepsilon_{D K}}{\varepsilon_{D_{s} \pi}} \frac{N_{D_{s} \pi}}{\varepsilon_{D K}}\right] \times \frac{1}{\mathcal{N}_{a} \mathcal{N}_{F}} \quad \text { with } \quad \mathcal{N}_{a}=\left[\frac{a_{1}^{(s)}\left(D_{s}^{+} \pi^{-}\right)}{a_{1}^{(d)}\left(D^{+} K^{-}\right)}\right]^{2}
$$

and \mathcal{N}_{F} can be obtained from the scalar form factors of $B_{s} \rightarrow D_{s} l \nu$ and $B \rightarrow D l \nu$ at non-zero momentum transfer.

$$
\mathcal{N}_{F}=\left[\frac{f_{0}^{(s)}\left(M_{\pi}^{2}\right)}{f_{0}^{(d)}\left(M_{K}^{2}\right)}\right]^{2}
$$

3.6. Rare decays $\mathcal{B} r\left(B_{s(d)} \rightarrow \mu^{+} \mu^{-}\right)$

\# Calculate the ratio of form factors on the lattice.

$$
\frac{f_{0}^{(s)}\left(M_{\pi}^{2}\right)}{f_{0}^{(d)}\left(M_{K}^{2}\right)}=1.046(44)(15)
$$

FNAL/MILC 1202.6346

from a subset of the full MILC data set used in the extraction of $\left|V_{c b}\right|$ from non-zero recoil $B \rightarrow$ Dlv decays

Fragmentation fraction ratio $\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{d}}$

Results from the full milc data set by the end of the summer
$+\left|V_{c b}\right|$ from non-zero recoil $B \rightarrow D l \nu$

3.7. More on D semileptonic decays NEW

\# BaBar recently measured the ratio of branching fractions

$$
R(D)=\frac{\mathcal{B r}(B \rightarrow D \tau \nu)}{\mathcal{B} r(B \rightarrow D l \nu)}=0.440(71) \quad 1205.5442
$$

* Using the form factors calculated at non-zero recoil on the lattice (FNAL/MILC reduced data set) we can get a prediction for that ratio
D. Du, Fermilab theory seminar, A. El-Kadra, FPCP2012

$R(D)$ from SM and
experiment differ by 2σ
$R(D)+R\left(D^{*}\right)$ measurement give (3.4) σ exclusion of SM
1205.5442

2HDM is excluded when combining $R(D)$ with $R\left(D^{*}\right)$

2HDM prediction from Tanaka and Watanabe,1005.4306 + FNAL/MILC form factors

4. Conclusions and outlook

\# Important progress in lattice calculations including sea quarks $\left(N_{f}=2+1\right)$

* Light quarks: Results from many collaborations
\rightarrow excellent checks.
* Heavy quarks: Currently dominated by HPQCD and FNAL/MILC, but precision results from other groups will be available soon: ETMC, RBC
* Need averages: LLV, FLAG-1, and FLAG-2 soon.
* Approaching the physical light quark masses.

4. Conclusions and outlook

\# Expected in the next year:

* Results from simulations performed at the physical light quark masses. Three collaborations have ensembles with physical light quark masses: MILC, PAC-CS, BMW.
* Need to include effects that are currently subdominant:
** isospin breaking.
** electromagnetic effects.
** charm sea quarks.
* Develop methods to reliably calculate quantities that are beyond easy.
\times

A.1. Spectrum of light hadrons: test of lattice QCD

\# Good agreement between $N_{f}=2+1$ lattice calculations and the experimentally measured light spectrum.

A.2. Spectrum of heavy hadrons

HPQCD

\# Some post/predictions with NRQCD b (s. Meinel, 1007.3966, 1010.0889)

$$
\begin{aligned}
& \left(m_{\Upsilon}-m_{\eta_{b}}\right)(1 S)=(60.3 \pm 7.7) \mathrm{MeV}\left(\left(m_{\Upsilon}-m_{\eta_{b}}\right)(1 S)^{e x p}=69.3 \pm 2.9\right) \\
& \left(m_{\Upsilon}-m_{\eta_{b}}\right)(2 S)=(23.5 \pm 4.7) \mathrm{MeV} \\
& m_{\Omega_{b b b}}=(14.371 \pm 0.012) \mathrm{GeV}
\end{aligned}
$$

\# Prediction for $m_{B_{c}^{*}}=6.3330(6)(2)(6) \mathrm{GeV}$

B.1. Light quark masses

\# Determination of m_{s} with around $1-5 \%$ errors from several $N_{f}=2+1$ collaborations.

$m_{s}^{\mathrm{LLV}, \overline{M S}}(2 \mathrm{GeV})=(93.4 \pm 1.1) \mathrm{MeV} ; \quad m_{u d}^{\mathrm{LLV}, \overline{M S}}(2 \mathrm{GeV})=(3.408 \pm 0.047) \mathrm{MeV}$

B.2. Heavy quark masses

\# Heavy masses from current-current correlators HPQCD, PRD82(2010) ($N_{f}=2+1$)

$$
\begin{aligned}
m_{c}\left(3 \mathrm{GeV}, n_{f}=4\right) & =0.986(6) \mathrm{GeV} \\
m_{b}\left(10 \mathrm{GeV}, n_{f}\right. & =5)
\end{aligned}=3.617(25) \mathrm{GeV}
$$

$\# N_{f}=2+1$ NRQCD b quarks A. Hart et al., Pos(Lat2010)223

$$
m_{b}\left(m_{b}\right)=4.25(12) \mathrm{GeV}
$$

$\# N_{f}=2$ twisted mass calculation from ETMC, Pos(Lat2010)239

$$
\begin{aligned}
\bar{m}_{c}\left(\bar{m}_{c}\right) & =1.28(4) \mathrm{GeV} \\
\bar{m}_{b} \bar{m}_{b} & =4.3(2) \mathrm{GeV}
\end{aligned}
$$

$\# N_{f}=2$ twisted mass calculation from ALPHA, Trento2012?

$$
\bar{m}_{b} \bar{m}_{b}=4.288(76)(43)(14) \mathrm{GeV}
$$

2.1. and 2.2. Test of Unitarity in the first row

\# $\left|V_{u s}\right|$ from leptonic decays using $f_{K} / f_{\pi}^{\mathrm{LLV}}=1.1936 \pm 0.0053$:
$\frac{\left|V_{u s}\right|^{2}}{\left|V_{u d}\right|^{2}} \times \frac{f_{K}^{2}}{f_{\pi}^{2}} \propto \frac{\Gamma\left(K \rightarrow \mu \bar{\nu}_{\mu}(\gamma)\right)}{\Gamma\left(\pi \rightarrow \mu \bar{\nu}_{\mu}(\gamma)\right)} \quad$ Marciano $2004 \Longrightarrow\left|V_{u s}\right|=0.2252(11)^{*}$

* Using $\left|V_{u s}\right| /\left|V_{u d}\right| \times f_{K} / f_{\pi}=0.2758(5) \mathrm{M}$. Antonelli et al., 1005.2323 and $\left|V_{u d}\right|=0.97425(22)$ Hardy and Towner, PRC79(2009) update

2.1. and 2.2. Test of Unitarity in the first row

\# $\left|V_{u s}\right|$ from leptonic decays using $f_{K} / f_{\pi}^{\mathrm{LLV}}=1.1936 \pm 0.0053$:

$$
\frac{\left|V_{u s}\right|^{2}}{\left|V_{u d}\right|^{2}} \times \frac{f_{K}^{2}}{f_{\pi}^{2}} \propto \frac{\Gamma\left(K \rightarrow \mu \bar{\nu}_{\mu}(\gamma)\right)}{\Gamma\left(\pi \rightarrow \mu \bar{\nu}_{\mu}(\gamma)\right)} \quad \text { Marciano } 2004 \Longrightarrow\left|V_{u s}\right|=0.2252(11)^{*}
$$

* Using $\left|V_{u s}\right| /\left|V_{u d}\right| \times f_{K} / f_{\pi}=0.2758(5) \mathrm{M}$. Antonelli et al., 1005.2323 and $\left|V_{u d}\right|=0.97425(22)$ Hardy and Towner, PRCT9(2009) update
$\#\left|V_{u s}\right|$ from semileptonic decays using $f_{+}(0)^{\mathrm{LLV}}=0.9584 \pm 0.0044$

$$
\Longrightarrow\left|V_{u s}\right|=0.2251(10)_{\text {lat }}(4)_{\text {exp }} *
$$

* Using $\left|V_{u s}\right| f_{+}(0)^{K \rightarrow \pi}=0.2163(5) \quad \mathrm{M}$. Antonelli et al., 1005.2323

2.1. and 2.2. Test of Unitarity in the first row

\# $\left|V_{u s}\right|$ from leptonic decays using $f_{K} / f_{\pi}^{\mathrm{LLV}}=1.1936 \pm 0.0053$:
$\frac{\left|V_{u s}\right|^{2}}{\left|V_{u d}\right|^{2}} \times \frac{f_{K}^{2}}{f_{\pi}^{2}} \propto \frac{\Gamma\left(K \rightarrow \mu \bar{\nu}_{\mu}(\gamma)\right)}{\Gamma\left(\pi \rightarrow \mu \bar{\nu}_{\mu}(\gamma)\right)} \quad$ Marciano $2004 \Longrightarrow\left|V_{u s}\right|=0.2252(11)^{*}$

* Using $\left|V_{u s}\right| /\left|V_{u d}\right| \times f_{K} / f_{\pi}=0.2758(5) \mathrm{M}$. Antonelli et al., 1005.2323 and $\left|V_{u d}\right|=0.97425(22)$ Hardy and Towner, PRC79(2009) update
$\#\left|V_{u s}\right|$ from semileptonic decays using $f_{+}(0)^{\mathrm{LLV}}=0.9584 \pm 0.0044$

$$
\Longrightarrow\left|V_{u s}\right|=0.2251(10)_{\text {lat }}(4)_{\text {exp }} *
$$

* Using $\left|V_{u s}\right| f_{+}(0)^{K \rightarrow \pi}=0.2163(5)$ M. Antonelli et al., 1005.2323

CKM unitarity test in the first row at the 0.1% level (error dominated by 1 a

$$
\left|V_{u s}\right|^{\text {unitarity }}=0.22545(22) \quad \text { M. Antonelli et al., } 1005.2323
$$

