Leptonic and Semileptonic decays at BaBar

Fabio Ferrarotto INFN Roma I on behalf of BaBar

Fourth Workshop on Theory, Phenomenology and Experiments in Flavour Physics

Villa Orlandi, Anacapri 11-14 June 2012

Outline

- Introduction
- Tagging
- Semileptonic Exclusive Measurements

- $B \rightarrow D^{(*)} \tau v$
- Semileptonic Inclusive Measurements
 - $B^+ \rightarrow X_u / v$
- Leptonic B decays

- $B^0 \rightarrow \text{invisible (+}\gamma\text{)}$
- Search for FCNC

- $B^+ \rightarrow h^+ \tau I$
- $D^0 \rightarrow l^+ l^-$
- Tests of SM and NP
- Conclusions and Outlook

arXiv:1205.5442

arXiv:1112.0702v1

Preliminary

arXiv:1204.2852

Preliminary

Introduction

472*10⁶ BB pairs produced in e⁺e⁻ collisions at Y(4S) ~ at rest in CM

- asymmetric CM energy (boost β =0.55) \Rightarrow we can separate the B decay vertices
- exclusive B decays : kinematics variables • low background : $\sigma(BB) \sim 1/5 \sigma(had)$ Continuum contribution measured by off-resonance runs during data taking
- low-multiplicity (~11 tracks /evt) ⇒ "easy" to fully reconstruct B decay
- very good particle ID and separation

Fabio Ferrarotto4. Workshop on Theory, Phenomenology and Experiments in Flavour Physics@Anacapri

Tagging method

Weak signal signature

Decay with p_{mis} (one or more v in final state) \rightarrow lack of kinematics constraints in final state

- \rightarrow background rejection improved identifying the companion B
- \rightarrow kinematics from the companion B

Look for signal in the rest of the event

Semileptonic B decays

 $Ex : B \rightarrow D^*/v$

- PRO: Higher efficiency $\epsilon_{tag} \sim O(10^{-2})$
- CON: more backgrounds, B momentum unmeasured

Hadronic B decays (with charm)

Ex : $B^+ \rightarrow D^{(*)0}X^+$ or $B^0 \rightarrow D^{(*)+}X^-$

• X charged system of hadrons : among (π, K, π^0, K_s)

up to 5-6 charged and 2-3 neutrals

- PRO: cleaner events, B momentum reconstructed
- CON: smaller efficiency $\epsilon_{tag} \sim O(10^{-3} 10^{-2})$

ArXiv:1205-5442 submitted to PRL

Semileptonic decays to τ sensitive to charged Higgs at tree level \rightarrow less model dependence Have an additional helicity amplitude H_r

$$B \left\{ \begin{array}{c} W^{-} / H^{-} < \overset{\tau^{-}}{\overline{v}} \\ g & & \\ \hline q & & \\ \hline q & & \\ \hline \end{array} \right\} D^{(*)}$$

For D
$$\tau\nu$$
, only H₀₀ and H_t contribute

$$\frac{d\Gamma_{\tau}}{dq^2} = \frac{G_F^2 |V_{cb}|^2 |\mathbf{p}| q^2}{96\pi^3 m_B^2} \left(1 - \frac{m_{\tau}^2}{q^2}\right)^2 \left[\left(|H_{++}|^2 + |H_{--}|^2 + |H_{00}|^2\right) \left(1 + \frac{m_{\tau}^2}{2q^2}\right) + \frac{3}{2} \frac{m_{\tau}^2}{q^2} H_{t} \right]^2 \right]$$
Z. Phys. C46, 02 (1000)

 $B \rightarrow D^{(*)} \tau \nu$

Test of SM : measure of $R(D) = \frac{Y(B - V(\overline{R}))}{V(\overline{R})}$

$$\frac{\to D\,\tau\nu}{\to D\ell\,\nu} \qquad R(D^*) = \frac{Y(\overline{B}\to D^*\tau\nu)}{Y(\overline{B}\to D^*\ell\nu)}$$

many uncertainties cancel in ratio

- Fully reconstruct B_{tag} in $B \rightarrow D^{(*)}X$, $D_s^{(*)}X$, $J/\Psi X$ (X = π , K modes, $n_\chi < 6$)
- B_{sig} : reco of $D^{(*)}$ and e or μ + no additional charged particles
- Kinematic selection : $q^2 > 4 \text{ GeV}^2$
- Background suppression by Boosted Decision Tree (combinatorial and D**/v)
- E_{Extra} : important variable **but** has large uncertainties

 \rightarrow Not used in the fit

- MC correction based on data distributions
- Fit unbinned M.L. fit on 2-D distributions:

 $m_{miss}^{2} = (P_{e+e-} - P_{Btag} - P_{D(*)} - P_{J})^{2}$, P_{J}^{*} in B rest frame

Fabio Ferrarotto4. Workshop on Theory, Phenomenology and Experiments in Flavour Physics@Anacapri

 $\mathcal{B}(B^0 \to X_c \ell^- \bar{\nu}_\ell) \sim 10.9\%$

$D^{*0}\ell^-\bar{\nu}_\ell$	$D^0 \ell^- \bar{\nu}_\ell$	$D^{**}\ell^-\bar{\nu}_\ell$???
5.5%	2.3%	1.7%	1.4%

$B \rightarrow D^* \tau \nu$ Full BABAR dataset : 472 million BB pairs

4 signal samples : $D^0 I$, $D^{*0} I$, $D^+ I$, $D^{*+} I$ ($I = e \text{ or } \mu$)

PDF's from MC

Fitted Yelds : 4 $D^{(*)}\tau v$ Signal + 4 $D^{(*)}/v$ Normalization + 4 D^{**}/v Background

Fixed Backgrounds : B^0-B^+ cross feed + BB combinatorial BG+ Continuum $e^+e^- \rightarrow ff(\gamma)$

$B \rightarrow D \tau \nu$ Full BABAR dataset : 472 million BB pairs

4 signal samples : $D^0/$, $D^{*0}/$, $D^+/$, $D^{*+}/$ ($I = e \text{ or } \mu$)

PDF's from MC

Fitted Yelds : $4 D^{(*)}\tau v$ Signal + $4 D^{(*)} h v$ Normalization + $4 D^{**} h v$ Background Fixed Backgrounds : $B^0 - B^+$ cross feed + BB combinatorial BG+ Continuum $e^+e^- \rightarrow ff(\gamma)$

Summary of R(D) and R(D*) Measurement

R(D) and R(D*) correlated (-0.27)

Combination yields χ^2 /NDF=14.6/2 i.e. Prob = 6.9 x 10⁻⁴ !

Data exclude SM by 3.4 σ !!

Including syst errors $B \rightarrow D\tau v$: 6.8 σ significance

Implications for the Higgs sector

Individual measurement exceeds SM by > 2σ : 2Higgs Doublet Model may explain excesses individually.

A charged Higgs (2HDM type II) of spin 0 coupling to τ will affect H₁

$$H_{t}^{2\text{HDM}} = H_{t}^{\text{SM}} \times \left(1 + \frac{\tan^{2}\beta}{m_{H^{\pm}}^{2}} + \frac{q^{2}}{m_{c}/m_{b}}\right) + D\tau v \\ - D^{*}\tau v$$
Combination of R(D) and R(D^{*}) inconsistent and excludes type II 2HDM with a probability > 99.8% in the full tan2\beta-m_{H} parameter space !! (provided m_{H} > 10 GeV)

2HDM changes kinematic distributions as a fct of $tan\beta/m_{_{H}}$, hence the efficiencies change

Semileptonic tree-level B decays provide the cleanest environment to study $V_{\mu\nu}$

Experimental challenges :

- Large B $\rightarrow X_c I v$ background (~ 50 times larger)
- \bullet Variables like $\,\,M_{_X}$ and q^2 require full event reconstruction
- Background BF, bkg and signal distributions not that well understood

Theoretical challenges :

- OPE convergence destroyed in limited phase space
- Rates are sensitive to b-quark dynamics inside B meson.
- Uncertainties in input parameters

Fully reconstruct B_{tag} in $B \rightarrow D^{(*)}X$ (X = π , K modes, $n_{\chi} < 6$ charged + < 3 neutrals) \rightarrow kinematics and flavour of B_{sig} known (high purity, low efficiency O(10⁻³)) Look for a lepton ($p_{I}^{*} > 1$ GeV/c) and neutrino (missing momentum) in B_{sig} Fabio Ferrarotto 4. Workshop on Theory, Phenomenology and Experiments in Flavour Physics@Anacapri

Inclusive |V_{ub}| with hadronic tag Full BABAR dataset : 472 million BB pairs

Precision of V_{ub} limited by theory uncertainties due to phase space cuts Performed a (M_x , q²) 2-dim unbinned ML fit <u>without</u> phase space cuts (except p^{*}, > 1.0 GeV \rightarrow 88-90% of phase space where theo uncertainites are smaller)

 $\Delta \mathcal{B} (B \rightarrow X_{\mu} / v) (10^{-3}) = 1.80 \pm 0.13 \text{ stat} \pm 0.15 \text{ syst} \pm 0.02 \text{ theo}$

 $|V_{ub}| = (4.31 \pm 0.25 \text{ exp} \pm 0.16 \text{ theo}) \times 10^{-3}$ [avg 4 QCD predictions *]

Systematic error mostly from $B \rightarrow X_u l v$ and BG simulation BaBar measurement in different kinematic regions agree !

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(\overline{B} \to X_u \ell \bar{\nu})}{\tau_B \ \Delta \Gamma_{\text{theory}}}}}$$
* BLNP : multi-scale OPE based on SCET
DGE : resummed perturbations theory
GGOU : large range of distributions fct.
ADFR : partial BF in terms of $|V_{cb}|^2 / |V_{ub}|^2$
NP B699, 335 (2004)
JHEP 0601, 096 (2006)
JHEP 0710, 058 (2007)
Eur. Phys. J. C 59, 831 (2009)

Fabio Ferrarotto4. Workshop on Theory, Phenomenology and Experiments in Flavour Physics@Anacapri

Preliminary

$B \rightarrow invisible$

SM : $B^0 \rightarrow \nu \nu$ decay suppressed by a factor $(m_{\nu}/m_{B})^2$ BF($B^0 \rightarrow \nu \nu \gamma$) is of the order of 10⁻⁹

In SUSY model BR(B⁰ → Invisible) can be enhanced up to 10⁻⁷-10⁻⁶ due to neutrino+neutralino production in the final state A. Dedes, H. Dreiner, and P. Richardson, hep-ph/0106199, Phys. Rev.D65, 015001 (2001)

Semileptonic tag: B_{tag} in $B^0 \rightarrow D^{(*)-}I^+\nu$ Look for consistency with an invisible(+ γ) decay of the other neutral B_{sig}

Fabio Ferrarotto 4. Workshop on Theory, Phenomenology and Experiments in Flavour Physics@Anacapri

B → invisible

Full BABAR dataset : 472 million BB pairs

Most discriminating variable : total residual energy - unassociated clusters in the calo (E_{extra})

Fabio Ferrarotto 4. Workshop on Theory, Phenomenology and Experiments in Flavour Physics@Anacapri

Tree-level Flavor-Changing Neutral-Currents (FCNC) forbidden in SM

Well-motivated extensions of the SM include LFV in FCNCs : \rightarrow NP may enhance interactions coupling to 2nd and 3rd generations

Phys. Rev. D 44, 1461 (1991)

Experimental constraints involving τ in B meson decays weak

 \rightarrow difficulty : reconstruct $\tau\,$ daughters (involving neutrinos)

From Black et al.* on τ -µ flavor violation, using full BABAR data and expected sensitivity on $\mathcal{B}(B^{\pm} \rightarrow K^{\pm}\tau\mu)$ the NP energy scale in FC operators can be pushed to $\Lambda > 15$ TeV * Phys.Rev.D66, 053002 (2002)

8 final states looked

Submitted to PRD arXiv:1204.2852

Fully reconstruct hadronic $B_{tag} \rightarrow D^{(*) \ 0}X^{-}$ decays Determine B_{tag} momentum \rightarrow known B_{sig} momentum Combinatoric background rejection performed with likelihood ratio Studied 3 single prong τ decays (e,μ,π^{-} [$\geq 0 \ \pi^{0}$]) channels Fully reconstruct τ invariant mass using E_{beam} in Υ (4S) CM frame

Full BABAR dataset : 472 million BB pairs

Results for all modes : first time measurement for these 3 decay modes

Signal region : $m_{\tau} \pm 60 \text{ MeV}$

Count events in τ regions : No evidence for signals

Fabio Ferrarotto4. Workshop on Theory, Phenomenology and Experiments in Flavour Physics@Anacapri

	$\mathcal{B}(B\toh)$	τ/) (x1	-0 ⁻⁵)
Mode	central va	lue	90% CL UL
$B^+ \rightarrow K^+ \tau^- \mu^+$	+0.8	+1.9 -1.4	< 4.5
$B^+ \rightarrow K^+ \tau^+ \mu^-$	-0.4	+1.4 -0.9	< 2.8
$B^+ \rightarrow K^+ \tau^- e^+$	+0.2	+2.1 -1.0	< 4.3
$B^+ \rightarrow K^+ \tau^+ e^-$	-1.3	+1.5 -1.8	< 1.5
$B^+ \ \rightarrow \ \pi^+ \tau^- \mu^+$	+0.4	+3.1 -2.0	< 6.2
$B^+ \ \rightarrow \ \pi^+ \tau^+ \mu^-$	0.0	+2.6 -2.0	< 4.5
$B^+ \rightarrow \pi^+ \tau^- e^+$	2.8	+2.4 -1.9	< 7.4
$B^+ \rightarrow \pi^+ \tau^+ e^-$	-3.1	+2.4 -2.1	< 2.0

Conservative constraints on NP parameters from "clean" modes

Used Feldman-Cousins UL

Black et al.* : estimate NP energy scales for 3rd generation flavor changing couplings

$$\begin{aligned} \mathcal{B} \left(\mathsf{B}^{+} \rightarrow \pi^{+} \tau^{-} \mu^{+} \right) &\leq 6.2 \times 10^{-5} \rightarrow \mathsf{A}_{\mathsf{bd}} \geq 12 \; \mathsf{TeV} \\ \mathcal{B} \left(\mathsf{B}^{+} \rightarrow \mathsf{K}^{+} \tau^{-} \mu^{+} \right) &\leq 4.5 \times 10^{-5} \rightarrow \mathsf{A}_{\mathsf{bs}} \geq 15 \; \mathsf{TeV} \end{aligned}$$

* Phys.Rev.D66, 053002 (2002)

1 order of magnitude improvement over old limits

FCNC decay highly GIM suppressed in SM.

Long-distance corrections raise $D^0 \rightarrow \mu^+ \mu^-$ BF to as high as 10⁻¹³ within SM

BF could be enhanced by many orders of magnitude by NP.

Sensitivity with full dataset and improved analysis expected to be $~10^{-7}$

- → D° candidates from $D^{*+} \rightarrow D^{\circ} \pi^{+}$ to reduce combinatoric BG.
 - $p^*(D^0) > 2.4$ GeV to remove D^0 from B decay
- Lepton particle ID to help BG separation
- Combinatoric background mostly has real leptons in it
 - BB background : Fisher discriminant ,continuum BG : helicity angle cut
- → *Peaking* background from $D^0 \rightarrow h^+h^-$
 - $D^{\circ} \rightarrow K^{-}\pi^{+}$ and $D^{\circ} \rightarrow K^{+}K^{-}$ modes are far away in m(D^o) (not a problem).
 - $D^{o} \rightarrow \pi^{+}\pi$ is a *dominant* BG for the $D^{o} \rightarrow \mu^{+}\mu^{-}$ mode.

 $D^0 \rightarrow l^+ l^-$

Very few events survive all cuts -- use cut-and-count approach Normalize signal BF relative to $D^0 \rightarrow \pi^* \pi^-$

 $\Delta m = m(D^*) - m(D)$

Combinatoric BG in signal window from upper SB

Peaking $D^{o} \rightarrow \pi^{+}\pi^{-}$ in $\mu\mu$ signal window from *misid* rates measured in data

For µµ channel Feldman-Cousins UL procedure results in a 2-sided 90% CL interval

Superseeds PRL 93, 191801 (2004)

Fabio Ferrarotto

4. Workshop on Theory, Phenomenology and Experiments in Flavour Physics@Anacapri

Tests of SM and NP

Another problem : $B \rightarrow \tau v |V_{ub}| = (5.0 \pm 0.6) \cdot 10^{-3}$

4 low statistics measurements

... and now also the rates for $B \rightarrow D^{(*)}\tau v$ exceed the SM by 3.4 σ

Fabio Ferrarotto 4. Workshop on Theory, Phenomenology and Experiments in Flavour Physics@Anacapri

Conclusions and outlook - I

Study of leptonic and semileptonic decays continues to be a very active area for both theory and experiment and has recently greatly improved

- Use of **B** tagging technique : substantially reduces backgrounds + improves systematic uncertainties
- Major improvements in analysis + larger data sets : reduced uncertainties on BF, $|V_{ub}|$ and $|V_{cb}|$
- Stringent new limits on rare and forbidden B decays and New Physics

Yet found no evidence for New Physics : overall consistency of UT constraints

BUT

some "tensions" are visible :

- \rightarrow values of inclusive and exclusive $|V_{\mu\nu}|$ and $|V_{\mu\nu}|$ differ by more than 2 sigma
- → \mathcal{B} (B → τv) [vs sin 2 β and V_{ub}] do not agree with SM expectations
- A significant excess of events has been observed in $B \to D \tau \nu$ and $B \to D^* \tau \nu$
 - → cannot be explained in terms of a 2DHM of type II

Statistical fluctuations, unknown systematic uncertainties or hints of NP around the corner?

Conclusions and outlook - II

Impressive number of new results from BaBar [and Belle] still produced

BaBar still well and alive long after end of data-taking (2008)

Physics Book of B-Factories in preparation by BaBar and Belle jointly

SM very well verified by UT constraints

BUT

"tensions" present : NP could be near

We need more data and better precision Major advances are expected from LHCb and future B Factories !

Backup slides

The BaBar detector

	$\mathcal{B}(B\toh)$	τ <i>Ι</i>) (x1	-0 ⁻⁵)
Mode	central va	alue	90% CL UL
$B^+ \ \rightarrow \ K^+ \tau^- \mu^+$	+0.8	+1.9 -1.4	< 4.5
$B^+ \ \rightarrow \ K^+ \tau^+ \mu^-$	-0.4	+1.4 -0.9	< 2.8
$B^+ \rightarrow K^+ \tau^- e^+$	+0.2	+2.1 -1.0	< 4.3
$B^+ \rightarrow K^+ \tau^+ e^-$	-1.3	+1.5 -1.8	< 1.5
$B^+ \rightarrow \pi^+ \tau^- \mu^+$	+0.4	+3.1 -2.0	< 6.2
$B^+ \ \rightarrow \ \pi^+ \tau^+ \mu^-$	0.0	+2.6 -2.0	< 4.5
$B^+ \rightarrow \pi^+ \tau^- e^+$	2.8	+2.4 -1.9	< 7.4
$B^+ \ \rightarrow \ \pi^+ \tau^+ e^-$	-3.1	+2.4 -2.1	< 2.0

Avg of \mathcal{B} (B-> h τ /) assuming \mathcal{B} (B-> h τ /⁺) = \mathcal{B} (B-> h τ /⁻)

	${\cal B}(B o h au\ell)~(imes 10^{-5})$		
Mode	central value	90% C.L. UL	
$B^+ \to K^+ \tau \mu$	$0.0 \ ^{+2.7}_{-1.4}$	< 4.8	
$B^+ \to K^+ \tau e$	$-0.6 \ ^{+1.7}_{-1.4}$	< 3.0	
$B^+ \to \pi^+ \tau \mu$	$0.5 \ ^{+3.8}_{-3.2}$	< 7.2	
$B^+ o \pi^+ au e$	$2.3 \ ^{+2.8}_{-1.7}$	< 7.5	

Conservative constraints on NP parameters from "clean" modes Used Feldman-Cousins UL

Black et al.* : estimate NP energy scales for 3rd generation flavor changing couplings $\mathscr{B}(B^+ \to \pi^+ \tau^- \mu^+) < 6.2 \times 10^{-5} \to bound on \Lambda_{bd} > 12 \text{ TeV} * Phys.Rev.D66, 053002 (2002)}$ $\mathscr{B}(B^+ \to K^+ \tau^- \mu^+) < 4.5 \times 10^{-5} \to bound on \Lambda_{bs} > 15 \text{ TeV}$

Inclusive $|V_{ub}|$ with hadronic tag

Theoretical challenges :

- OPE convergence destroyed in limited phase space
- Rates become sensitive to b-quark dynamics inside B meson.
 - Unknown higher orders terms in α_s and $1/m_h$ expansions
 - Shape functions (SF) to be extracted from data
 - Leading order in $1/m_{h}$: universal SF
 - Order $\Lambda_{_{OCD}}/m_{_{b}}$: several subleading SF
- Uncertainties in input parameters
 - m_b : total rate $\Gamma \sim |V_{ub}|^2 m_b^5$, partial rates $\Delta \Gamma \sim |V_{ub}|^2 m_b^{10}$

Systematics of R(D) and R(D*) Measurement

Systematic	errors			
Source	Uncerta	inty (%)		
bource	R(D)	$R(D^*)$	ρ	
$D^{**}\ell\nu$ background	5.8	3.7	0.62	 D**I v: conservative 15% constraints +
MC statistics	5.0	2.5	-0.48	fit to $D\pi$ sample
Cont. and $B\overline{B}$ bkg.	4.9	2.7	-0.30	 Limited MC signal samples 2-dim PDFs ~2000 events
$\varepsilon_{\rm sig}/\varepsilon_{\rm norm}$	2.6	1.6	0.22	~2000 evenis
Systematic uncertainty	9.5	5.3	0.05	Largest errors are Gaussian distributed !
Statistical uncertainty	13.1	71	-0.45	Ũ
Total uncertainty	(16.2)	9.0	-0.27	<pre>correlation !</pre>
				$\mathcal{D}(\mathcal{D}(*))$
Decay				$\mathcal{R}(D^{(*)})$
$\cdot B^- \rightarrow D$	$^{0}\tau^{-}\overline{\nu}$	τ	0.429	$\pm 0.082 \pm 0.052$
$B^- \rightarrow D$	$r^{*0}\tau^{-\overline{\imath}}$	$\overline{\tau}_{\tau}$	0.322	$\pm 0.032 \pm 0.022$
$\cdot \overline{B}{}^0 \rightarrow D$	$^{+}\tau^{-}\overline{\nu}$	$\overline{\tau}$	0.469	$\pm 0.084 \pm 0.053$
$\overline{B}{}^0 \rightarrow D$	$*^{+}\tau^{-}$	$\overline{ u}_{ au}$	0.355	$\pm 0.039 \pm 0.021$
$\overline{B} \rightarrow D$	$\tau^-\overline{\nu}_{\tau}$		0.440	$\pm 0.058 \pm 0.042$
$\overline{B} \rightarrow D$	$^{*} au^{-}\overline{ u}$	τ	0.332	$\pm 0.024 \pm 0.018$