Calculational Tools in the Era of Super-Flavour Factories

Thomas Mannel

Theoretische Physik I

Universität Siegen

< □ > < □ > < □ > < □ >

2012 Capri Workshop, June 11th, 2012

Contents

Introduction

- The Need for Precision Flavour Physics
- What can Flavour tell us?

2 Theory Tools for Precision Flavour Physics

- The Toolbox
- Example 1: The V_{ub} Problem
- Example 2: Calculation of $B \to K^{(*)}\ell\ell$

3 Outlook

▲ ■ ▶ | ▲ ■ ▶ |

æ

The Need for Precision Flavour Physics What can Flavour tell us?

ヘロト 人間 ト ヘヨト ヘヨト

3

The Need for Precision Flavour Physics

T. Mannel, Siegen University Calculational Tools

The Need for Precision Flavour Physics What can Flavour tell us?

- The Standard Model passed all tests up to the 100 GeV Scale:
- LEP: test of the gauge Structure
- Flavour factories: test of the Flavour Sector

T. Mannel, Siegen University

Calculational Tools

Introduction

Theory Tools for Precision Flavour Physics Outlook The Need for Precision Flavour Physics What can Flavour tell us?

No significant deviation has been found (yet)!

... only a few "tensions" (= Observables off by 2σ or even less)

LHC will perform a direct test of the TeV Scale

The Need for Precision Flavour Physics What can Flavour tell us?

・ロト ・ 『 ト ・ ヨ ト

What can Flavour tell us?

- Flavour Physics ↔ No new physics at the TeV scale with a generic flavour structure
- Parametrization of new physics: Higher Dimensional Operators:

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \frac{1}{\Lambda} \mathcal{L}^{(5)} + \frac{1}{\Lambda^2} \mathcal{L}^{(6)} + \cdots \qquad \mathcal{L}^{(n)} = \sum_j C_j O_j^{(n)}$$

- Λ: New Physics scale
- $O_j^{(n)}$: Local Operators of dimension *n*

Introduction Theory Tools for Precision Flavour Physics Outlook The Need for Precision Fl What can Flavour tell us?

• Some of the $O_j^{(n)}$ may mediate flavour transitions: e.g.

$$\begin{split} O_1^{(6)} &= (\bar{s}_L \gamma_\mu d) (\bar{s}_L \gamma^\mu d) & (\text{Kaon Mixing}) \\ O_2^{(6)} &= (\bar{b}_L \gamma_\mu d) (\bar{b}_L \gamma^\mu d) & (B_d \text{ Mixing}) \\ O_3^{(6)} &= (\bar{b}_L \gamma_\mu 2) (\bar{b}_L \gamma^\mu s) & (B_s \text{ Mixing}) \\ O_4^{(6)} &= (\bar{c}_L \gamma_\mu u) (\bar{c}_L \gamma^\mu u) & (D \text{ Mixing}) \end{split}$$

- $\Lambda \sim 1000$ TeV from Kaon mixing ($C_i = 1$)
- Λ ~ 1000 TeV from D mixing
- $\Lambda \sim 400$ TeV from B_d mixing
- $\Lambda \sim 70$ TeV from B_s mixing

ヘロン ヘアン ヘビン ヘビン

3

The Need for Precision Flavour Physics What can Flavour tell us?

Another Peculiarity of SM Flavour Parametrization: CP

- Strong CP remains mysterious
- Flavour diagonal CP Violation is well hidden: e.g electric dipole moments:

For quarks at least three loops (Shabalin)

Composite objects can have larger edm's ("loopless") :

 $d^{
m Neutron} \sim 10^{-31} e\,cm$

TM, Uraltsev 2012

ヘロト 人間 ト ヘヨト ヘヨト

æ

Theory Tools for Precision Flavour Physics

T. Mannel, Siegen University Calculational Tools

ヘロト 人間 ト ヘヨト ヘヨト

3

The Toolbox Example 1: The V_{ub} Problem Example 2: Calculation of $B \to K^{(*)}\ell\ell$

The Toolbox

- QCD based effective field theories
 - Chiral Perturbation Theory, including heavy hadron χPT
 - Heavy Quark Effective Theory
 - Heavy Quark OPE for inclusive processes
 - Soft Collinear Effective Theory
- QCD Sum Rules
 - Fixed point sum rules
 - Light-Cone Sum rules
- (Approximate) Flavour Symmetries
 - ... including SU(3) breaking
 - ... supplemented by "diagrammatic considerations"
- Lattice

Models have become (almost) obsolete!

The Toolbox Example 1: The V_{ub} Problem Example 2: Calculation of $B \to K^{(*)}\ell\ell$

ヘロン 人間 とくほ とくほ とう

3

Example 1: The V_{ub} Problem

... this requires almost the whole toolset:

- Exclusive V_{ub} from B → πℓν: Lattice and Light-Cone QCD Sum Rules
- Inclusive V_{ub}: HQE and SCET

The Toolbox Example 1: The V_{ub} Problem Example 2: Calculation of $B \to K^{(*)}\ell\ell$

イロト イポト イヨト イヨト

Exclusive determination of: V_{ub}

- Recent improvement of the calculations for $B o \pi \ell ar
 u$
- LCQCDSR Calculation of

$$\Delta\zeta\left(0,q_{max}^{2}\right) = \frac{1}{|V_{ub}|^{2}\tau_{B^{0}}}\int_{0}^{q_{max}^{2}} dq^{2} \frac{d\mathcal{B}(B \to \pi \ell \nu_{\ell})}{dq^{2}},$$

… including

- Full $\mathcal{O}(\alpha_s)$ QCD corrections
- Subleading twists
- *a*₂ and *a*₄ corrections to the pion DA, fitted from the electromagnetic pion form factor

Khodjamirian, Klein, T.M., Wang

The Toolbox Example 1: The V_{ub} Problem Example 2: Calculation of $B \to K^{(*)}\ell\ell$

→ Ξ → → Ξ

< < >> < </>

LCQCDSR Result for the from factor, $0 \le q^2 \le 12 \text{ GeV}^2$

The Toolbox Example 1: The V_{ub} Problem Example 2: Calculation of $B \to K^{(*)}\ell\ell$

ヘロト ヘアト ヘヨト ヘ

Linking high q^2 with low q^2

- LCQCDSR are limited to "small" values of q^2
- Complementary to lattice calculations
- We have QCD based calculations / estimates of the from factors *f*₊ and *f*₀ in the full kinematic region
- Uncertainties become controllable and are already quite small !
- May become the most accurate way to determine V_{ub}

The Toolbox Example 1: The V_{ub} Problem Example 2: Calculation of $B \to K^{(*)}\ell\ell$

Linking high q^2 with low q^2 : z parametrization

The vector form factor $f_{B\pi}^+(q^2)$ calculated from LCSR and fitted to the BCL parameterization (solid) with uncertainties (dashed), compared with the HPQCD [4] (triangles) and FNAL/MILC [5] (squares) results.

The Toolbox Example 1: The V_{ub} Problem Example 2: Calculation of $B \to K^{(*)}\ell\ell$

Theory vs. Experiment

(colour online) The normalized q^2 -distribution in $B \rightarrow \pi l \nu$ obtained from LCSR and extrapolated with the z-series parameterization (central input- solid, uncertainties -dashed). The experimental data points are from BABAR: (red) squares [1], (blue) triangles [2] and Belle [3]: (magenta) full circles.

IntroductionThe ToolboxTheory Tools for Precision Flavour PhysicsExample 1: The V_{ub} ProblemOutlookExample 2: Calculation of $B \rightarrow K^{(*)}\ell\ell$

Value of V_{ub} from Khodjamirian et al.:

$$|V_{ub}| = (3.50^{+0.38}_{-0.33}ig|_{\textit{th.}} \pm 0.11ig|_{\textit{exp.}}) imes 10^{-3}$$

Lattice \otimes LCQCDSR has reached 10% th. uncertainty in $V_{ub,excl}$!

This is to be compared to the inclusive value:

$$|V_{ub}| = (4.41 \pm 0.15 \substack{+ \ 0.15 \ - \ 0.19}) imes 10^{-3}$$

ヘロト ヘヨト ヘヨト

We have to find out what is going on here!

The Toolbox Example 1: The V_{ub} Problem Example 2: Calculation of $B \to K^{(*)}\ell\ell$

ヘロト 人間 とくほとく ほとう

э.

The Role of $B \rightarrow \tau \bar{\nu}$

• $B \rightarrow \tau \bar{\nu}$ depends crucially on f_B

$$\mathcal{B}(B^- o au ar{
u}_ au) = rac{G_F^2}{8\pi} |V_{ub}|^2 m_ au^2 m_B \left(1 - rac{m_ au^2}{m_B^2}
ight)^2 f_B^2 au_{B^-}$$

- The extracted V_{ub} value is quite large ...
- However, if the data are right, QCD (or the SM) must have a problem: Define Khodjamirian, Klein, T.M., Wang

$$egin{aligned} \mathcal{R}_{s/l}(q_1^2,q_2^2) &\equiv rac{\Delta \mathcal{B}_{B o \pi \ell
u_\ell}(q_1^2,q_2^2)}{\mathcal{B}(B o au
u_ au)} \left(rac{ au_{B^-}}{ au_{B^0}}
ight) \ &= rac{\Delta \zeta(q_1^2,q_2^2)}{(G_F^2/8\pi)m_ au^2 m_B(1-m_ au^2/m_B^2)^2 f_B^2} \end{aligned}$$

Introduction	
Theory Tools for Precision Flavour Physics	Example 1: The V _{ub} Problem
Outlook	Example 2: Calculation of $B \to K^{(*)}\ell\ell$

Exp.	$\Delta \mathcal{B}(10^{-4})$ [Ref.]	$\mathcal{B}(B o au u_{ au})(10^{-4})$ [Ref.]	$R_{s/l}$
BABAR	$0.32 \pm 0.03 \; [1] \\ 0.33 \pm 0.03 \pm 0.03 \; [2]$	$1.76 \pm 0.49 \; [36, 37]$	$0.20\substack{+0.08\\-0.05}$
Belle	$0.398 \pm 0.03 \; [3]$	$1.54^{+0.38}_{-0.37}{}^{+0.29}_{-0.31}$ [38]	$0.28\substack{+0.13 \\ -0.07}$
QCD	$\Delta \zeta ({ m ps}^{-1})$ [Ref.]	$f_B({ m MeV}) \; [{ m Ref.}]$	$R_{s/l}$
HPQCD	2.02 ± 0.55 [4]	$190 \pm 13 \; [34]$	0.52 ± 0.16
FNAL/MILC	$2.21^{+0.47}_{-0.42}$ [5]	$212\pm9[35]$	0.46 ± 0.10

 $R_{s/l}$ for the region 16 GeV² $< q^2 <$ 26.4 GeV²

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Introduction	
Theory Tools for Precision Flavour Physics	Example 1: The V _{ub} Problem
Outlook	Example 2: Calculation of $B \to K^{(*)}\ell\ell$

Exp.	$\Delta \mathcal{B}(10^{-4})$ [Ref.]	$\mathcal{B}(B \to \tau \nu_{\tau})(10^{-4})$ [Ref.]	$R_{s/l}$
BABAR	$0.88 \pm 0.06 [1] \ 0.84 \pm 0.03 \pm 0.04 [2]$	$1.76 \pm 0.49 \; [36, 37]$	$0.52\substack{+0.20 \\ -0.12}$
QCD	$\Delta \zeta ~[ext{Ref.}]$	$f_B({ m MeV})$ [Ref.]	$R_{s/l}$
LCSR/QCDSR	$4.59^{+1.00}_{-0.85}$ [this work]	210 ± 19 [41]	$0.97\substack{+0.28\\-0.24}$

 $R_{
m s/l}$ for the region 0 GeV² $< q^2 <$ 12.0 GeV²

Some clarification is needed here ...

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ■ ∽ � � �

The Toolbox Example 1: The V_{ub} Problem Example 2: Calculation of $B \to K^{(*)}\ell\ell$

・ロン ・四 と ・ ヨ と ・ ヨ と …

æ

Example 2: Calculation of $B \to K^{(*)}\ell\ell$

- Theory of B → K^(*)ℓ⁺ℓ⁻ is substantially different from the one for B → Dℓν̄:
- Effective Interaction:

$$egin{aligned} {\mathcal H}_{e\!f\!f} = -rac{4G_{\!F}}{\sqrt{2}} \, V_{t\!b} \, V_{t\!s}^* \! \sum_{i=1}^{10} C_i(\mu) O_i(\mu) \, , \end{aligned}$$

- Dominant $b \rightarrow s$ effective operators: $O_{7,9,10}$ $C_7(m_b) \simeq -0.3$, $C_9(m_b) \simeq 4.4$, $C_{10}(m_b) \simeq -4.7$
- ... can be expressed in terms of form factors

$$O_{7,9,10} \propto \langle K^{(*)}(p) | ar{ extsf{s}} ar{ extsf{b}} | B(p+q)
angle$$

The Toolbox Example 1: The V_{ub} Problem Example 2: Calculation of $B \to K^{(*)}\ell\ell$

ヘロト ヘアト ヘヨト ヘ

Charm Loops

Buchalla, Isidori, Feldmann, Khodjamirin, TM, Pivovarov, Wang

 Charm-loop effect: a combination of the (sc)(cb) weak interaction (O_{1,2}) and e.m.interaction (cc)(ll)

new hadronic matrix elements, not a form factor

IntroductionThe ToolboxTheory Tools for Precision Flavour PhysicsExample 1: The V_{ub} ProblemOutlookExample 2: Calculation of $B \rightarrow K^{(*)}\ell\ell$

- Light cone expansion of the charm loop
- Expansion parameter $\frac{\Lambda_{QCD}^2}{(4m_c^2 q^2)}$
- Leads to a non-local operator ("shape-function-like" operator)

$$\widetilde{\mathcal{O}}_{\mu}(\boldsymbol{q}) = \int \boldsymbol{d}\omega \ \boldsymbol{I}_{\mu
holphaeta}(\boldsymbol{q}, \boldsymbol{m_{c}}, \omega) \bar{\boldsymbol{s}}_{L} \gamma^{
ho} \left(\delta[\omega - rac{(in_{+}\mathcal{D})}{2}] \widetilde{\boldsymbol{G}}_{lphaeta}\right) \boldsymbol{b}_{L} \; ,$$

• Matrix element can be calculated in a LCSR for $q^2 \leq 0$

ヘロン ヘアン ヘビン ヘビン

æ

The Toolbox Example 1: The V_{ub} Problem Example 2: Calculation of $B \to K^{(*)}\ell\ell$

ヘロト 人間 とくほとくほとう

э

Accessing the region $q^2 > 0$

• Hadronic Dispersion Relation:

$$egin{aligned} &\mathcal{H}^{(c,s,b)}_{(BK)}(q^2)\mathcal{H}^{(c,s,b)}_{(BK)}(0) \ &+q^2\Big[\sum_{\psi=J/\psi,\psi(2S),...}rac{f_{\psi}\mathcal{A}_{B\psi K}}{m_{\psi}^2(m_{\psi}^2-q^2-im_{\psi}\Gamma^{tot}_{\psi})} \ &+\int_{4m_D^\infty}^\infty dsrac{
ho(s)}{s(s-q^2-i\epsilon)}\Big] \end{aligned}$$

- Residues from $BR(B \rightarrow \psi K)$ and $BR(\psi \rightarrow \ell \ell)$
- FSI Phase attributed to $A_{B\psi K}$
- Fit to the result at $q^2 < 0$

The Toolbox Example 1: The V_{ub} Problem Example 2: Calculation of $B \to K^{(*)}\ell\ell$

ヘロト ヘワト ヘビト ヘビト

э

Results on $B \to K^* \ell^+ \ell^-$

IntroductionThe ToolboxTheory Tools for Precision Flavour Physics
OutlookExample 1: The V_{ub} ProblemExample 2: Calculation of $B \rightarrow K^{(*)}\ell\ell$

Problem to compute above the charm threshold? Problem also below charm theshold: $B \to K\phi \to K\ell^+\ell^-$... currently under consideration Khodjamirian, Wang, TM

The Toolbox Example 1: The V_{ub} Problem Example 2: Calculation of $B \to K^{(*)}\ell\ell$

Detailed Analysis of $B \rightarrow K\ell\ell$

- Form factors and Light-cone distribution amplitudes are better known for *K*
- Current work: A detailed analysis ... (Khodjamirian, T.M., Wang)

Figure 1: Dominant contributions to $B \to K\ell^+\ell^-$ amplitude due to the effective operators $O_{9,10}$ (a) and O_7 (b) denoted as black squares.

Figure 2: Factorizable quark-loop contributions to $B \to K\ell^+\ell^-$ amplitudes due to fourquark effective operators $O_{1,2}^c$ and O_{3-6} . Crossed circles denote the possible emission points of the virtual photon.

Figure 3: Nonfactorizable quark-loop contributions to $B \to K\ell^+\ell^-$: (a) with soft gluon (denoted by crossed line) and (b) with hard-gluon.

ъ

IntroductionThe ToolboxTheory Tools for Precision Flavour Physics
OutlookExample 1: The V_{ub} ProblemExample 2: Calculation of $B \to K^{(*)}\ell\ell$

Figure 4: Contributions of the O_{8g} operator to $B \to K\ell^+\ell^-$ amplitude: (a) factorizable and nonfactorizable with (b) soft-gluon and (c) hard -gluon.

Figure 5: Weak annihilation contribution to $B \to K\ell^+\ell^-$ amplitude: (a) in LO and (b) one of the NLO hard-gluon exchange diagrams.

イロト イポト イヨト イヨト

э

The Toolbox Example 1: The V_{ub} Problem Example 2: Calculation of $B \to K^{(*)}\ell\ell$

Preliminary Results for $B \to K \ell \ell$

Data: BaBar (magenta), Belle (blue), CDF (red), LHCb (cyan) Solid and dotted: Two different ansaetze for the dispersion relation Dashed: Without the nonlocal contributions

・ロット (雪) () () () ()

э

IntroductionThe ToolboxTheory Tools for Precision Flavour PhysicsExample 1: The V_{ub} ProblemOutlookExample 2: Calculation of $B \rightarrow K^{(*)}\ell\ell$

$$\frac{dA_l^{(0-)}(q^2)}{dq^2} = \frac{d\Gamma(\bar{B}_0 \to \bar{K}_0 \ell^+ \ell^-)/dq^2 - d\Gamma(B^- \to K^- \ell^+ \ell^-)/dq^2}{d\Gamma(\bar{B}_0 \to \bar{K}_0 \ell^+ \ell^-)/dq^2 + d\Gamma(B^- \to K^- \ell^+ \ell^-)/dq^2}$$

T. Mannel, Siegen University Calculational Tools

Outlook

- Theory tools for many processes are ready for higher precision
- Leptonic and Semileptonic is quite mature
- Nonleptonic still remains problematic

