Calculational Tools in the

Era of Super-Flavour Factories

Thomas Mannel

Theoretische Physik I

Universität Siegen

2012 Capri Workshop, June $11^{\text {th }}, 2012$

Contents

(1) Introduction

- The Need for Precision Flavour Physics
- What can Flavour tell us?
(2) Theory Tools for Precision Flavour Physics
- The Toolbox
- Example 1: The $V_{u b}$ Problem
- Example 2: Calculation of $B \rightarrow K^{(*)} \ell \ell$
(3) Outlook

The Need for Precision Flavour Physics

- The Standard Model passed all tests up to the 100 GeV Scale:

- LEP: test of the gauge Structure
- Flavour factories: test of the Flavour Sector

No significant deviation has been found (yet)!

... only a few "tensions"
(= Observables off by 2σ or even less)

LHC will perform a direct test of the TeV Scale

What can Flavour tell us?

- Flavour Physics \leftrightarrow No new physics at the TeV scale with a generic flavour structure
- Parametrization of new physics: Higher Dimensional Operators:

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}^{(5)}+\frac{1}{\Lambda^{2}} \mathcal{L}^{(6)}+\cdots \quad \mathcal{L}^{(n)}=\sum_{j} C_{j} O_{j}^{(n)}
$$

- ^: New Physics scale
- $O_{j}^{(n)}$: Local Operators of dimension n
- Some of the $O_{j}^{(n)}$ may mediate flavour transitions: e.g.

$$
\begin{array}{ll}
O_{1}^{(6)}=\left(\bar{s}_{L} \gamma_{\mu} d\right)\left(\bar{s}_{L} \gamma^{\mu} d\right) & \text { (Kaon Mixing) } \\
O_{2}^{(6)}=\left(\bar{b}_{L} \gamma_{\mu} d\right)\left(\bar{b}_{L} \gamma^{\mu} d\right) & \left(B_{d} \text { Mixing }\right) \\
O_{3}^{(6)}=\left(\bar{b}_{L} \gamma_{\mu} 2\right)\left(\bar{b}_{L} \gamma^{\mu} s\right) & \left(B_{s} \text { Mixing }\right) \\
O_{4}^{(6)}=\left(\bar{c}_{L} \gamma_{\mu} u\right)\left(\bar{c}_{L} \gamma^{\mu} u\right) & (D \text { Mixing })
\end{array}
$$

- $\Lambda \sim 1000 \mathrm{TeV}$ from Kaon mixing ($C_{i}=1$)
- $\wedge \sim 1000 \mathrm{TeV}$ from D mixing
- $\wedge \sim 400 \mathrm{TeV}$ from B_{d} mixing
- $\wedge \sim 70 \mathrm{TeV}$ from B_{s} mixing

Another Peculiarity of SM Flavour Parametrization: CP

- Strong CP remains mysterious
- Flavour diagonal CP Violation is well hidden:
e.g electric dipole moments:

For quarks at least three loops (shabain)

$$
\begin{aligned}
d_{e}^{\text {quark }} & \sim e \frac{\alpha_{s}}{\pi} \frac{G_{F}^{2}}{\left(16 \pi^{2}\right)^{2}} \frac{m_{t}^{2}}{M_{W}^{2}} \operatorname{Im} \Delta \mu^{3} \\
& \sim 10^{-32} e \mathrm{~cm} \quad \text { with } \mu \sim 0.3 \mathrm{GeV} \\
d_{\mathrm{exp}}^{\text {Neutron }} & \leq 3.0 \times 10^{-26} e \mathrm{~cm}
\end{aligned}
$$

Composite objects can have larger edm's ("loopless") :

$$
d^{\text {Neutron }} \sim 10^{-31} e c m
$$

Theory Tools for Precision Flavour Physics

The Toolbox

- QCD based effective field theories
- Chiral Perturbation Theory, including heavy hadron χ PT
- Heavy Quark Effective Theory
- Heavy Quark OPE for inclusive processes
- Soft Collinear Effective Theory
- QCD Sum Rules
- Fixed point sum rules
- Light-Cone Sum rules
- (Approximate) Flavour Symmetries
- ... including SU(3) breaking
- ... supplemented by "diagrammatic considerations"
- Lattice

Models have become (almost) obsolete!

Example 1: The $V_{u b}$ Problem

... this requires almost the whole toolset:

- Exclusive $V_{u b}$ from $B \rightarrow \pi \ell \nu$:

Lattice and Light-Cone QCD Sum Rules

- Inclusive $V_{u b}$: HQE and SCET

Exclusive determination of: $V_{u b}$

- Recent improvement of the calculations for $B \rightarrow \pi \ell \bar{\nu}$
- LCQCDSR Calculation of

$$
\Delta \zeta\left(0, q_{\max }^{2}\right)=\frac{1}{\left|V_{u b}\right|^{2} \tau_{B^{0}}} \int_{0}^{q_{\max }^{2}} d q^{2} \frac{d \mathcal{B}\left(B \rightarrow \pi \ell \nu_{\ell}\right)}{d q^{2}}
$$

- ... including
- Full $\mathcal{O}\left(\alpha_{s}\right)$ QCD corrections
- Subleading twists
- a_{2} and a_{4} corrections to the pion DA, fitted from the electromagnetic pion form factor

LCQCDSR Result for the from factor, $0 \leq q^{2} \leq 12 \mathrm{GeV}^{2}$

(a): $a_{2}^{\pi}, a_{4}^{\pi},(b): \mu_{\pi},(c): \mu,(d): M^{2}, s_{0}^{B}$

Linking high q^{2} with low q^{2}

- LCQCDSR are limited to "small" values of q^{2}
- Complementary to lattice calculations
- We have QCD based calculations / estimates of the from factors f_{+}and f_{0} in the full kinematic region
- Uncertainties become controllable and are already quite small!
- May become the most accurate way to determine $V_{u b}$

Linking high q^{2} with low $q^{2}: ~ z$ parametrization

The vector form factor $f_{B \pi}^{+}\left(q^{2}\right)$ calculated from $L C S R$ and fitted to the $B C L$ parameterization (solid) with uncertainties (dashed), compared with the HPQCD [4] (triangles) and FNAL/MILC [5] (squares) results.

Theory vs. Experiment

(colour online) The normalized q^{2}-distribution in $B \rightarrow \pi l \nu$ obtained from LCSR and extrapolated with the z-series parameterization (central input- solid, uncertainties-dashed). The experimental data points are from BABAR: (red) squares [1], (blue) triangles [2] and Belle [3]: (magenta) full circles.

Value of $V_{u b}$ from Khodjamirian et al.:

$$
\left|V_{u b}\right|=\left(\left.3.50_{-0.33}^{+0.38}\right|_{\text {th. }} \pm\left. 0.11\right|_{\text {exp. }}\right) \times 10^{-3}
$$

Lattice \otimes LCQCDSR has reached 10% th. uncertainty in $V_{u b, \text { excl }}$!

This is to be compared to the inclusive value:

$$
\left|V_{u b}\right|=\left(4.41 \pm 0.15_{-0.19}^{+0.15}\right) \times 10^{-3}
$$

We have to find out what is going on here!

The Role of $B \rightarrow \tau \bar{\nu}$

- $B \rightarrow \tau \bar{\nu}$ depends crucially on f_{B}

$$
\mathcal{B}\left(B^{-} \rightarrow \tau \bar{\nu}_{\tau}\right)=\frac{G_{F}^{2}}{8 \pi}\left|V_{u b}\right|^{2} m_{\tau}^{2} m_{B}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2} \tau_{B^{-}}
$$

- The extracted $V_{u b}$ value is quite large ...
- However, if the data are right, QCD (or the SM) must have a problem: Define knodiamirian, Klien, T... wang

$$
\begin{aligned}
R_{s / /}\left(q_{1}^{2}, q_{2}^{2}\right) & \equiv \frac{\Delta \mathcal{B}_{B \rightarrow \pi \ell \nu_{\ell}}\left(q_{1}^{2}, q_{2}^{2}\right)}{\mathcal{B}\left(B \rightarrow \tau \nu_{\tau}\right)}\left(\frac{\tau_{B^{-}}}{\tau_{B^{0}}}\right) \\
& =\frac{\Delta \zeta\left(q_{1}^{2}, q_{2}^{2}\right)}{\left(G_{F}^{2} / 8 \pi\right) m_{\tau}^{2} m_{B}\left(1-m_{\tau}^{2} / m_{B}^{2}\right)^{2 f_{B}^{2}}}
\end{aligned}
$$

Exp.	$\Delta \mathcal{B}\left(10^{-4}\right)$ [Ref.]	$\mathcal{B}\left(B \rightarrow \tau \nu_{\tau}\right)\left(10^{-4}\right)$ [Ref.]	$R_{s / l}$
BABAR	$0.32 \pm 0.03[1]$ $0.33 \pm 0.03 \pm 0.03[2]$	$1.76 \pm 0.49[36,37]$	$0.20_{-0.05}^{+0.08}$
Belle	$0.398 \pm 0.03[3]$	$1.54_{-0.37}^{+0.38+0.31}[38]$	$0.28_{-0.07}^{+0.13}$
QCD	$\Delta \zeta\left(\mathrm{ps}^{-1}\right)$ [Ref.]	$f_{B}(\mathrm{MeV})[\mathrm{Ref}]$.	$R_{s / l}$
HPQCD	$2.02 \pm 0.55[4]$	$190 \pm 13[34]$	0.52 ± 0.16
FNAL/MILC	$2.21_{-0.42}^{+0.47}[5]$	$212 \pm 9[35]$	0.46 ± 0.10

$R_{s / /}$ for the region $16 \mathrm{GeV}^{2}<q^{2}<26.4 \mathrm{GeV}^{2}$

Exp.	$\Delta \mathcal{B}\left(10^{-4}\right)$ [Ref.]	$\mathcal{B}\left(B \rightarrow \tau \nu_{\tau}\right)\left(10^{-4}\right)$ [Ref.]	$R_{s / l}$
BABAR	$0.88 \pm 0.06[1]$ $0.84 \pm 0.03 \pm 0.04[2]$	$1.76 \pm 0.49[36,37]$	$0.52_{-0.12}^{+0.20}$
QCD	$\Delta \zeta[$ Ref.]	$f_{B}(\mathrm{MeV})[$ Ref. $]$	$R_{s / l}$
LCSR/QCDSR	$4.59_{-0.85}^{+1.00}$ [this work]	$210 \pm 19[41]$	$0.97_{-0.24}^{+0.28}$

$R_{s / /}$ for the region $0 \mathrm{GeV}^{2}<q^{2}<12.0 \mathrm{GeV}^{2}$

Some clarification is needed here ...

Example 2: Calculation of $B \rightarrow K^{(*)} \ell \ell$

- Theory of $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$is substantially different from the one for $B \rightarrow D \ell \bar{\nu}$:
- Effective Interaction:

$$
H_{e f f}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i=1}^{10} C_{i}(\mu) O_{i}(\mu)
$$

- Dominant $b \rightarrow s$ effective operators: $O_{7,9,10}$
$C_{7}\left(m_{b}\right) \simeq-0.3, C_{9}\left(m_{b}\right) \simeq 4.4, C_{10}\left(m_{b}\right) \simeq=-4.7$
- ... can be expressed in terms of form factors

$$
O_{7,9,10} \propto\left\langle K^{(*)}(p)\right| \bar{s}\lceil b|B(p+q)\rangle
$$

Charm Loops

Buchalla, Isidori, Feldmann, Khodjamirin, TM, Pivovarov, Wang

- Charm-loop effect: a combination of the $(\bar{s} c)(\bar{c} b)$ weak interaction ($O_{1,2}$) and e.m.interaction ($\left.\bar{c} c\right)(\bar{\ell} \ell)$

- new hadronic matrix elements, not a form factor
- Light cone expansion of the charm loop
- Expansion parameter $\frac{\Lambda_{\mathrm{QCD}}^{2}}{\left(4 m_{c}^{2}-q^{2}\right)}$
- Leads to a non-local operator ("shape-function-like" operator)

$$
\widetilde{\mathcal{O}}_{\mu}(q)=\int d \omega I_{\mu \rho \alpha \beta}\left(q, m_{c}, \omega\right) \bar{S}_{L} \gamma^{\rho}\left(\delta\left[\omega-\frac{\left(i n_{+} \mathcal{D}\right)}{2}\right] \widetilde{G}_{\alpha \beta}\right) b_{L},
$$

- Matrix element can be calculated in a LCSR for $q^{2} \leq 0$

Accessing the region $q^{2}>0$

- Hadronic Dispersion Relation:

$$
\begin{aligned}
& \mathcal{H}_{(B K)}^{(c, s, b)}\left(q^{2}\right) \mathcal{H}_{(B K)}^{(c, s, b)}(0) \\
& +q^{2}\left[\sum_{\psi=J / \psi, \psi(2 S), . .} \frac{f_{\psi} A_{B \psi K}}{m_{\psi}^{2}\left(m_{\psi}^{2}-q^{2}-i m_{\psi} \Gamma_{\psi}^{\text {tot }}\right)}\right. \\
& \left.+\int_{4 m_{D}^{2}}^{\infty} d s \frac{\rho(s)}{s\left(s-q^{2}-i \epsilon\right)}\right]
\end{aligned}
$$

- Residues from $B R(B \rightarrow \psi K)$ and $B R(\psi \rightarrow \ell)$
- FSI Phase attributed to $A_{B \psi K}$
- Fit to the result at $q^{2}<0$

Results on $B \rightarrow K^{*} \ell^{+} \ell^{-}$

Problem to compute above the charm threshold?
Problem also below charm theshold: $B \rightarrow K \phi \rightarrow K \ell^{+} \ell^{-}$
... currently under consideration knodiamirian, Wang, TM

Detailed Analysis of $B \rightarrow K \ell \ell$

- Form factors and Light-cone distribution amplitudes are better known for K
- Current work: A detailed analysis ... (Khoodianirian, т... Wang)

Figure 1: Dominant contributions to $B \rightarrow K \ell^{+} \ell^{-}$amplitude due to the effective operators $O_{9,10}$ (a) and O_{7} (b) denoted as black squares.

Figure 2: Factorizable quark-loop contributions to $B \rightarrow K \ell^{+} \ell^{-}$amplitudes due to fourquark effective operators $O_{1,2}^{c}$ and O_{3-6}. Crossed circles denote the possible emission points of the virtual photon.

(a)

(b)

Figure 3: Nonfactorizable quark-loop contributions to $B \rightarrow K \ell^{+} \ell^{-}$: (a) with soft gluon (denoted by crossed line) and (b) with hard-gluon.

Figure 4: Contributions of the $O_{8 g}$ operator to $B \rightarrow K \ell^{+} \ell^{-}$amplitude: (a) factorizable and nonfactorizable with (b) soft-gluon and (c) hard -gluon.

Figure 5: Weak annihilation contribution to $B \rightarrow K \ell^{+} \ell^{-}$amplitude: (a) in LO and (b) one of the NLO hard-gluon exchange diagrams.

Preliminary Results for $B \rightarrow K \ell \ell$

Data: BaBar (magenta), Belle (blue), CDF (red), LHCb (cyan)
Solid and dotted: Two different ansaetze for the dispersion relation
Dashed: Without the nonlocal contributions

$$
\frac{d A_{l}^{(0-)}\left(q^{2}\right)}{d q^{2}}=\frac{d \Gamma\left(\bar{B}_{0} \rightarrow \bar{K}_{0} \ell^{+} \ell^{-}\right) / d q^{2}-d \Gamma\left(B^{-} \rightarrow K^{-} \ell^{+} \ell^{-}\right) / d q^{2}}{d \Gamma\left(\bar{B}_{0} \rightarrow \bar{K}_{0} \ell^{+} \ell^{-}\right) / d q^{2}+d \Gamma\left(B^{-} \rightarrow K^{-} \ell^{+} \ell^{-}\right) / d q^{2}}
$$

VERY Preliminary, Uncertainties to be discussed
T. Mannel, Siegen University

Calculational Tools

Outlook

- Theory tools for many processes are ready for higher precision
- Leptonic and Semileptonic is quite mature
- Nonleptonic still remains problematic

