Flavor Phenomenology from Lattice QCD

Elvira Gámiz

Universidad de Granada

International Workshop on Theory, Phenomenology and Experiments in Flavour Physics

· Villa Orlandi, Anacapri, Island of Capri (Italy) 11-13 June 2012 ·

Lattice QCD can be used to (relying only on first principles.)

* Non-perturbative input for the study of some theory-experiment discrepancies in UT analyses $(\hat{B}_K, f_B, f_B \sqrt{B_B}, \xi ...)$, processes involving $B_{d,s}^0 - \bar{B}_{d,s}^0$ mixing (like-sign dimuon charge asymmetry), heavy-light decay constants ... and also rare decays

 $\overline{
ho}$

Error bands are still dominated by theory errors, in particular due to hadronic matrix elements.

Lattice QCD can be used to (relying only on first principles.)

* Determine fundamental parameters of the SM: quark masses, CKM matrix elements (tensions in inclus.-exclus. determinations of $|V_{ub}|$, $|V_{cb}|$).

$$V = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ \pi \to l\nu & K \to l\nu & B \to \tau\nu \\ & K \to \pi l\nu & B \to \pi \tau\nu \\ & |V_{cd}| & |V_{cs}| & |V_{cb}| \\ D \to l\nu & D_s \to l\nu & B \to D l\nu \\ D \to \pi l\nu & D \to K l\nu & B \to D^* l\nu \\ & |V_{td}| & |V_{ts}| & |V_{tb}| \\ & \langle B_d^0 | \bar{B}_d^0 \rangle & \langle B_s^0 | \bar{B}_s^0 \rangle & \text{no } t\bar{q} \text{ hadrons} \end{pmatrix}$$

Gold-plated quantities: For stable (or almost stable) hadron, masses and amplitudes with no more then one initial (final) state hadron.

Dificult to study on the lattice: scattering processes, including charmoniun production, inclusive processes, and multihadronic decays

Gold-plated quantities: For stable (or almost stable) hadron, masses and amplitudes with no more then one initial (final) state hadron.

Dificult to study on the lattice: scattering processes, including charmoniun production, inclusive processes, and multihadronic decays

(Starting to appear lattice calculations for non gold-plated quantities)

non-local operators for D mixing, weak decays to resonances $(K^*, \rho, ...),$ $K \to \pi\pi$...

Gold-plated quantities: For stable (or almost stable) hadron, masses and amplitudes with no more then one initial (final) state hadron.

Dificult to study on the lattice: scattering processes, including charmoniun production, inclusive processes, and multihadronic decays

(Starting to appear lattice calculations for non gold-plated quantities)

non-local operators for D mixing, weak decays to resonances $(K^*, \rho, ...),$ $K \to \pi\pi$...

Goal: Precise calculations ($\sim 5\%$ error)

* Control over systematic errors: including chiral extrapolation, discretization (continuum limit), renormalization, finite volume ...

Gold-plated quantities: For stable (or almost stable) hadron, masses and amplitudes with no more then one initial (final) state hadron.

Dificult to study on the lattice: scattering processes, including charmoniun production, inclusive processes, and multihadronic decays

(Starting to appear lattice calculations for non gold-plated quantities)

non-local operators for D mixing, weak decays to resonances $(K^*, \rho, ...),$ $K \to \pi\pi$...

Goal: Precise calculations ($\sim 5\%$ error)

- * Control over systematic errors: including chiral extrapolation, discretization (continuum limit), renormalization, finite volume ...
- # Unquenched calculations
 - * Quenching the strange quark could have an error as large as 5% and need a $N_f=2+1$ to have an estimate \rightarrow want $N_f=2+1$
 - * Neglecting sea charm has effects $\mathcal{O}(1\%)$ (can be estimated with HQET). Starting to need sea charm effects.

1. Introduction: Overview of simulations parameters

Several $N_f = 2 + 1$ and even $N_f = 2 + 1 + 1$, and physical quark masses.

plot by C. Hoelbling,

Lattice 2010, 1102.0410

1.1. Introduction: Averaging lattice QCD results

J. Laiho, E. Lunghi, and R. Van de Water (LLV)

Phys.Rev.D81:034503,2010, most updated results in www.latticeaverages.org

- * Phenomenologically relevant light and heavy quantities + UT fits with lattice inputs.
- * Include only $N_f = 2 + 1$.
- * Only published results (including proceedings).

Flavianet Lattice Average group: (FLAG)

Eur. Phys. J. C71(2011)1695, updated results in http://itpwiki.unibe.ch/flag

- * K and π physics, including LEC's.
- * Include separate averages for $N_f=2$ and $N_f=2+1$.
- * Only published results with the exception of update proceedings.
- # Flavor Lattice Averaging Group (FLAG-2): 28 people representing all big lattice collaborations.
 - * Light and heavy quantities. First review at the end of 2012

- **2.1.** f_K/f_π : Determination of $|V_{us}|$
- # Decay constants come from simple matrix element $\langle 0|\bar{q}_1\gamma_\mu\gamma_5q_2|P(p)\rangle=if_Pp_\mu$ \rightarrow precise calculations
 - Even higher precision for ratios due to cancellation of statistics and systematics uncertainties

- **2.1.** f_K/f_π : Determination of $|V_{us}|$
- # Decay constants come from simple matrix element $\langle 0|\bar{q}_1\gamma_\mu\gamma_5q_2|P(p)\rangle=if_Pp_\mu$ \rightarrow precise calculations
 - * Even higher precision for ratios due to cancellation of statistics and systematics uncertainties (0.6-2% errors, 0.4% average)
- # Many $N_f=2+1$ lattice calculations \rightarrow good test of lattice QCD

$$f_K/f_{\pi}^{\mathbf{LLV}} = 1.1936 \pm 0.0053$$

- **2.1.** f_K/f_π : Determination of $|V_{us}|$
- # Decay constants come from simple matrix element $\langle 0|\bar{q}_1\gamma_\mu\gamma_5q_2|P(p)\rangle=if_Pp_\mu$ \rightarrow precise calculations
 - Even higher precision for ratios due to cancellation of statistics and systematics uncertainties (0.6-2% errors, 0.4% average)
- # Many $N_f = 2 + 1$ lattice calculations \rightarrow good test of lattice QCD

$$f_K/f_{\pi}^{\mathbf{LLV}} = 1.1936 \pm 0.0053$$

- **2.1.** f_K/f_π : Determination of $|V_{us}|$
- # Decay constants come from simple matrix element $\langle 0|\bar{q}_1\gamma_\mu\gamma_5q_2|P(p)\rangle=if_Pp_\mu$ \rightarrow precise calculations
 - * Even higher precision for ratios due to cancellation of statistics and systematics uncertainties (0.6-2% errors, 0.4% average)
- # Many $N_f=2+1$ lattice calculations \rightarrow good test of lattice QCD

Physical light quark masses results this summer FNAL/MILC, BMW, PAC-CS ...

$|V_{us}|$ can also be extracted from K_{l3} decay rates via

$$\Gamma[K \to \pi l \nu_l(\gamma)] = \frac{G_F^2}{192\pi^3} C^2 I_K^l S_{EW} (1 + \delta_K^l) |V_{us}|^2 f_+^2(0)$$

using $f_{+}(0)$ as calculated with lattice QCD from the 3-point function

$$\langle \pi^{-}(p')|\bar{s}\gamma_{\mu}u|K^{0}(p)\rangle = (p+p')_{\mu}\frac{f_{+}(t)}{f_{+}(t)} + (p-p')_{\mu}f_{-}(t)$$

$|V_{us}|$ can also be extracted from K_{l3} decay rates via

$$\Gamma[K \to \pi l \nu_l(\gamma)] = \frac{G_F^2}{192\pi^3} C^2 I_K^l S_{EW} (1 + \delta_K^l) |V_{us}|^2 f_+^2(0)$$

using $f_{+}(0)$ as calculated with lattice QCD from the 3-point function

$$\langle \pi^{-}(p')|\bar{s}\gamma_{\mu}u|K^{0}(p)\rangle = (p+p')_{\mu}\frac{f_{+}(t)}{f_{+}(t)} + (p-p')_{\mu}f_{-}(t)$$

$$f_{+}(0)^{\mathbf{LLV}} = 0.9584 \pm 0.0044$$

 $N_f=2\ {
m ETMC}$ result included in average because they calculate quenching effects at NLO in ChPT and estimate NNLO effects

$|V_{us}|$ can also be extracted from K_{l3} decay rates via

$$\Gamma[K \to \pi l \nu_l(\gamma)] = \frac{G_F^2}{192\pi^3} C^2 I_K^l S_{EW} (1 + \delta_K^l) |V_{us}|^2 f_+^2(0)$$

using $f_{+}(0)$ as calculated with lattice QCD from the 3-point function

$$\langle \pi^{-}(p')|\bar{s}\gamma_{\mu}u|K^{0}(p)\rangle = (p+p')_{\mu}\frac{f_{+}(t)}{f_{+}(t)} + (p-p')_{\mu}f_{-}(t)$$

$$f_{+}(0)^{\mathbf{LLV}} = 0.9584 \pm 0.0044$$

 $N_f=2\ {
m ETMC}$ result included in average because they calculate quenching effects at NLO in ChPT and estimate NNLO effects

Limitations of current calculations: one single lattice spacing, $N_f=2$, ChPT only at NLO ... \rightarrow room for improvemet

In progress:

- * $N_f=2+1$ staggered calculation on MILC lattices with twisted boundary conditions at several lattice spacings FNAL/MILC POS(Lattice 2010)306
- * $N_f=2+1+1$ staggered calculation on MILC lattices with twisted boundary conditions at several lattice spacings and physical quark masses.
- * $N_f = 2 + 1$ overlap calculation: JLQCD POS(Lattice 2011)284

(Preliminary) results with physical quark masses this summer: FNAL/MILC

2.1. and 2.2. Test of Unitarity in the first row

Experimental averages: M. Antonelli et al., 1005.2323

$$|V_{us}|/|V_{ud}| imes f_K/f_\pi = 0.2758(5)$$
 $|V_{us}|f_+(0)^{K o\pi} = 0.2163(5)$ and $\frac{|V_{us}|^2}{|V_{ud}|^2} imes \frac{f_K^2}{f_\pi^2} \propto \frac{\Gamma(K o\muar
u_\mu(\gamma))}{\Gamma(\pi o\muar
u_\mu(\gamma))}$ Marciano 2004

* Check unitarity in the first row of CKM matrix.

$$\Delta_{CKM} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0001(6)$$
 M. Antonelli et al

fits to K_{l3}, K_{l2} exper. data and lattice results for $f_+(0)^{K \to \pi}$ and f_K/f_π

 $\rightarrow \mathcal{O}(10~{
m TeV})$ bound on the scale of new physics.

2.1. and 2.2. Test of Unitarity in the first row

Experimental averages: M. Antonelli et al., 1005.2323

$$|V_{us}|/|V_{ud}| imes f_K/f_\pi = 0.2758(5)$$
 $|V_{us}|f_+(0)^{K o\pi} = 0.2163(5)$ and $\frac{|V_{us}|^2}{|V_{ud}|^2} imes \frac{f_K^2}{f_\pi^2} \propto \frac{\Gamma(K o\muar
u_\mu(\gamma))}{\Gamma(\pi o\muar
u_\mu(\gamma))}$ Marciano 2004

* Check unitarity in the first row of CKM matrix.

$$\Delta_{CKM} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0001(6)$$
 M. Antonelli et al

fits to K_{l3}, K_{l2} exper. data and lattice results for $f_+(0)^{K \to \pi}$ and f_K/f_π

- $\rightarrow \mathcal{O}(10~{
 m TeV})$ bound on the scale of new physics.
- # Look for new physics effects in the comparison of $|V_{us}|$ from helicity suppressed $K_{\mu 2}$ versus helicity allowed K_{l3}

$$R_{\mu 23} = \left(\frac{f_K/f_\pi}{f_+^{K_\pi}(0)}\right) \times \text{experim. data on } K_{\mu 2}\pi_{\mu 2} \text{ and } K_{l3}$$

- * In the SM $R_{\mu 23}=1$. Not true for some BSM theories (for exam., charged Higgs)
- * Current value $R_{\mu 23} = 0.999(7)$, limited by lattice inputs.

One of the most stringent constraints in UT analyses.

$$|\epsilon_K| = e^{i\phi_{\epsilon}} \kappa_{\epsilon} C_{\epsilon} \hat{B}_K |V_{cb}|^2 \lambda^2 \eta \left(|V_{cb}|^2 (1 - \bar{\rho}) + \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \right)$$

Great success of lattice QCD: reducing \hat{B}_{K} errors to $\sim 1.3\%$

$$\hat{B}_K^{\mathbf{LLV}} = 0.7643 \pm 0.0097$$

* Several fermion formulations and configuration sets.

* Good agreement with $\hat{B}_{K}^{N_{f}=2}=0.729(30)$ ETMC, 1009.5606.

One of the most stringent constraints in UT analyses.

$$|\epsilon_K| = e^{i\phi_{\epsilon}} \kappa_{\epsilon} C_{\epsilon} \hat{B}_K |V_{cb}|^2 \lambda^2 \eta \left(|V_{cb}|^2 (1 - \bar{\rho}) + \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \right)$$

Great success of lattice QCD: reducing \hat{B}_{K} errors to $\sim 1.3\%$

$$\hat{B}_K^{\mathbf{LLV}} = 0.7643 \pm 0.0097$$

- * Several fermion formulations and configuration sets.
- * Good agreement with $\hat{B}_{K}^{N_{f}=2}=0.729(30)$ ETMC, 1009.5606.
- * \hat{B}_K is no longer the dominant source of uncertainty in neutral K mixing.

* Need to include subleading effects: $\kappa_{\epsilon} = 0.94 \pm 0.02$

(long-distance contributions and $\phi_{\epsilon} \neq \pi/4$)

$$|\epsilon_K| = \text{known } \kappa_{\epsilon} \hat{B}_K |V_{cb}|^2 \left(|V_{cb}|^2 (1 - \bar{\rho}) + \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \right)$$

Dominant errors

 $|V_{cb}|$: lattice excl. semil.

 $\eta_1 \equiv \eta_{cc}$: NNLO pert. QCD

* Need to include subleading effects: $\kappa_{\epsilon} = 0.94 \pm 0.02$

(long-distance contributions and $\phi_{\epsilon} \neq \pi/4$)

$$|\epsilon_K| = \text{known } \kappa_{\epsilon} \hat{B}_K |V_{cb}|^2 \left(|V_{cb}|^2 (1 - \bar{\rho}) + \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \right)$$

Dominant errors

 $|V_{cb}|$: lattice excl. semil.

 $\eta_1 \equiv \eta_{cc}$: NNLO pert. QCD

ETMC is calculating the contribution to $K-\bar{K}$ mixing from a complete set of $\Delta S=2$ effective operators (including BSM) with $N_f=2+1+1$ configurations

2.4.
$$K \to \pi\pi$$
 and $\varepsilon_K'/\varepsilon_K$

Going beyond gold-plated quantities.

$$\Delta I = 3/2$$
 contribution:

* RBC: First quantitative results at the 20% level from a direct calculation at a small pion mass.

* Laiho and Van de Water: New method developed based on combining χ PT (indirect) and direct methods.

$$\Delta I = 1/2$$
 contribution:

* **RBC**: First calculation using the direct method on small volume and large pion mass with a 25%. Feasibility study.

arXiv:1111.1699

3. Heavy quark phenomenology

- # Problem is discretization errors ($\simeq m_Q a, (m_Q a)^2, \cdots$) if $m_Q a$ is large.
 - * Effective theories: Need to include multiple operators matched to full QCD (NRQCD,HQET,RHQ,static). B-physics √
 - * Relativistic (improved) formulations:
 - ** Allow accurate results for charm (especially twisted mass, Hisq (Highly improved staggered quarks)).
 - ** Advantages of having the same formulation for light and charm: ratios light/charm, PCAC for heavy-light, ... Also simpler tuning of masses.

One could get the same precision for D as for K

** Also for bottom: Results for $m_c - \sim m_b$ and extrapolation to m_b (twisted mass, HISQ).

3.1. D and D_s meson decay constants

Experiment: Average of CLEO, BaBar, Belle (use $|V_{cs}|^{\rm unit.}=0.97345(22)$)

BES will improve this measurement.

$$f_D^{\bf LLV} = (213.5 \pm 4.1) \; MeV \qquad f_{D_s}^{\bf LLV} = (248.6 \pm 3.0) \; MeV$$
 $f_{D_s}^{\bf exp} = (260.0 \pm 5.4) \; MeV \;
ightarrow \; {\rm again} \; \sim 2\sigma \; {\rm discrepancy}.$

3.2. B and B_s meson decay constants

- # The measured value of $Br(B \to \tau \nu)$ suffers from a tension with the SM at the $2-3\sigma$ level Laiho, Lunghi, Van de Water, 1204.0791
 - * Direct comparison of experiment with f_B^{lat} is difficult because we need $|V_{ub}|$.

3.2. B and B_s meson decay constants

- # The measured value of $Br(B \to \tau \nu)$ suffers from a tension with the SM at the $2-3\sigma$ level Laiho,Lunghi,Van de Water, 1204.0791
 - * Direct comparison of experiment with f_B^{lat} is difficult because we need $|V_{ub}|$.

In progress: RBC and UKQCD $(N_f = 2 + 1, domain wall+RHQ)$.

3.2. B and B_s meson decay constants

 $\# B^- \to \tau^- \bar{\nu}_{\tau}$ is a sensitive probe of effects from charged Higgs bosons.

$$\# \mathcal{L} = V_{ub}^{L} \bar{u}_{L} W b_{L} + V_{ub}^{R} \bar{u}_{R} W b_{R}$$

* Leptonic: $(4.95 \pm 0.55) \times 10^{-3}$

$$|V_{ub}| = |V_{ub}^L - V_{ub}^R|$$

using $f_B^{\bf LLV}$ and experimental average for $Br(B \to au)$ Rosner and Stone, 1201.2401

* Exclusive: $(3.12 \pm 0.26) \times 10^{-3}$

Laiho, Lunghi, Van de Water,

www.latticeaverages.org

$$|V_{ub}| = |V_{ub}^L + V_{ub}^R|$$

* Inclusive: $(4.41 \pm 0.23) \times 10^{-3}$

Vera Luth, FPCP12

$$|V_{ub}| \approx |V_{ub}^L|$$

3.3. $B \to \pi l \nu$: Exclusive determination of $|V_{ub}|$

* No new calculations since 2010.

Combined fit of lattice and experimental data from different q^2 regions using z-expansion.

$$|V_{ub}^{exc.}|^{\mathbf{LLV}} = (3.12 \pm 0.26) \times 10^{-3}$$

In progress:

- * FNAL/MILC Similar methodology as used before but many more data, smaller lattice spacings, improvements on parametrization of shape ...
 - ** Also work in progress for $B_s \to K l \nu$.
- * RBC/UKQCD $(N_f=2+1)$ and ALPHA $(N_f=2)$: Similar methodology as for f_B, f_{B_s} calculations.

3.3. Form factors for $B \rightarrow K l^+ l^-$

Preliminary results from FNAL/MILC, 1111.0981 and Cambridge group, 1010.2726

- * Same light formalism and configurations, but different heavy quark formulations.
- * Need three form factors (vector, scalar, tensor).

* FNAL/MILC shape from z-expansion and systematic errors included.

3.3. Form factors for $B \rightarrow K l^+ l^-$

- # Preliminary results from FNAL/MILC, 1111.0981 and Cambridge group, 1010.2726
 - * Same light formalism and configurations, but different heavy quark formulations.
 - * Need three form factors (vector, scalar, tensor).

- * FNAL/MILC shape from z-expansion and systematic errors included.
- # End of the summer: Near final results from FNAL/MILC.
- # End of the summer: Updates from HPQCD for $B \to K(K^*)l\nu$

3.3. Exclusive determination of $|V_{cb}|$

Extraction from exclusive B decays ($w = v \cdot v'$ is the velocity transfer):

$$\frac{d\Gamma(B \to D^* l \nu)}{dw} = (\text{known}) \times |V_{cb}|^2 \times (w^2 - 1)^{1/2} |\mathcal{F}(w)|^2$$

$$\frac{d\Gamma(B \to D l \nu)}{dw} = (\text{known}) \times |V_{cb}|^2 \times (w^2 - 1)^{3/2} |\mathcal{G}(w)|^2$$

Updated 2010 FNAL/MILC determination of \mathcal{F} at zero recoil (blind anlysis) + BaBar and Belle measurements: Will be updated Lattice2012

$$|V_{cb}|_{excl} = (39.7 \pm 0.7_{exp} \pm 0.7_{LQCD}) \times 10^{-3}$$

* 2σ tension with inclusive determination $|V_{cb}|_{incl} \times = (41.9 \pm 0.8) \times 10^{-3}$

Vera Luth, FPCP12

3.3. Exclusive determination of $|V_{cb}|$

At zero recoil HFAG 2010

$$|V_{cb}|\mathcal{F}(1) = (36.04 \pm 0.52) \times 10^{-3}$$
 $|V_{cb}|\mathcal{G}(1) = (42.3 \pm 1.5) \times 10^{-3}$

 \Longrightarrow Need $B \to Dl\nu$ form factors at non-zero recoil to match $B \to D^*l\nu$ precision in the determination of $|V_{cb}|$.

3.3. Exclusive determination of $|V_{cb}|$

At zero recoil HFAG 2010

$$|V_{cb}|\mathcal{F}(1) = (36.04 \pm 0.52) \times 10^{-3}$$
 $|V_{cb}|\mathcal{G}(1) = (42.3 \pm 1.5) \times 10^{-3}$

- \Longrightarrow Need $B \to Dl\nu$ form factors at non-zero recoil to match $B \to D^*l\nu$ precision in the determination of $|V_{cb}|$.
- # Calculation of non-zero recoil form factors $B \to D^{(*)}l\nu$ in progress

FNAL/MILC, arXiv:1111.0677.

 \rightarrow will allow complementary extraction of $|V_{cb}|$.

3.4. D semileptonic decays

Extraction of the CKM matrix elments $|V_{cd(cs)}|$ still dominated by lattice determination of the relevant form factors.

$$\frac{d}{dq^2}\Gamma(D \to K(\pi)l\nu) \propto |V_{cs(cd)}|^2 |f_+^{D \to K(\pi)}(q^2)|^2$$

- # Testing lattice QCD: shape of the form factors
 - ightarrow use same methodology for other processes like $B
 ightarrow \pi l \nu$ or $B
 ightarrow K l ar{l}$
- # Correlated signals of NP to those in leptonic decays.

3.4. D semileptonic decays

Extraction of the CKM matrix elments $|V_{cd(cs)}|$ still dominated by lattice determination of the relevant form factors.

$$\frac{d}{dq^2}\Gamma(D \to K(\pi)l\nu) \propto |V_{cs(cd)}|^2 |f_+^{D \to K(\pi)}(q^2)|^2$$

- # Testing lattice QCD: shape of the form factors
 - ightarrow use same methodology for other processes like $B
 ightarrow \pi l \nu$ or B
 ightarrow K l l
- # Correlated signals of NP to those in leptonic decays.
- # New method to calculate $f_+(0)$ for semileptonic decays when using the same fermion formulation for all quark flavours HPQCD,

Phys.Rev.D82:114506(2010)

* Use Ward identity to relate $f_0(q^2)$ to three-point functions with a scalar (vs. vector) insertion $f_+(0) = f_0(0) = \frac{m_c - m_q}{m_D^2 - m_\pi^2} \langle D|S|K \rangle$

3.4. D semileptonic decays

Extraction of the CKM matrix elments $|V_{cd(cs)}|$ still dominated by lattice determination of the relevant form factors.

$$\frac{d}{dq^2}\Gamma(D \to K(\pi)l\nu) \propto |V_{cs(cd)}|^2 |f_+^{D \to K(\pi)}(q^2)|^2$$

- # Testing lattice QCD: shape of the form factors
 - ightarrow use same methodology for other processes like $B
 ightarrow \pi l
 u$ or $B
 ightarrow K l ar{l}$
- # Correlated signals of NP to those in leptonic decays.
- # New method to calculate $f_+(0)$ for semileptonic decays when using the same fermion formulation for all quark flavours HPQCD,

Phys.Rev.D82:114506(2010)

- * Use Ward identity to relate $f_0(q^2)$ to three-point functions with a scalar (vs. vector) insertion $f_+(0) = f_0(0) = \frac{m_c m_q}{m_D^2 m_\pi^2} \langle D|S|K \rangle$
- * Very precise determination of $|V_{cq}|$, but can not get the shape of $f_+(q^2)$. Only $f_0(q^2)$.

3.4. D semileptonic decays

error
$$f_{+}^{D \to K}$$
: 11% \to 2.5%.

error
$$f_{+}^{D \to \pi}$$
: 10% \to 5%.

$$|V_{cs}| = 0.961(11)_{exp}(24)_{lat}$$

 $|V_{cs}| = 0.961(11)_{exp}(24)_{lat}$ compatible with unitarity value $|V_{cs}|^{unit.} = 0.97345(16)$

$$|V_{cd}| = 0.225(6)_{exp}(10)_{lat}$$

 $|V_{cd}| = 0.225(6)_{exp}(10)_{lat}$ compatible with unitarity value $|V_{cd}|^{unit.} = 0.2252(7)$

* competitive with ν scattering determination $|V_{cd}|^{\nu}=0.230(11)$

- * Global fit in SM + experiment $\rightarrow |V_{cs(cd)}|$ and $f_+^{D\rightarrow K(\pi)}(q^2)$
- * New results from several lattice groups by the summer/end 2012.

- * Global fit in SM + experiment $\rightarrow |V_{cs(cd)}|$ and $f_+^{D\rightarrow K(\pi)}(q^2)$
- * New results from several lattice groups by the summer/end 2012.

Jon Bailey, FNAL/MILC 2012

Jon Bailey, FNAL/MILC 2012

- * Global fit in SM + experiment $\rightarrow |V_{cs(cd)}|$ and $f_+^{D\rightarrow K(\pi)}(q^2)$
- * New results from several lattice groups by the summer/end 2012.

Jon Bailey, FNAL/MILC 2012

Jon Bailey, FNAL/MILC 2012

* In progress fnal/milc: Study of $D \to K(\pi)l\nu$ form factors with $N_f=2+1+1$ Hisq MILC ensembles with physical light quark masses.

PRELIMINARY

Jonna Koponen, HPQCD 2012

Jonna Koponen, HPQCD 2012

- * Form factors for $D \to K l \nu$ with 1.6% accuracy.
- Best preliminary value: $|V_{cs}| = 0.965(14)$ with 1.4% error from all available experimental data.
- # Working also on $D \to \pi l \nu$ and $D_s \to K l \nu$.

PRELIMINARY

ETMC, 11104.0869

Good agreement with experiment

Hints of NP in neutral B-meson mixing at the $(2-3)\sigma$ level: UTfit 1010.5089, CKMfitter 1203.0238, like-sign dimuon charge asymmetry 1106.6308 + UT tensions

- # Hints of NP in neutral B-meson mixing at the $(2-3)\sigma$ level: UTfit 1010.5089, CKMfitter 1203.0238, like-sign dimuon charge asymmetry 1106.6308 + UT tensions
- # Effective Hamiltonian describing neutral B-meson mixing.

$$\mathcal{H}_{eff}^{\Delta F=2} = \sum_{i=1}^{5} C_{i}Q_{i} + \sum_{i=1}^{3} \widetilde{C}_{i}\widetilde{Q}_{i}$$

$$Q_{1}^{q} = \left(\bar{\psi}_{f}^{i}\gamma^{\nu}(\mathbf{I} - \gamma_{5})\psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}\gamma^{\nu}(\mathbf{I} - \gamma_{5})\psi_{q}^{j}\right) \quad \mathbf{SM}$$

$$Q_{2}^{q} = \left(\bar{\psi}_{f}^{i}(\mathbf{I} - \gamma_{5})\psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}(\mathbf{I} - \gamma_{5})\psi_{q}^{j}\right) \quad Q_{3}^{q} = \left(\bar{\psi}_{f}^{i}(\mathbf{I} - \gamma_{5})\psi_{q}^{j}\right)\left(\bar{\psi}_{f}^{j}(\mathbf{I} - \gamma_{5})\psi_{q}^{i}\right)$$

$$Q_{4}^{q} = \left(\bar{\psi}_{f}^{i}(\mathbf{I} - \gamma_{5})\psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}(\mathbf{I} + \gamma_{5})\psi_{q}^{j}\right) \quad Q_{5}^{q} = \left(\bar{\psi}_{f}^{i}(\mathbf{I} - \gamma_{5})\psi_{q}^{j}\right)\left(\bar{\psi}_{f}^{j}(\mathbf{I} + \gamma_{5})\psi_{q}^{i}\right)$$

$$\tilde{Q}_{1,2,3}^{q} = Q_{1,2,3}^{q} \text{ with the replacement } (\mathbf{I} \pm \gamma_{5}) \rightarrow (\mathbf{I} \mp \gamma_{5})$$

In the Standard Model

* The mass differences $\Delta M_{s(d)}$ depend on a single matrix element.

$$\Delta M_q|_{SM} = \frac{G_F^2 M_W^2}{6\pi^2} |V_{tq}^* V_{tb}|^2 \eta_2^B S_0(x_t) M_{B_s} f_{B_q}^2 \hat{B}_{B_q}$$

** Non-perturbative input

$$\frac{8}{3} f_{B_q}^2 B_{B_q}(\mu) M_{B_q}^2 = \langle \bar{B}_q^0 | O_1 | B_q^0 \rangle(\mu) \quad \text{with} \quad O_1 \equiv [\bar{b}^i \, q^i]_{V-A} [\bar{b}^j \, q^j]_{V-A}$$

* $\Delta\Gamma_{s(d)}$ depend on $\langle O_1 \rangle$ and $\langle O_3 \rangle$ (or, alternatively, $\langle O_1 \rangle$ and $\langle O_2 \rangle$).

In the Standard Model

* The mass differences $\Delta M_{s(d)}$ depend on a single matrix element.

$$\Delta M_q|_{SM} = \frac{G_F^2 M_W^2}{6\pi^2} |V_{tq}^* V_{tb}|^2 \eta_2^B S_0(x_t) M_{B_s} f_{B_q}^2 \hat{B}_{B_q}$$

** Non-perturbative input

$$\frac{8}{3} f_{B_q}^2 B_{B_q}(\mu) M_{B_q}^2 = \langle \bar{B}_q^0 | O_1 | B_q^0 \rangle(\mu) \quad \text{with} \quad O_1 \equiv [\bar{b}^i \, q^i]_{V-A} [\bar{b}^j \, q^j]_{V-A}$$

- * $\Delta\Gamma_{s(d)}$ depend on $\langle O_1 \rangle$ and $\langle O_3 \rangle$ (or, alternatively, $\langle O_1 \rangle$ and $\langle O_2 \rangle$).
- # Most interesting for phenomenology (UT analyses):

$$f_{B_q} \sqrt{\hat{B}_{B_q}} * \qquad \xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_{B_d} \sqrt{B_{B_d}}}$$

* In particular as the role of $|V_{cb}|$ (reaching is ultimate theoretical accuracy) in UT analyses is being replaced by ΔM_{B_s} and $B \to \tau \nu$.

Two results for $\sqrt{f_B\hat{B}_B}$ using MILC $N_f=2+1$ but different description of heavy quarks.

$$f_{B_s} \sqrt{\hat{B}_{B_s}}^{\mathbf{LLV}} = 279(15) \mathrm{MeV}$$

$$f_{B_d}\sqrt{\hat{B}_{B_d}}^{
m LLV} = 227(19){
m MeV}$$
Results for $\xi = rac{f_{B_s}\sqrt{B_{B_s}}}{f_{B_d}\sqrt{B_{B_d}}}$

$$\xi^{\text{lat}} = 1.251 \pm 0.032$$

Two results for $\sqrt{f_B \hat{B}_B}$ using MILC $N_f=2+1$ but different description of heavy quarks.

$$f_{B_s} \sqrt{\hat{B}_{B_s}}^{\mathbf{LLV}} = 279(15) \mathrm{MeV}$$

$$f_{B_d}\sqrt{\hat{B}_{B_d}}^{
m LLV}=227(19){
m MeV}$$
Results for $\xi=rac{f_{B_s}\sqrt{B_{B_s}}}{f_{B_d}\sqrt{B_{B_d}}}$

$$\xi^{\rm lat}=1.251\pm0.032$$

* FNAL/MILC calculation with the same choice of actions but improved statistics, discret. errors, and analysis techniques is in progress. New (better) results by end of summer

```
# SM predictions + BSM contributions = experiment
```

- → constraints on BSM building Dobrescu and Krnjaic, 1104.2893;

 Altmannshofer and Carena, 1110.0843; Buras and Girrbach, 1201.1302 ...
- * Need matrix elements of all the operators in $\mathcal{H}_{eff}^{\Delta B=2}$

- # SM predictions + BSM contributions = experiment
 - → constraints on BSM building Dobrescu and Krnjaic, 1104.2893;

 Altmannshofer and Carena, 1110.0843; Buras and Girrbach, 1201.1302 ...
 - * Need matrix elements of all the operators in $\mathcal{H}_{eff}^{\Delta B=2}$
 - ⇒ FNAL/MILC will have final results by the end of the year

	B_d^0		B_s^0	
$[GeV^2]$	BBGLN	BJU	BBGLN	BJU
$f_{B_q}^2 B_{B_q}^{(1)}$	0.0411(75)		0.0559(68)	
$f_{B_q}^2 B_{B_q}^{(2)}$	0.0574(92)	0.0538(87)	0.086(11)	0.080(10)
$f_{B_q}^2 B_{B_q}^{(3)}$	0.058(11)	0.058(11)	0.084(13)	0.084(13)
$f_{B_q}^2 B_{B_q}^{(4)}$	0.093(10)		0.135(15)	
$f_{B_q}^2 B_{B_q}^{(5)}$	0.127(15)		0.178(20)	

* $\langle Q_1 \rangle, \langle Q_3 \rangle$ will also allow new prediction for $\Delta \Gamma_s$.

$$\Delta\Gamma_s^{exp} = (0.116 \pm 0.019) ps^{-1} \ \ \text{LHCb}, \ \text{Moriond 2012}$$

$$\Delta\Gamma_s^{SM} = (0.087 \pm 0.021) ps^{-1} \ \ \text{Lenz,Nierste}, \ 1102.4274$$

Bag parameters $B_{B_{s,d}}$ describing B-meson mixing in the SM can be can be used for theoretical prediction of $\mathcal{B}r(B\to\mu^+\mu^-)$

$$\frac{\mathcal{B}r(B_q \to \mu^+ \mu^-)}{\Delta M_q} = \tau(B_q) \, 6\pi \frac{\eta_Y}{\eta_B} \left(\frac{\alpha}{4\pi M_W sin^2 \theta_W} \right)^2 \, m_\mu^2 \, \frac{Y^2(x_t)}{S(x_t)} \, \frac{1}{\hat{B}_q}$$

* Using HPQCD determinations of \hat{B}_q Gámiz et al., 0902.1815

$$\mathcal{B}r(B_s \to \mu^+\mu^-) = (3.19 \pm 0.19) \times 10^{-9} \text{ and } \mathcal{B}r(B_d \to \mu^+\mu^-) = (1.02 \pm 0.09) \times 10^{-10}$$

Bag parameters $B_{B_{s,d}}$ describing B-meson mixing in the SM can be can be used for theoretical prediction of $\mathcal{B}r(B\to\mu^+\mu^-)$

$$\frac{\mathcal{B}r(B_q \to \mu^+ \mu^-)}{\Delta M_q} = \tau(B_q) \, 6\pi \frac{\eta_Y}{\eta_B} \left(\frac{\alpha}{4\pi M_W sin^2 \theta_W} \right)^2 \, m_\mu^2 \, \frac{Y^2(x_t)}{S(x_t)} \, \frac{1}{\hat{B}_q}$$

* Using HPQCD determinations of \hat{B}_q Gámiz et al., 0902.1815

$$\mathcal{B}r(B_s \to \mu^+\mu^-) = (3.19 \pm 0.19) \times 10^{-9} \text{ and } \mathcal{B}r(B_d \to \mu^+\mu^-) = (1.02 \pm 0.09) \times 10^{-10}$$

* Improved $f_{B_{s,d}}^{lattice}$ makes direct theoretical calculation competitive.

Buras and Girrbach, 1204.5064

$$\mathcal{B}r(B_s \to \mu^+\mu^-) = (3.1 \pm 0.2) \times 10^{-9} \text{ and } \mathcal{B}r(B_d \to \mu^+\mu^-) = (1.0 \pm 0.1) \times 10^{-10}$$

Bag parameters $B_{B_{s,d}}$ describing B-meson mixing in the SM can be can be used for theoretical prediction of $\mathcal{B}r(B\to\mu^+\mu^-)$

$$\frac{\mathcal{B}r(B_q \to \mu^+ \mu^-)}{\Delta M_q} = \tau(B_q) \, 6\pi \frac{\eta_Y}{\eta_B} \left(\frac{\alpha}{4\pi M_W sin^2 \theta_W} \right)^2 \, m_\mu^2 \, \frac{Y^2(x_t)}{S(x_t)} \, \frac{1}{\hat{B}_q}$$

* Using HPQCD determinations of \hat{B}_q Gámiz et al., 0902.1815

$$\mathcal{B}r(B_s \to \mu^+\mu^-) = (3.19 \pm 0.19) \times 10^{-9} \text{ and } \mathcal{B}r(B_d \to \mu^+\mu^-) = (1.02 \pm 0.09) \times 10^{-10}$$

* Improved $f_{B_{s,d}}^{lattice}$ makes direct theoretical calculation competitive.

Buras and Girrbach, 1204.5064

$$\mathcal{B}r(B_s \to \mu^+\mu^-) = (3.1 \pm 0.2) \times 10^{-9} \text{ and } \mathcal{B}r(B_d \to \mu^+\mu^-) = (1.0 \pm 0.1) \times 10^{-10}$$

- # Very small in the SM and potentially sensitive to NP
 - → subject of active search at LHC and Tevatron.
 - * Most stringest experimental bounds LHCb, 1203.4493:

$$\mathcal{B}r(B_s \to \mu^+\mu^-) < 4.5 \times 10^{-9}$$
 $\mathcal{B}r(B_d \to \mu^+\mu^-) < 8.1 \times 10^{-10}$

Hadron colliders measure $\mathcal{B}r(B_s \to \mu^+\mu^-)$ using a normalization channel

$$\mathcal{B}r(B_s \to \mu^+ \mu^-) = \mathcal{B}r(B_d \to X) \frac{f_d}{f_s} \frac{\varepsilon_X}{\varepsilon_{\mu\mu}} \frac{N_{\mu\nu}}{N_X}$$

Hadron colliders measure $\mathcal{B}r(B_s \to \mu^+\mu^-)$ using a normalization channel

$$\mathcal{B}r(B_s \to \mu^+\mu^-) = \mathcal{B}r(B_d \to X) \frac{f_d}{f_s} \frac{\varepsilon_X}{\varepsilon_{\mu\mu}} \frac{N_{\mu\nu}}{N_X}$$

Fleischer, Serra, Tuning, 1004.3982 proposed a new strategy to determine f_s/f_d : use the hadronic decay ratio $\mathcal{B}r(\bar{B}_s^0\to D_s^+\pi^-)/\mathcal{B}r(\bar{B}^0\to D^+K^-)$ and factorization

$$\frac{f_s}{f_d} = 0.0743 \times \frac{\tau_{B^0}}{\tau_{B_s^0}} \times \left[\frac{\varepsilon_{DK}}{\varepsilon_{D_s\pi}} \frac{N_{D_s\pi}}{\varepsilon_{DK}} \right] \times \frac{1}{\mathcal{N}_a \mathcal{N}_F} \quad \text{with} \quad \mathcal{N}_a = \left[\frac{a_1^{(s)}(D_s^+\pi^-)}{a_1^{(d)}(D^+K^-)} \right]^2$$

Hadron colliders measure $\mathcal{B}r(B_s \to \mu^+\mu^-)$ using a normalization channel

$$\mathcal{B}r(B_s \to \mu^+ \mu^-) = \mathcal{B}r(B_d \to X) \frac{f_d}{f_s} \frac{\varepsilon_X}{\varepsilon_{\mu\mu}} \frac{N_{\mu\nu}}{N_X}$$

Fleischer, Serra, Tuning, 1004.3982 proposed a new strategy to determine f_s/f_d : use the hadronic decay ratio $\mathcal{B}r(\bar{B}_s^0\to D_s^+\pi^-)/\mathcal{B}r(\bar{B}^0\to D^+K^-)$ and factorization

$$\frac{f_s}{f_d} = 0.0743 \times \frac{\tau_{B^0}}{\tau_{B_s^0}} \times \left[\frac{\varepsilon_{DK}}{\varepsilon_{D_s\pi}} \frac{N_{D_s\pi}}{\varepsilon_{DK}} \right] \times \frac{1}{\mathcal{N}_a \mathcal{N}_F} \quad \text{with} \quad \mathcal{N}_a = \left[\frac{a_1^{(s)}(D_s^+\pi^-)}{a_1^{(d)}(D^+K^-)} \right]^2$$

and \mathcal{N}_F can be obtained from the scalar form factors of $B_s \to D_s l \nu$ and $B \to D l \nu$ at non-zero momentum transfer.

$$\mathcal{N}_F = \left[\frac{f_0^{(s)}(M_\pi^2)}{f_0^{(d)}(M_K^2)} \right]^2$$

Calculate the ratio of form factors on the lattice.

$$\frac{f_0^{(s)}(M_\pi^2)}{f_0^{(d)}(M_K^2)} = 1.046(44)(15) \quad \text{FNAL/MILC } 1202.6346$$

from a subset of the full MILC data set used in the extraction of $|V_{cb}|$ from non-zero recoil $B\to Dl\nu$ decays

Fragmentation fraction ratio f_s/f_d

Results from the full MILC data set by the end of the summer

 $+ |V_{cb}|$ from non-zero recoil $B \to Dl\nu$

3.7. More on D semileptonic decays NEW

BaBar recently measured the ratio of branching fractions

$$R(D) = \frac{\mathcal{B}r(B \to D\tau\nu)}{\mathcal{B}r(B \to Dl\nu)} = 0.440(71)$$
 1205.5442

* Using the form factors calculated at non-zero recoil on the lattice (FNAL/MILC reduced data set) we can get a prediction for that ratio

D. Du, Fermilab theory seminar, A. El-Kadra, FPCP2012

R(D) from SM and experiment differ by 2σ

 $R(D) + R(D^*)$ measurement give $(3.4)\sigma$ exclusion of SM 1205.5442

2HDM is excluded when combining R(D) with $R(D^{\ast})$

4. Conclusions and outlook

- # Important progress in lattice calculations including sea quarks $(N_f = 2 + 1)$
 - * Light quarks: Results from many collaborations

 → excellent checks.
 - * Heavy quarks: Currently dominated by HPQCD and FNAL/MILC, but precision results from other groups will be available soon: ETMC, RBC
 - * Need averages: LLV, FLAG-1, and FLAG-2 soon.
 - * Approaching the physical light quark masses.

4. Conclusions and outlook

Expected in the next year:

- * Results from simulations performed at the physical light quark masses. Three collaborations have ensembles with physical light quark masses: MILC, PAC-CS, BMW.
- * Need to include effects that are currently subdominant:
 - ** isospin breaking.
 - ** electromagnetic effects.
 - ** charm sea quarks.
- * Develop methods to reliably calculate quantities that are beyond easy.

A.1. Spectrum of light hadrons: test of lattice QCD

Good agreement between $N_f=2+1$ lattice calculations and the experimentally measured light spectrum.

A.2. Spectrum of heavy hadrons

FNAL/MILC Charmonium D D thresh. The state of the stat

Some post/predictions with NRQCD b (s. Meinel, 1007.3966, 1010.0889)

$$(m_{\Upsilon} - m_{\eta_b})(1S) = (60.3 \pm 7.7) \text{ MeV } ((m_{\Upsilon} - m_{\eta_b})(1S)^{exp} = 69.3 \pm 2.9)$$

 $(m_{\Upsilon} - m_{\eta_b})(2S) = (23.5 \pm 4.7) \text{ MeV}$
 $m_{\Omega_{bbb}} = (14.371 \pm 0.012) \text{ GeV}$

Prediction for $m_{B_c^*} = 6.3330(6)(2)(6) \text{ GeV}$

B.1. Light quark masses

Determination of m_s with around 1-5% errors from several $N_f=2+1$ collaborations.

$$m_s^{\text{LLV},\overline{MS}}(2\text{GeV}) = (93.4 \pm 1.1) \text{ MeV}; \quad m_{ud}^{\text{LLV},\overline{MS}}(2\text{GeV}) = (3.408 \pm 0.047) \text{ MeV}$$

B.2. Heavy quark masses

Heavy masses from current-current correlators HPQCD, PRD82(2010) $(N_f=2+1)$

$$m_c(3 \text{ GeV}, n_f = 4) = 0.986(6) \text{ GeV}$$

$$m_b(10 \text{ GeV}, n_f = 5) = 3.617(25) \text{ GeV}$$

$N_f = 2 + 1$ NRQCD b quarks A. Hart et al., Pos(Lat2010)223

$$m_b(m_b) = 4.25(12) \text{ GeV}$$

$N_f = 2$ twisted mass calculation from ETMC, Pos(Lat2010)239

$$\bar{m}_c(\bar{m}_c) = 1.28(4) \text{ GeV}$$

$$\bar{m}_b \bar{m}_b = 4.3(2) \text{ GeV}$$

$N_f = 2$ twisted mass calculation from ALPHA, Trento2012?

$$\bar{m}_b \bar{m}_b = 4.288(76)(43)(14) \text{ GeV}$$

2.1. and 2.2. Test of Unitarity in the first row

$|V_{us}|$ from leptonic decays using $f_K/f_{\pi}^{\mathbf{LLV}} = 1.1936 \pm 0.0053$:

$$\frac{|V_{us}|^2}{|V_{ud}|^2} \times \frac{f_K^2}{f_\pi^2} \propto \frac{\Gamma(K \to \mu \bar{\nu}_\mu(\gamma))}{\Gamma(\pi \to \mu \bar{\nu}_\mu(\gamma))} \qquad \text{Marciano 2004} \Longrightarrow \boxed{|V_{us}| = 0.2252(11)^*}$$

* Using $|V_{us}|/|V_{ud}| \times f_K/f_\pi = 0.2758(5)$ M. Antonelli et al., 1005.2323 and $|V_{ud}| = 0.97425(22)$ Hardy and Towner, PRC79(2009) update

2.1. and 2.2. Test of Unitarity in the first row

$|V_{us}|$ from leptonic decays using $f_K/f_{\pi}^{\mathbf{LLV}} = 1.1936 \pm 0.0053$:

$$\frac{|V_{us}|^2}{|V_{ud}|^2} \times \frac{f_K^2}{f_\pi^2} \propto \frac{\Gamma(K \to \mu \bar{\nu}_\mu(\gamma))}{\Gamma(\pi \to \mu \bar{\nu}_\mu(\gamma))} \qquad \text{Marciano 2004} \Longrightarrow \boxed{|V_{us}| = 0.2252(11)^*}$$

- * Using $|V_{us}|/|V_{ud}| \times f_K/f_\pi=0.2758(5)$ M. Antonelli et al., 1005.2323 and $|V_{ud}|=0.97425(22)$ Hardy and Towner, PRC79(2009) update
- # $|V_{us}|$ from semileptonic decays using $f_{+}(0)^{LLV} = 0.9584 \pm 0.0044$

$$\Longrightarrow |V_{us}| = 0.2251(10)_{lat}(4)_{exp} *$$

* Using $|V_{us}|f_{+}(0)^{K\to\pi}=0.2163(5)$ M. Antonelli et al., 1005.2323

2.1. and 2.2. Test of Unitarity in the first row

$|V_{us}|$ from leptonic decays using $f_K/f_{\pi}^{\mathbf{LLV}} = 1.1936 \pm 0.0053$:

$$\frac{|V_{us}|^2}{|V_{ud}|^2} \times \frac{f_K^2}{f_\pi^2} \propto \frac{\Gamma(K \to \mu \bar{\nu}_\mu(\gamma))}{\Gamma(\pi \to \mu \bar{\nu}_\mu(\gamma))} \qquad \text{Marciano 2004} \Longrightarrow \boxed{|V_{us}| = 0.2252(11)^*}$$

- * Using $|V_{us}|/|V_{ud}| \times f_K/f_\pi = 0.2758(5)$ M. Antonelli et al., 1005.2323 and $|V_{ud}| = 0.97425(22)$ Hardy and Towner, PRC79(2009) update
- # $|V_{us}|$ from semileptonic decays using $f_+(0)^{LLV} = 0.9584 \pm 0.0044$

$$\Longrightarrow |V_{us}| = 0.2251(10)_{lat}(4)_{exp} *$$

* Using $|V_{us}|f_{+}(0)^{K\to\pi}=0.2163(5)$ M. Antonelli et al., 1005.2323

CKM unitarity test in the first row at the 0.1% level (error dominated by la

$$|V_{us}|^{unitarity} = 0.22545(22)$$
 M. Antonelli et al., 1005.2323