CP VIOLATION IN $D \rightarrow \pi\pi$ & $D \rightarrow KK$: STANDARD MODEL OR NOT?

Luca Silvestrini

INFN, Rome

- Introduction
- Isospin amplitudes from BR's
- Unitarity constraints & CP asymmetries
- How large can penguins be?
- Conclusions

INTRODUCTION

- Some basic facts known for a long time:
- To obtain a good description of SCS D BR's need:
 - final state interactions and corrections to factorization
 - sizable SU(3) breaking

2) The SM expectation for direct CPV is $\preceq 10^{\text{-3}}$

See for example Buccella et al. '95

INTRODUCTION II

- Very recently, LHCb and CDF provided evidence of $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$
- Combining LHCb, CDF and B-factories:

$$a_{\rm CP}^{\rm dir}(\pi^+\pi^-) = (0.45 \pm 0.26) \%$$
$$a_{\rm CP}^{\rm dir}(K^+K^-) = (-0.21 \pm 0.24) \%$$
$$\Delta a_{\rm CP}^{\rm dir} = a_{\rm CP}^{\rm dir}(K^+K^-) - a_{\rm CP}^{\rm dir}(\pi^+\pi^-) = (-0.66 \pm 0.16) \%$$

INTRODUCTION III

 Can we envisage a mechanism to enhance the SM prediction for CPV by one order of magnitude to reproduce the exp result?

> Brod, Kagan & Zupan '11; Pirtskhalava & Uttayarat '11; Bhattacharya, Gronau & Rosner '12; Cheng & Chiang '12; Brod, Grossman, Kagan & Zupan '12

• Can anything analogous to the ΔI =1/2 rule take place in SCS charm decays?

Golden & Grinstein, '89

ISOSPIN & UNITARITY

- Let us start from the basic knowledge:
 - SU(3) breaking is large \Rightarrow use only isospin
 - corrections to factorization are large \Rightarrow use a general parameterization
 - final state interactions are important ⇒
 implement unitarity & external info on
 rescattering

Franco, Mishima & LS '12

ISOSPIN AMPLITUDES

$$\begin{split} A(D^{+} \to \pi^{+} \pi^{0}) &= \frac{\sqrt{3}}{2} \mathcal{A}_{2}^{\pi}, & \mathbf{r}_{\mathsf{CKM}} = \mathbf{6.4} \ \mathbf{10}^{-4} \\ A(D^{0} \to \pi^{+} \pi^{-}) &= \frac{\mathcal{A}_{2}^{\pi} - \sqrt{2} (\mathcal{A}_{0}^{\pi} + ir_{\mathrm{CKM}} \mathcal{B}_{0}^{\pi})}{\sqrt{6}}, \\ A(D^{0} \to \pi^{0} \pi^{0}) &= \frac{\sqrt{2} \mathcal{A}_{2}^{\pi} + \mathcal{A}_{0}^{\pi} + ir_{\mathrm{CKM}} \mathcal{B}_{0}^{\pi}}{\sqrt{3}}, & \mathbf{A} \ \mathbf{CP} - \mathbf{even} \\ \mathbf{B} \ \mathbf{CP} - \mathbf{odd} \\ A(D^{+} \to K^{+} \bar{K}^{0}) &= \frac{\mathcal{A}_{13}^{K}}{2} + \mathcal{A}_{11}^{K} + ir_{\mathrm{CKM}} \mathcal{B}_{11}^{K}, \\ A(D^{0} \to K^{+} K^{-}) &= \frac{-\mathcal{A}_{13}^{K} + \mathcal{A}_{11}^{K} - \mathcal{A}_{0}^{K} + ir_{\mathrm{CKM}} \mathcal{B}_{11}^{K} - ir_{\mathrm{CKM}} \mathcal{B}_{0}^{K}}{2} \\ A(D^{0} \to K^{0} \bar{K}^{0}) &= \frac{-\mathcal{A}_{13}^{K} + \mathcal{A}_{11}^{K} + \mathcal{A}_{0}^{K} + ir_{\mathrm{CKM}} \mathcal{B}_{11}^{K} + ir_{\mathrm{CKM}} \mathcal{B}_{0}^{K}}{2} \end{split}$$

NUMERICAL RESULTS FROM BR's

 $\begin{aligned} |\mathcal{A}_2^{\pi}| &= (3.08 \pm 0.08) \times 10^{-7} \text{ GeV} \,, \\ |\mathcal{A}_0^{\pi}| &= (7.6 \pm 0.1) \times 10^{-7} \text{ GeV} \,, \\ \arg(\mathcal{A}_2^{\pi}/\mathcal{A}_0^{\pi}) &= (\pm 93 \pm 3)^{\circ} \,. \end{aligned}$

No $\Delta I = 1/2$ rule for D decays, large strong phases

$$|\mathcal{A}_{13}^K - \mathcal{A}_{11}^K - \mathcal{A}_0^K| = (5.0 \pm 0.4) \times 10^{-7} \text{ GeV}$$

Should vanish in the SU(3) limit, but is O(1)!!

UNITARITY CONSTRAINTS

$$S = \begin{pmatrix} D \to D & D \to \pi\pi & D \to KK & \cdots \\ \pi\pi \to D & \pi\pi \to \pi\pi & \pi\pi \to KK & \cdots \\ KK \to D & KK \to \pi\pi & KK \to KK & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \equiv \begin{pmatrix} 1 & -i(T)^T \\ -i\operatorname{CP}(T) & S_S \end{pmatrix}$$

implies

$$T^{R} = S_{S}(T^{R})^{*}, \qquad T^{I} = S_{S}(T^{I})^{*}$$

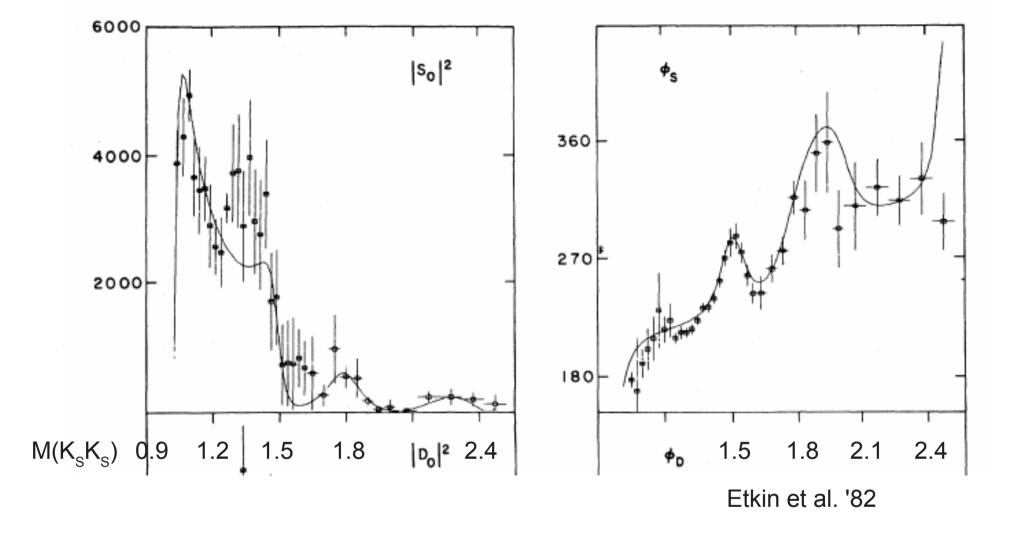
Elastic case: $S = e^{2i\delta} \Rightarrow$ Watson theorem: $T^{R} = |T^{R}| e^{i\delta}, T^{I} = |T^{I}| e^{i\delta}$

2-CHANNEL UNITARITY

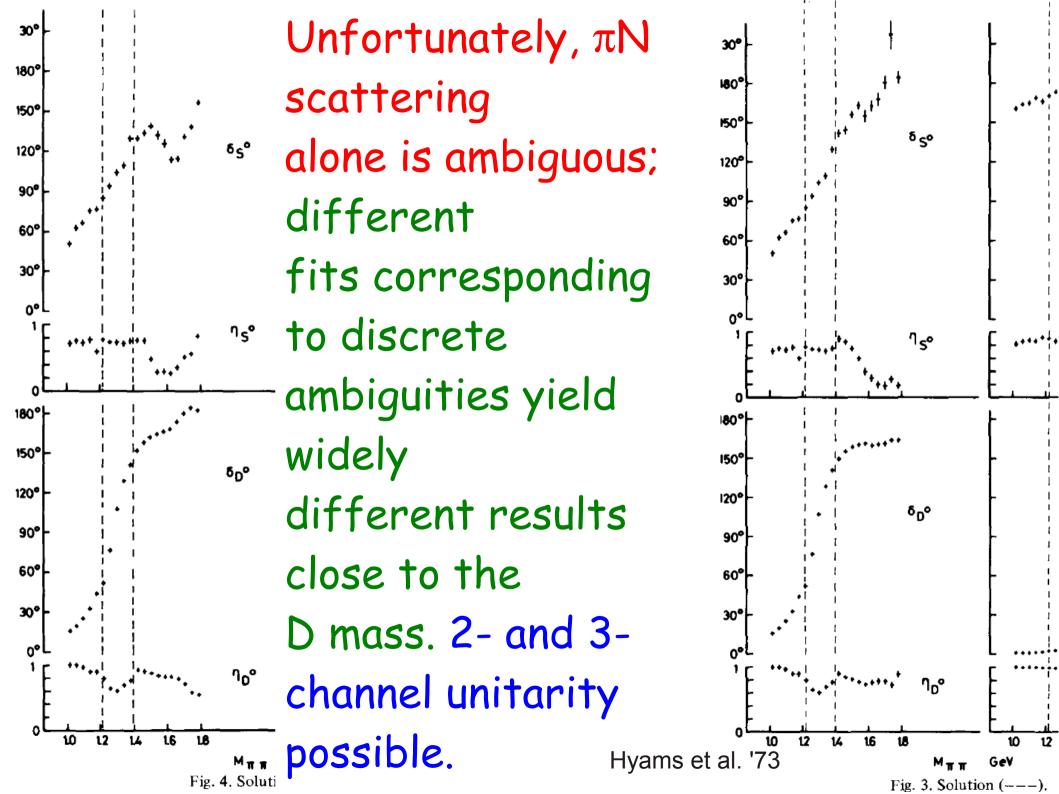
$$\begin{pmatrix} \mathcal{A}_0^{\pi} \\ \mathcal{A}_0^K \end{pmatrix} = \begin{pmatrix} \eta e^{2i\delta_1} & \pm i\sqrt{1-\eta^2} e^{i(\delta_1+\delta_2)} \\ \pm i\sqrt{1-\eta^2} e^{i(\delta_1+\delta_2)} & \eta e^{2i\delta_2} \end{pmatrix} \begin{pmatrix} (\mathcal{A}_0^{\pi})^* \\ (\mathcal{A}_0^K)^* \end{pmatrix}$$

Obtain constraints on magnitudes and phases of amplitudes For η close to 1, magnitudes almost unconstrained but phases close to δ_1 and δ_2

Is the 2-channel S-matrix unitary at the D mass?



 S_{12} has small amplitude and small phase. Is this compatible with measured S_{11} ?

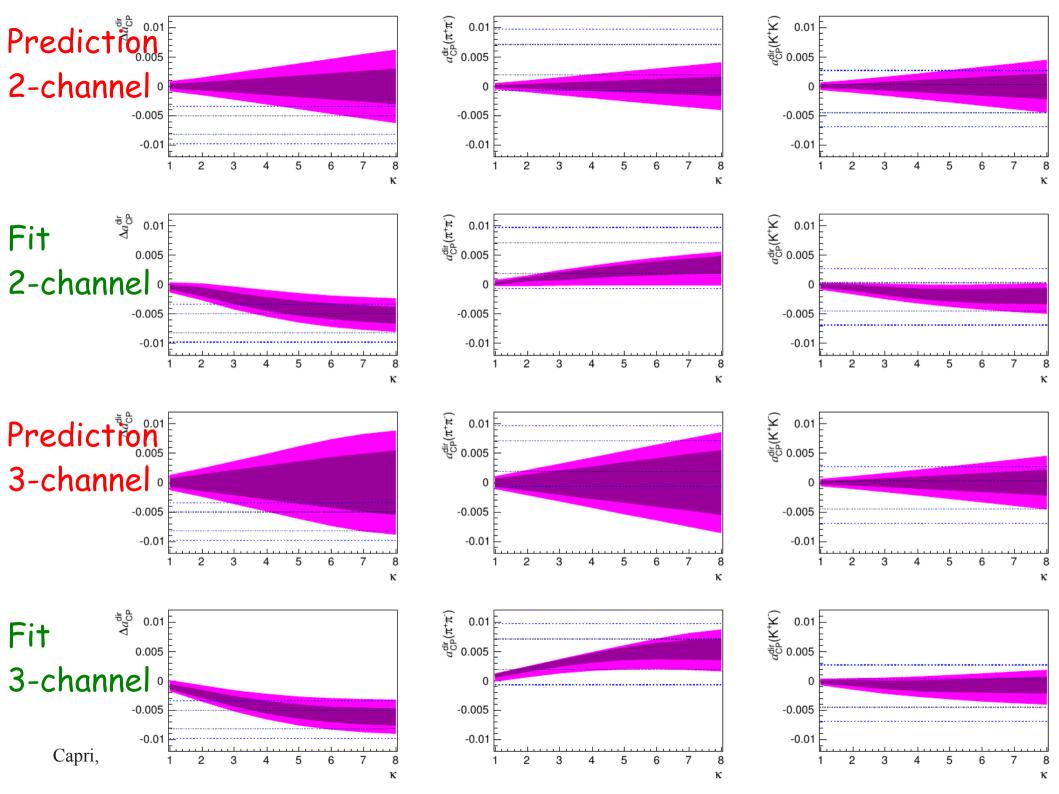


CP ASYMMETRIES

 One can study the CP asymmetries as a function of the upper bound on the size of CPV contributions in the two- and threechannel scenarios. We write

1 40 - 1

$$\begin{split} |\mathcal{B}_{0}^{\pi}| &< \kappa |\mathcal{A}_{0}^{\pi}|, \\ |\mathcal{B}_{0}^{K} - \mathcal{A}_{0}^{K}| &< \kappa |\mathcal{A}_{0}^{K}|, \\ |\mathcal{B}_{11}^{K} - (\mathcal{A}_{11}^{K} - \mathcal{A}_{13}^{K})| &< \kappa |\mathcal{A}_{11}^{K} - \mathcal{A}_{13}^{K}|, \\ \end{split}$$
and consider predictions and fit results for CP asymmetries



CONCLUSIONS FROM UNITARITY

- The prediction does not reach the exp value within 2σ even for κ =8 in the 2-channel case
- Without unitarity constraints, the prediction reaches the exp value at the 2σ level for κ >5, but even for κ =8 it is still 1σ below
- How large can к be?
 - translate fit results into RGI parameters
 - compare with K and B

FROM ISOSPIN AMPLITUDES TO RGI PARAMETERS

• The BR fit results can be translated into results for RGI parameters (aka topologies). Neglecting for simplicity $O(1/N_c^2)$ terms:

 $E_1(\pi) + E_2(\pi) = (1.72 \pm 0.04) \times 10^{-6} e^{i\delta} \text{ GeV},$

 $E_1(\pi) + A_2(\pi) - P_1^{\text{GIM}}(\pi) = (2.10 \pm 0.02) \times 10^{-6} e^{i(\delta \pm (71 \pm 3)^\circ)} \text{ GeV},$ $E_2(\pi) - A_2(\pi) + P_1^{\text{GIM}}(\pi) = (2.25 \pm 0.07) \times 10^{-6} e^{i(\delta \mp (62 \pm 2)^\circ)} \text{ GeV}$

- E_1 does not dominate the amplitudes \Rightarrow we are away from the infinite mass limit
- All amplitudes of same size, w. large phases Capri, 12/6/2012 L. Silvestrini

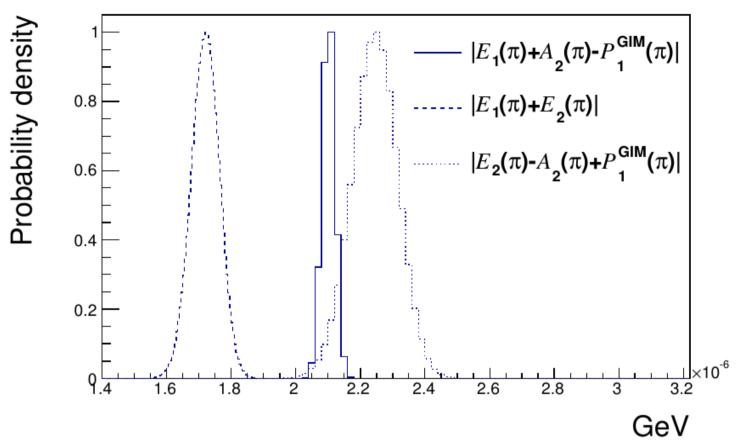
15

THE MEANING OF K

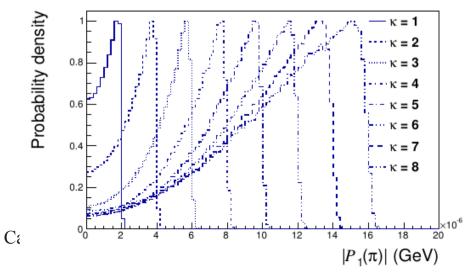
• The condition $|\mathcal{B}_0^{\pi}| < \kappa |\mathcal{A}_0^{\pi}|$, means

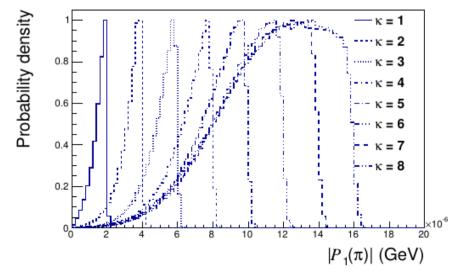
$$|P_1(\pi)| \le \kappa \left| \frac{2}{3} E_1(\pi) - \frac{1}{3} E_2(\pi) + A_2(\pi) - P_1^{\text{GIM}}(\pi) \right|$$

- κ is the ratio of $|\mathsf{P}_1|$ over all other topologies
- Notice that $P_1 \sim P_b P_s$ while $P_1^{GIM} \sim P_d P_s$
- How large should $|P_1|$ be to reproduce Δa_{CP}^{dir} ?



2-channel





DYNAMICAL ARGUMENTS

- The amplitudes for K, D and B $\rightarrow \pi\pi$ are formally the same, with the obvious flavour and CKM replacements.
- In the Kaon system, one has

 $(P_u - P_c) \sim 3 (P_t - P_c) \sim 25 (E_1 + E_2)$

No enhancement expected for P_u (will be checked on the lattice soon), while P_c and P_t generate local operators with chirally
 Capri, 12/6/2012

DYNAMICAL ARGUMENTS II

- In charm decays, no chiral enhancement is present, so that one expects $|P_1| = |P_b - P_s| \le |E_1|, |E_2|, |A_1|, |A_2|, |P_1^{GIM}|$
 - i.e. $\kappa \leq 1$.
- In B decays one is much closer to the infinite mass limit so that |E₁| and |E₂| dominate, with all other contractions power suppressed.

Capri, 12/6/2012

CONCLUSIONS

- We have performed a phenomenological analysis of Δa_{CP}^{dir} with minimal assumptions as a function of $\kappa \sim \text{relative size of } |P_1|$
- From the BR we confirm large nonfactorizable contributions, large strong phases and large SU(3) breaking
- Unfortunately, data on $\pi\pi$ scattering at the D mass are not able to fully determine the relevant FSI

CONCLUSIONS II

- In the most conservative scenario (no constraints from unitarity), values of κ > 5 are needed to reach at 2σ the experimental result
- We cannot find any reasonable dynamical origin for such a large value of $|P_1|$
- If the central value stays with improved errors, we have strong indications of NP