# On Branching Ratios of $B_s$ Decays and the Search for New Physics in $B_s^0 \to \mu^+\mu^-$

ROBERT FLEISCHER

Nikhef & Vrije Universiteit Amsterdam

Flavour@Capri 2012, Capri, 11–13 June 2012

- Setting the Stage
- <u>B<sub>s</sub> Branching Ratios</u>: subtlety due to the width difference  $\Delta \Gamma_s \neq 0$

• Key 
$$B_s$$
 Decay:  $B_s^0 \to \mu^+ \mu^- \to a \text{ new window for New Physics}$ 

• <u>Conclusions</u>







♦ Focus on two recent papers:



K. De Bruyn, R.F., R. Knegjens, P. Koppenburg, M. Merk and N. Tuning: On Branching Ratio Measurements of B<sub>s</sub> Decays [arXiv:1204.1735 [hep-ph]]

K. De Bruyn, R.F., R. Knegjens, P. Koppenburg, M. Merk, A. Pellegrino and N. Tuning:  $A New Window for New Physics in B_s^0 \rightarrow \mu^+\mu^-$  [arXiv:1204.1737 [hep-ph]] Setting the Stage

## Weak Decays of $B_s$ Mesons

... encode valuable information about the Standard Model (SM)

• Simplest observables:

 $\diamond$  Branching ratios  $\rightarrow$  probability of the considered decay to occur.

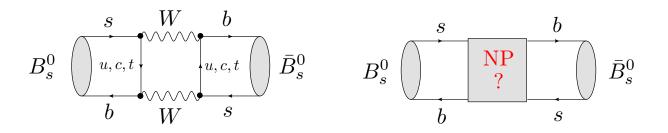
- Measurements of  $B_s$  branching ratios at hadron colliders:
  - Would require knowledge of the  $B_s$  production cross-section (?) ...
  - Hence experimental control channels and the ratio of the  $f_s/f_{u,d}$  fragmentation functions, describing the probability that a b quark hadronizes as a  $\bar{B}_q$  meson, are required for the extraction of the BR.

[Detailed discussion: R.F., N. Serra and N. Tuning, arXiv:1004.3982 [hep-ph]]

- Measurements of  $B_s$  branching ratios at  $e^+e^- B$  factories @  $\Upsilon(5S)$ :
  - The total number of produced  $B_s$  mesons is measured separately and subsequently allows for the extraction of the  $B_s$  branching ratio.

[A. Drutskoy et al. (Belle Collaboration), hep-ex/0610003]

## News on $B^0_s$ – $ar{B}^0_s$ Mixing



• Quantum mechanics:  $\Rightarrow |B_s(t)\rangle = a(t)|B_s^0\rangle + b(t)|\bar{B}_s^0\rangle$ 

- Mass eigenstates:  $\Delta M_s \equiv M_{\rm H}^{(s)} M_{\rm L}^{(s)}$ ,  $\Delta \Gamma_s \equiv \Gamma_{\rm L}^{(s)} \Gamma_{\rm H}^{(s)}$
- Time-dependent decay rates:  $\Gamma(B^0_s(t) \to f)$ ,  $\Gamma(\bar{B}^0_s(t) \to f)$
- Key feature of the  $B_s$ -meson system:

$$\Delta\Gamma_s \neq 0$$

- Expected theoretically since decades [Review: A. Lenz (2012)].
- Recently established by LHCb [ $\rightarrow$  talk by Monica Pepe–Altarelli]:

$$y_s \equiv \frac{\Delta \Gamma_s}{2 \Gamma_s} \equiv \frac{\Gamma_{\rm L}^{(s)} - \Gamma_{\rm H}^{(s)}}{2 \Gamma_s} = 0.088 \pm 0.014 \quad [\rightarrow 6\sigma \text{ effect}]$$

$$\tau_{B_s}^{-1} \equiv \Gamma_s \equiv \frac{\Gamma_{\rm L}^{(s)} + \Gamma_{\rm H}^{(s)}}{2} = (0.6580 \pm 0.0085) \, {\rm ps}^{-1}$$

## $B_s$ Branching Ratios:

- $\Delta\Gamma_s \neq 0 \Rightarrow special \ care$  has to be taken when dealing with the concept of a branching ratio ...
- How to *convert* measured "experimental"  $B_s$  branching ratios into "theoretical"  $B_s$  branching ratios?

#### **Experiment versus Theory**

• Untagged  $B_s$  decay rate:  $\rightarrow$  sum of two exponentials:

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f) = R_{\rm H}^f e^{-\Gamma_{\rm H}^{(s)} t} + R_{\rm L}^f e^{-\Gamma_{\rm L}^{(s)} t}$$
$$= \left( R_{\rm H}^f + R_{\rm L}^f \right) e^{-\Gamma_s t} \left[ \cosh\left(\frac{y_s t}{\tau_{B_s}}\right) + \mathcal{A}_{\Delta\Gamma}^f \sinh\left(\frac{y_s t}{\tau_{B_s}}\right) \right]$$

• "Experimental" branching ratio: [I. Dunietz, R.F. & U. Nierste (2001)]

$$BR \left(B_s \to f\right)_{exp} \equiv \frac{1}{2} \int_0^\infty \langle \Gamma(B_s(t) \to f) \rangle dt$$
$$= \frac{1}{2} \left[ \frac{R_{\rm H}^f}{\Gamma_{\rm H}^{(s)}} + \frac{R_{\rm L}^f}{\Gamma_{\rm L}^{(s)}} \right] = \frac{\tau_{B_s}}{2} \left( R_{\rm H}^f + R_{\rm L}^f \right) \left[ \frac{1 + \mathcal{A}_{\Delta\Gamma}^f y_s}{1 - y_s^2} \right]$$
(6)

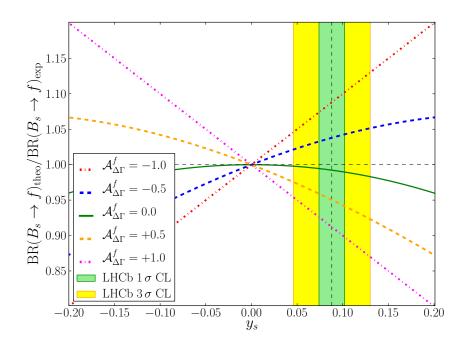
- "Theoretical" branching ratio: [R.F. (1999); S. Faller, R.F. & T. Mannel (2008); ...] BR  $(B_s \to f)_{\text{theo}} \equiv \frac{\tau_{B_s}}{2} \langle \Gamma(B_s^0(t) \to f) \rangle \Big|_{t=0} = \frac{\tau_{B_s}}{2} \left( R_{\text{H}}^f + R_{\text{L}}^f \right)$  (8)
  - By considering t = 0, the effect of  $B_s^0 \bar{B}_s^0$  mixing is "switched off".
  - The advantage of this definition is that it allows a straightforward comparison with the BRs of  $B_d^0$  or  $B_u^+$  mesons by means of  $SU(3)_F$ .

#### Conversion of $B_s$ Decay Branching Ratios

• Relation between BR  $(B_s \to f)_{\text{theo}}$  and the measured BR  $(B_s \to f)_{\text{exp}}$ :

$$BR (B_s \to f)_{theo} = \left[ \frac{1 - y_s^2}{1 + \mathcal{A}_{\Delta\Gamma}^f y_s} \right] BR (B_s \to f)_{exp}$$
(9)

• While  $y_s = 0.088 \pm 0.014$  has been measured,  $\mathcal{A}_{\Delta\Gamma}^f$  depends on the considered decay and generally involves non-perturbative parameters:



differences can be as large as  $\mathcal{O}(10\%)$  for the current value of  $y_s$ 

 $\Rightarrow$ 

#### • Compilation of theoretical estimates for specific $B_s$ decays:

| $B_s \to f$       | $BR(B_s \to f)_{exp}$                          | $\mathcal{A}^f_{\Delta\Gamma}(\mathrm{SM})$ | $\mathrm{BR}\left(B_s \to f\right)_{\mathrm{theo}} / \mathrm{BR}\left(B_s \to f\right)_{\mathrm{exp}}$ |                        |
|-------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------|
|                   |                                                |                                             | From Eq. $(9)$                                                                                         | From Eq. $(11)$        |
| $J/\psi f_0(980)$ | $(1.29^{+0.40}_{-0.28}) \times 10^{-4} [18]$   | $0.9984 \pm 0.0021 \ [14]$                  | $0.912 \pm 0.014$                                                                                      | $0.890 \pm 0.082$ [6]  |
| $J/\psi K_{ m S}$ | $(3.5 \pm 0.8) \times 10^{-5}$ [7]             | $0.84 \pm 0.17$ [15]                        | $0.924 \pm 0.018$                                                                                      | N/A                    |
| $D_s^-\pi^+$      | $(3.01 \pm 0.34) \times 10^{-3}$ [9]           | 0 (exact)                                   | $0.992\pm0.003$                                                                                        | N/A                    |
| $K^+K^-$          | $(3.5 \pm 0.7) \times 10^{-5} \ [18]$          | $-0.972 \pm 0.012$ [13]                     | $1.085\pm0.014$                                                                                        | $1.042 \pm 0.033$ [19] |
| $D_s^+ D_s^-$     | $(1.04^{+0.29}_{-0.26}) \times 10^{-2} \ [18]$ | $-0.995 \pm 0.013$ [16]                     | $1.088\pm0.014$                                                                                        | N/A                    |

TABLE I: Factors for converting BR  $(B_s \to f)_{exp}$  (see (6)) into BR  $(B_s \to f)_{theo}$  (see (8)) by means of Eq. (9) with theoretical estimates for  $\mathcal{A}_{\Delta\Gamma}^f$ . Whenever effective lifetime information is available, the corrections are also calculated using Eq. (11).

([14]: Amsterdam–Naples Collaboration: R.F., Rob Knegjens & Giulia Ricciardi (2011)  $\rightarrow$  Rob's talk)

How can we avoid theoretical input?  $\rightarrow$ 

• Effective  $B_s$  decay lifetimes:

$$\tau_f \equiv \frac{\int_0^\infty t \, \langle \Gamma(B_s(t) \to f) \rangle \, dt}{\int_0^\infty \langle \Gamma(B_s(t) \to f) \rangle \, dt} = \frac{\tau_{B_s}}{1 - y_s^2} \left[ \frac{1 + 2 \, \mathcal{A}_{\Delta\Gamma}^f y_s + y_s^2}{1 + \mathcal{A}_{\Delta\Gamma}^f y_s} \right]$$
$$\Rightarrow \left[ \operatorname{BR} \left( B_s \to f \right)_{\text{theo}} = \left[ 2 - \left( 1 - y_s^2 \right) \tau_f / \tau_{B_s} \right] \operatorname{BR} \left( B_s \to f \right)_{\text{exp}} \right] \tag{11}$$

 $\rightarrow$  advocate the use of this relation for Particle Listings (PDG, HFAG)

## $B_s ightarrow VV$ Decays

• Another application is given by  $B_s$  decays into two vector mesons:

– Examples: 
$$B_s \to J/\psi \phi$$
,  $B_s \to K^{*0} \bar{K}^{*0}$ ,  $B_s \to D_s^{*+} D_s^{*-}$ , ...

• Angular analysis of the vector-meson decay products has to be performed to disentangle the CP-even  $(0, \|)$  and CP-odd  $(\bot)$  states (labelled by k):

$$f_{VV,k}^{\exp} = \frac{\mathrm{BR}_{\exp}^{VV,k}}{\mathrm{BR}_{\exp}^{VV}}, \quad \mathsf{BR}_{\exp}^{VV} \equiv \sum_{k} \mathsf{BR}_{\exp}^{VV,k} \ \Rightarrow \ \sum_{k} f_{VV,k}^{\exp} = 1.$$

• Conversion of the "experimental" into the "theoretical" branching ratios:

- Using theory info about 
$$\mathcal{A}_{\Delta\Gamma}^{VV,k} = -\eta_k \sqrt{1 - C_{VV,k}^2} \cos(\phi_s + \Delta \phi_{VV,k})$$
:  
 $\mathsf{BR}_{\mathrm{theo}}^{VV} = (1 - y_s^2) \left[ \sum_{k=0,\parallel,\perp} \frac{f_{VV,k}^{\mathrm{exp}}}{1 + y_s \mathcal{A}_{\Delta\Gamma}^{VV,k}} \right] \mathsf{BR}_{\mathrm{exp}}^{VV}$ 

- Using effective lifetime measurements:

$$\mathrm{BR}_{\mathrm{theo}}^{VV} = \mathsf{BR}_{\mathrm{exp}}^{VV} \sum_{k=0,\parallel,\perp} \left[ 2 - \left(1 - y_s^2\right) \frac{\tau_k^{VV}}{\tau_{B_s}} \right] f_{VV,k}^{\mathrm{exp}}$$

[See also LHCb, arXiv:1111.4183; S. Descotes-Genon, J. Matias & J. Virto (2011)]

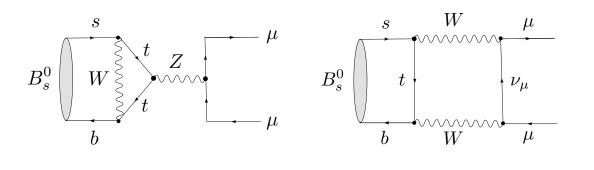
Key 
$$B_s$$
 Decay:  $B_s^0 
ightarrow \mu^+ \mu^-$ 

- Upper bounds on the branching ratio are becoming stronger and stronger, thereby approaching the SM prediction ...
- What is the impact of  $\Delta \Gamma_s \neq 0$  on these analyses?

 $\rightarrow$  opens actually a new window for New Physics

## General Features of $B^0_s o \mu^+ \mu^-$

• Only loop contributions in the SM ("penguin" & "box" diagrams):



 $\Rightarrow$  strongly suppressed & sensitive to New Physics (NP)

• <u>Hadronic sector</u>:  $\rightarrow$  simple situation (only  $B_s$ -decay constant  $f_{B_s}$  enters):

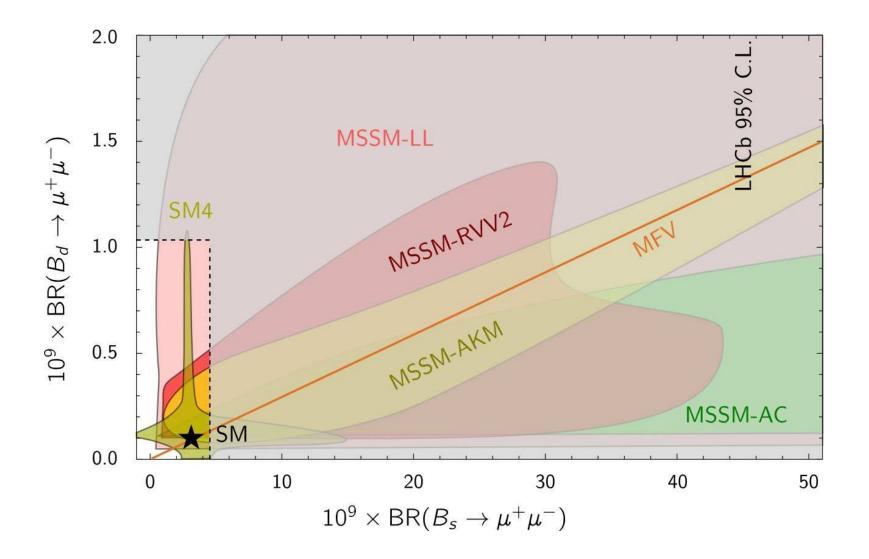
$$\Rightarrow \mid B_s^0 \rightarrow \mu^+ \mu^-$$
 is one of the cleanest rare  $B$  decays

• SM prediction:  $BR(B_s \to \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$  [A. Buras (2011)]

NP may – in principle – enhance BRs significantly...

[Babu & Kolda, Dedes et al., Foster et al., Carena et al., Isidori & Paradisi, ... ]

• Situation in different supersymmetric flavour models, showing also the impact of the recent LHCb upper bounds on  $BR(B_{s,d} \rightarrow \mu^+ \mu^-)$ :



[Andrzej Buras & Jennifer Girrbach (2012)]

The Limiting Factor for the  $BR(B_s^0 \rightarrow \mu^+ \mu^-)$  Measurement:

• The analysis of  $B_s^0 \rightarrow \mu^+ \mu^-$  relies on normalization channels:

$$\mathsf{BR}(B_s^0 \to \mu^+ \mu^-) = \mathsf{BR}(B_q \to X) \frac{\epsilon_X}{\epsilon_{\mu\mu}} \frac{N_{\mu\mu}}{N_X} \frac{f_q}{f_s}$$

- $\epsilon$  factors are total detector efficiencies.
- ${\cal N}$  factors denote the observed numbers of events.
- $f_q$  are *fragmentation functions*, which describe the probability that a b quark will fragment in a  $B_q$  meson ( $q \in \{u, d, s\}$ ).
- <u>A closer look shows</u>:  $f_s/f_d$  is the major source of uncertainty:

 $\Rightarrow$  "boring" non-perturbative, hadronic parameter ...

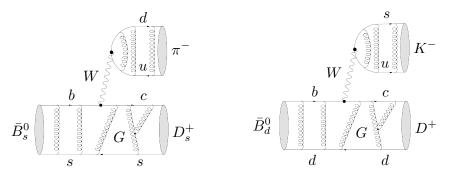
• <u>New method</u>:  $\rightarrow$  use non-leptonic *B* decays to *determine*  $f_s/f_d$  @ LHCb



$$\Rightarrow$$
 U-spin-related  $\bar{B}_s^0 \to D_s^+ \pi^-$ ,  $\bar{B}_d^0 \to D^+ K^-$  system:



[R.F., Nicola Serra & Niels Tuning (2010)]



- Prime examples for "factorization": [← Bjorken ('89), Dugan & Grinstein ('91); Beneke, Buchalla, Neubert & Sachrajda ('00); Bauer, Pirjol & Steward ('01); ...]
  - Non-fact. SU(3)-breaking corrections: tiny (constrainted through data).
  - Factorizable SU(3)-breaking corrections:
    - $\rightarrow$  form-factor ratio [QCD sum rule; lattice QCD analyses]:

 $\Rightarrow$  ratio of branching ratios can be calculated

$$\Rightarrow \frac{f_s}{f_d} = \underbrace{\frac{N_s}{N_d} \times \frac{\epsilon(\bar{B}_d^0 \to D^+ K^-)}{\epsilon(\bar{B}_s^0 \to D_s^+ \pi^-)}}_{\text{experiment}} \times \underbrace{\frac{\mathsf{BR}(\bar{B}_d^0 \to D^+ K^-)}{\mathsf{BR}(\bar{B}_s \to D_s^+ \pi^-)}}_{\text{theory}}$$

• LHCb (using also a variant with  $\bar{B}_d^0 \rightarrow D^+ \pi^-$ ): [PRL (2011)]

 $f_s/f_d = 0.253 \pm 0.017 (\text{stat.}) \pm 0.017 (\text{syst.}) \pm 0.020 (\text{theo.})$ 

[excellent agreement with measurements using semileptonic decays]

• Lattice: Fermilab Lattice & MILC [arXiv:1202.6346 [hep-lat]  $\rightarrow$  E. Gamiz's talk].

Experimental Upper Bounds (95% C.L.):

- <u>Tevatron</u>:  $\rightarrow$  "legacy" ...
  - DØ (2010): BR $(B_s^0 \to \mu^+ \mu^-) < 51 \times 10^{-9} [\to \text{talk by A. Ross}]$ - CDF (2011): BR $(B_s^0 \to \mu^+ \mu^-) < 40 \times 10^{-9}$
- Large Hardon Collider:  $\rightarrow future \dots$ 
  - ATLAS (2012):  ${\rm BR}(B^0_s\to\mu^+\mu^-)<22\times10^{-9}~~[\rightarrow{\rm talk}~{\rm by}~{\rm M}.~{\rm Bona}]$
  - CMS (2012): BR $(B^0_s \to \mu^+ \mu^-) < 7.7 \times 10^{-9}$  [ $\to$  talk by G. Tonelli]
  - LHCb (2012): BR $(B_s^0 \to \mu^+ \mu^-) < 4.5 \times 10^{-9} \ [\to talk by J. Albrecht]$

 $\Rightarrow$  LHCb upper bound is approaching  $BR_{SM} = (3.2 \pm 0.2) \times 10^{-9}$  !?

- $\Delta\Gamma_s \neq 0$  has been ignored in these considerations (!):
  - What is the impact for the theoretical interpretation of the data?
  - Can we actually *take advantage* of  $\Delta \Gamma_s \neq 0$ ?

## The General $B_s ightarrow \mu^+ \mu^-$ Amplitudes

• Low-energy effective Hamiltonian for  $\bar{B}^0_s \to \mu^+ \mu^-$ : SM  $\oplus$  NP

$$\mathcal{H}_{\text{eff}} = -\frac{G_{\text{F}}}{\sqrt{2\pi}} V_{ts}^* V_{tb} \alpha \left[ C_{10} O_{10} + C_S O_S + C_P O_P + C_{10}' O_{10}' + C_S' O_S' + C_P' O_P' \right]$$

 $[G_{
m F}:$  Fermi's constant,  $V_{qq'}:$  CKM matrix elements, lpha: QED fine structure constant]

• Four-fermion operators, with  $P_{L,R} \equiv (1 \mp \gamma_5)/2$  and b-quark mass  $m_b$ :

$$\begin{array}{rcl}
O_{10} &=& (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), & O_{10}' &=& (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \\
O_{S} &=& m_{b}(\bar{s}P_{R}b)(\bar{\ell}\ell), & O_{S}' &=& m_{b}(\bar{s}P_{L}b)(\bar{\ell}\ell) \\
O_{P} &=& m_{b}(\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell), & O_{P}' &=& m_{b}(\bar{s}P_{L}b)(\bar{\ell}\gamma_{5}\ell)
\end{array}$$

[Only operators with non-vanishing  $\bar{B}^0_s \rightarrow \mu^+\mu^-$  matrix elements are included]

- The Wilson coefficients  $C_i$ ,  $C'_i$  encode the short-distance physics:
  - SM case: only  $C_{10} \neq 0$ , and is given by the *real* coefficient  $C_{10}^{SM}$ .
  - Outstanding feature of  $\bar{B}_s^0 \to \mu^+ \mu^-$ : sensitivity to (pseudo-)scalar lepton densities  $\to O_{(P)S}$ ,  $O'_{(P)S}$ ; WCs are still largely unconstrained.

[W. Altmannshofer, P. Paradisi & D. Straub (2011)  $\rightarrow$  model-independent NP analysis]

 $\rightarrow$  convenient to go to the rest frame of the decaying  $\bar{B}_s^0$  meson:

• Distinguish between the  $\mu_{\rm L}^+\mu_{\rm L}^-$  and  $\mu_{\rm R}^+\mu_{\rm R}^-$  helicity configurations:

$$|(\mu_{\rm L}^+\mu_{\rm L}^-)_{\rm CP}\rangle \equiv (\mathcal{CP})|\mu_{\rm L}^+\mu_{\rm L}^-\rangle = e^{i\phi_{\rm CP}(\mu\mu)}|\mu_{\rm R}^+\mu_{\rm R}^-\rangle$$

 $[e^{i\phi_{\rm CP}(\mu\mu)}]$  is a convention-dependent phase factor  $\rightarrow$  cancels in observables]

• General expression for the decay amplitude [ $\eta_{\rm L} = +1$ ,  $\eta_{\rm R} = -1$ ]:

$$A(\bar{B}_s^0 \to \mu_{\lambda}^+ \mu_{\lambda}^-) = \langle \mu_{\lambda}^- \mu_{\lambda}^+ | \mathcal{H}_{\text{eff}} | \bar{B}_s^0 \rangle = -\frac{G_F}{\sqrt{2}\pi} V_{ts}^* V_{tb} \alpha$$
$$\times f_{B_s} M_{B_s} m_{\mu} C_{10}^{\text{SM}} e^{i\phi_{\text{CP}}(\mu\mu)(1-\eta_{\lambda})/2} \left[\eta_{\lambda} P + S\right]$$

• Combination of Wilson coefficient functions [CP-violating phases  $\varphi_{P,S}$ ]:

$$P \equiv |P|e^{i\varphi_P} \equiv \frac{C_{10} - C'_{10}}{C_{10}^{\rm SM}} + \frac{M_{B_s}^2}{2m_\mu} \left(\frac{m_b}{m_b + m_s}\right) \left(\frac{C_P - C'_P}{C_{10}^{\rm SM}}\right) \xrightarrow{\rm SM} 1$$

$$S \equiv |S|e^{i\varphi_S} \equiv \sqrt{1 - 4\frac{m_\mu^2}{M_{B_s}^2}} \frac{M_{B_s}^2}{2m_\mu} \left(\frac{m_b}{m_b + m_s}\right) \left(\frac{C_S - C_S'}{C_{10}^{\rm SM}}\right) \xrightarrow{\rm SM} 0$$

 $[f_{B_s}: B_s$  decay constant,  $M_{B_s}: B_s$  mass,  $m_\mu$ : muon mass,  $m_s$ : strange-quark mass]

### The $B_s \rightarrow \mu^+ \mu^-$ Observables

• Key quantity for calculating the CP asymmetries and the untagged rate:

$$\xi_{\lambda} \equiv -e^{-i\phi_s} \left[ e^{i\phi_{\rm CP}(B_s)} \frac{A(\bar{B}^0_s \to \mu^+_{\lambda} \mu^-_{\lambda})}{A(B^0_s \to \mu^+_{\lambda} \mu^-_{\lambda})} \right]$$

 $\Rightarrow A(B_s^0 \to \mu_{\lambda}^+ \mu_{\lambda}^-) = \langle \mu_{\lambda}^- \mu_{\lambda}^+ | \mathcal{H}_{\text{eff}}^\dagger | B_s^0 \rangle \text{ is also needed } \dots$ 

• Using  $(\mathcal{CP})^{\dagger}(\mathcal{CP}) = \hat{1}$  and  $(\mathcal{CP})|B_s^0\rangle = e^{i\phi_{\mathrm{CP}}(B_s)}|\bar{B}_s^0\rangle$  yields:

$$A(B_s^0 \to \mu_\lambda^+ \mu_\lambda^-) = -\frac{G_{\rm F}}{\sqrt{2}\pi} V_{ts} V_{tb}^* \alpha f_{B_s} M_{B_s} m_\mu C_{10}^{\rm SM}$$

$$\times e^{i[\phi_{\rm CP}(B_s) + \phi_{\rm CP}(\mu\mu)(1-\eta_\lambda)/2]} \left[-\eta_\lambda P^* + S^*\right]$$

• The convention-dependent phases cancel in  $\xi_{\lambda}$  [ $\eta_{\rm L} = +1$ ,  $\eta_{\rm R} = -1$ ]:

$$\xi_{\lambda} = -\left[\frac{+\eta_{\lambda}P + S}{-\eta_{\lambda}P^* + S^*}\right] \quad \Rightarrow \quad \left[\xi_{\mathrm{L}}\xi_{\mathrm{R}}^* = \xi_{\mathrm{R}}\xi_{\mathrm{L}}^* = 1\right]$$

## CP Asymmetries: ("Bonus")

• Time-dependent rate asymmetry:  $\rightarrow$  requires tagging of  $B_s^0$  and  $\bar{B}_s^0$ :

$$\frac{\Gamma(B_s^0(t) \to \mu_\lambda^+ \mu_\lambda^-) - \Gamma(\bar{B}_s^0(t) \to \mu_\lambda^+ \mu_\lambda^-)}{\Gamma(B_s^0(t) \to \mu_\lambda^+ \mu_\lambda^-) + \Gamma(\bar{B}_s^0(t) \to \mu_\lambda^+ \mu_\lambda^-)} = \frac{C_\lambda \cos(\Delta M_s t) + S_\lambda \sin(\Delta M_s t)}{\cosh(y_s t/\tau_{B_s}) + \mathcal{A}_{\Delta\Gamma}^\lambda \sinh(y_s t/\tau_{B_s})}$$

• Individual observables:  $\rightarrow$  theoretically clean (no dependence on  $f_{B_s}$ ):

$$C_{\lambda} \equiv \frac{1 - |\xi_{\lambda}|^2}{1 + |\xi_{\lambda}|^2} = -\eta_{\lambda} \left[ \frac{2|PS|\cos(\varphi_P - \varphi_S)}{|P|^2 + |S|^2} \right] \xrightarrow{\text{SM}} 0$$

$$S_{\lambda} \equiv \frac{2 \operatorname{Im} \xi_{\lambda}}{1 + |\xi_{\lambda}|^2} = \frac{|P|^2 \sin 2\varphi_P - |S|^2 \sin 2\varphi_S}{|P|^2 + |S|^2} \xrightarrow{\text{SM}} 0$$

$$\mathcal{A}_{\Delta\Gamma}^{\lambda} \equiv \frac{2\operatorname{\mathsf{Re}}\,\xi_{\lambda}}{1+|\xi_{\lambda}|^2} = \frac{|P|^2\cos 2\varphi_P - |S|^2\cos 2\varphi_S}{|P|^2 + |S|^2} \xrightarrow{\mathrm{SM}} 1$$

• <u>Note</u>:  $S_{CP} \equiv S_{\lambda}$ ,  $\mathcal{A}_{\Delta\Gamma} \equiv \mathcal{A}_{\Delta\Gamma}^{\lambda}$  are *independent* of the muon helicity  $\lambda$ .

• Difficult to measure the muon helicity:  $\Rightarrow$  consider the following rates:

$$\Gamma(\overset{(\bar{})}{B}{}^{0}_{s}(t) \to \mu^{+}\mu^{-}) \equiv \sum_{\lambda=\mathrm{L,R}} \Gamma(\overset{(\bar{})}{B}{}^{0}_{s}(t) \to \mu^{+}_{\lambda}\mu^{-}_{\lambda})$$

• Corresponding CP-violating rate asymmetry:  $\rightarrow C_{\lambda} \propto \eta_{\lambda}$  terms cancel:

$$\frac{\Gamma(B_s^0(t) \to \mu^+ \mu^-) - \Gamma(\bar{B}_s^0(t) \to \mu^+ \mu^-)}{\Gamma(B_s^0(t) \to \mu^+ \mu^-) + \Gamma(\bar{B}_s^0(t) \to \mu^+ \mu^-)} = \frac{\mathcal{S}_{\rm CP} \sin(\Delta M_s t)}{\cosh(y_s t/\tau_{B_s}) + \mathcal{A}_{\Delta\Gamma} \sinh(y_s t/\tau_{B_s})}$$

- Practical comments:
  - It would be most interesting to measure this CP asymmetry since a non-zero value immediately signaled CP-violating NP phases.
  - Unfortunately, this is challenging in view of the tiny branching ratio and as  $B_s^0$ ,  $\bar{B}_s^0$  tagging and time information are required.

Previous studies of CP asymmetries of  $B_{s,d}^0 \to \ell^+ \ell^-$  (assuming  $\Delta \Gamma_s = 0$ ): Huang and Liao (2002); Dedes and Pilaftsis (2002), Chankowski *et al.* (2005) Untagged Rate and Branching Ratio:  $(\rightarrow$ 

 $(\rightarrow 1 st part of the talk)$ 

• The first measurement concerns the "experimental" branching ratio:

BR 
$$(B_s \to \mu^+ \mu^-)_{exp} \equiv \frac{1}{2} \int_0^\infty \langle \Gamma(B_s(t) \to \mu^+ \mu^-) \rangle dt$$

 $\rightarrow$  time-integrated untagged rate, involving

$$\langle \Gamma(B_s(t) \to \mu^+ \mu^-) \rangle \equiv \Gamma(B_s^0(t) \to \mu^+ \mu^-) + \Gamma(\bar{B}_s^0(t) \to \mu^+ \mu^-)$$
$$\propto e^{-t/\tau_{B_s}} [\cosh(y_s t/\tau_{B_s}) + \mathcal{A}_{\Delta\Gamma} \sinh(y_s t/\tau_{B_s})]$$

• Conversion into the "theoretical" branching ratio:  $\rightarrow$  NP searches:

$$BR(B_s \to \mu^+ \mu^-) = \left[\frac{1 - y_s^2}{1 + \mathcal{A}_{\Delta\Gamma} y_s}\right] BR(B_s \to \mu^+ \mu^-)_{exp}$$

- $\mathcal{A}_{\Delta\Gamma}$  depends on NP and is hence unknown:  $\in [-1, +1] \Rightarrow two \ options:$ 
  - Add extra error:  $\Delta BR(B_s \to \mu^+ \mu^-)|_{y_s} = \pm y_s BR(B_s \to \mu^+ \mu^-)_{exp}$ .

- 
$$\mathcal{A}_{\Delta\Gamma}^{\mathrm{SM}} = 1$$
 gives new SM reference value [rescale BR<sub>SM</sub> by  $1/(1-y_s)$ ]:  
BR $(B_s \to \mu^+ \mu^-)_{\mathrm{SM}}|_{y_s} = (3.5 \pm 0.2) \times 10^{-9}$ 

Effective  $B_s \rightarrow \mu^+ \mu^-$  Lifetime:

- $\diamond$  Collecting more and more data  $\oplus$  include decay time information  $\Rightarrow$
- Access to the effective  $B_s \rightarrow \mu^+ \mu^-$  lifetime:

$$\tau_{\mu^+\mu^-} \equiv \frac{\int_0^\infty t \, \langle \Gamma(B_s(t) \to \mu^+\mu^-) \rangle \, dt}{\int_0^\infty \langle \Gamma(B_s(t) \to \mu^+\mu^-) \rangle \, dt}$$
  
•  $\underline{\mathcal{A}_{\Delta\Gamma}}$  can then be extracted:  $\mathcal{A}_{\Delta\Gamma} = \frac{1}{y_s} \left[ \frac{(1-y_s^2)\tau_{\mu^+\mu^-} - (1+y_s^2)\tau_{B_s}}{2\tau_{B_s} - (1-y_s^2)\tau_{\mu^+\mu^-}} \right]$ 

• Finally, extraction of the "theoretical" BR:  $\rightarrow$  clean expression:

$$BR\left(B_s \to \mu^+ \mu^-\right) = \underbrace{\left[2 - \left(1 - y_s^2\right) \frac{\tau_{\mu^+ \mu^-}}{\tau_{B_s}}\right] BR\left(B_s \to \mu^+ \mu^-\right)_{exp}}_{\to only \text{ measurable quantities}}$$

- It is *crucial* that  $\mathcal{A}_{\Delta\Gamma}$  does *not* depend on the muon helicity.
- Important new measurement for the high-luminosity LHC upgrade:  $\Rightarrow$  precision of 5% or better appears feasible for  $\tau_{\mu^+\mu^-}$  ...

### **Constraints on New Physics**

• Information from the  $B_s \rightarrow \mu^+ \mu^-$  branching ratio:

$$R \equiv \frac{\mathsf{BR}(B_s \to \mu^+ \mu^-)_{\rm exp}}{\mathsf{BR}(B_s \to \mu^+ \mu^-)_{\rm SM}} = \left[\frac{1 + \mathcal{A}_{\Delta\Gamma} y_s}{1 - y_s^2}\right] \left(|P|^2 + |S|^2\right)$$
$$= \left[\frac{1 + y_s \cos 2\varphi_P}{1 - y_s^2}\right] |P|^2 + \left[\frac{1 - y_s \cos 2\varphi_S}{1 - y_s^2}\right] |S|^2 \stackrel{\text{LHCb}}{<} 1.4$$

– Unknown CP-violating phases  $\varphi_P$ ,  $\varphi_S \Rightarrow |P|, |S| \leq \sqrt{(1+y_s)R} < 1.23$ 

– R does not allow a separation of the P and S contributions:

 $\Rightarrow$  large NP could be present, even if the BR is close to the SM value.

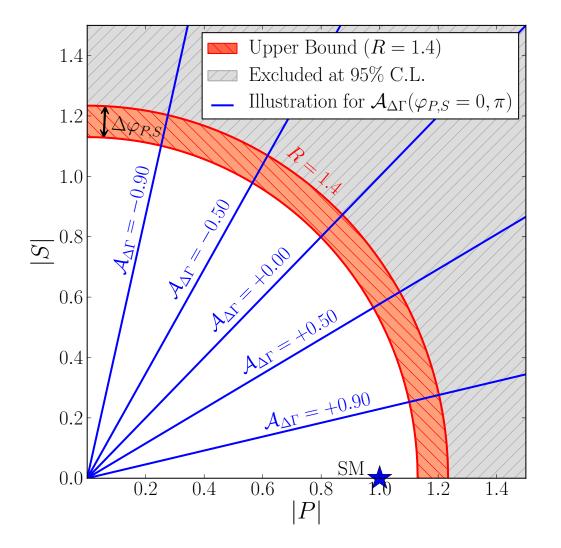
• Further information from the measurement of  $\tau_{\mu^+\mu^-}$  yielding  $\mathcal{A}_{\Delta\Gamma}$ :

$$|S| = |P| \sqrt{\frac{\cos 2\varphi_P - \mathcal{A}_{\Delta\Gamma}}{\cos 2\varphi_S + \mathcal{A}_{\Delta\Gamma}}}$$

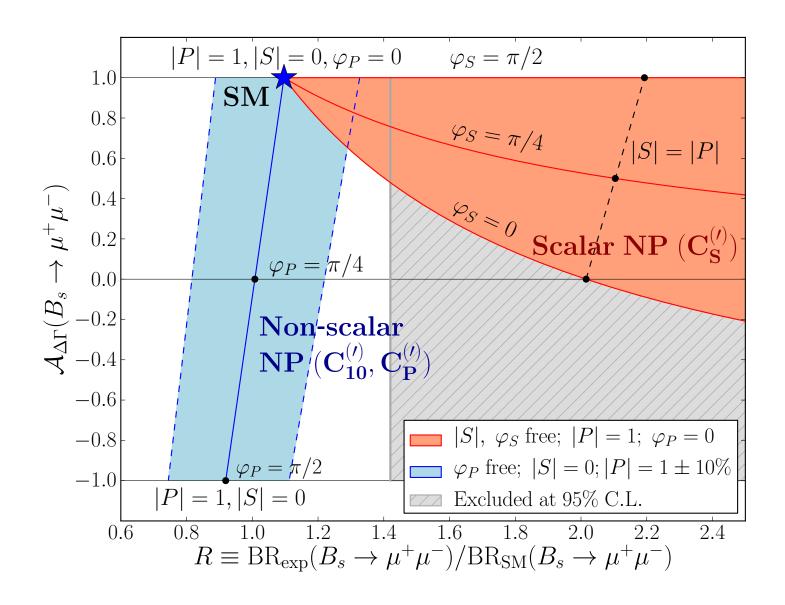
offers a new window for New Physics in  $B_s 
ightarrow \mu^+ \mu^-$ 

#### How does the situation in NP parameter space look like?

• Current constraints in the |P|-|S| plane and illustration of those following from a future measurement of the  $B_s \to \mu^+ \mu^-$  lifetime yielding  $\mathcal{A}_{\Delta\Gamma}$ :



• Illustration of the allowed regions in the  $R-A_{\Delta\Gamma}$  plane for scenarios with scalar or non-scalar NP contributions:



## Conclusions

## Subtleties for $B_s$ Branching Ratios

- LHCb has recently established  $\Delta\Gamma_s \neq 0$  at the  $6\sigma$  level:  $\Rightarrow$ 
  - Care has to be taken when dealing with  $B_s$  decay branching ratios.
  - Some confusion in the (experimental) literature ...
- Have shown how the measured "experimental"  $B_s \rightarrow f$  branching ratios can be converted into the "theoretical"  $B_s \rightarrow f$  branching ratios:
  - Use theoretical input to determine  $\mathcal{A}^f_{\Delta\Gamma}$ , depending on final state f:  $\rightarrow$  hadronic parameters [use, e.g.,  $SU(3)_{\rm F} \oplus$  assumptions about NP].
  - Use the measured effective  $B_s \rightarrow f$  decay lifetime:

 $\rightarrow$  preferred avenue using *only data*:  $\Rightarrow$  | BRs for particle listings

• Examples of specific  $B_s$  decays:

 $\begin{array}{ll} B^0_s \to J/\psi f_0(980), \ B^0_s \to J/\psi K_{\rm S}, \ B^0_s \to D^-_s \pi^+, \ B^0_s \to K^+ K^-, \\ B^0_s \to D^+_s D^-_s, \ B^0_s \to J/\psi \phi, \ B^0_s \to K^{(*)0} \bar{K}^{(*)0}, \ B^0_s \to D^{*+}_s D^{*-}_s, \end{array}$ 

What about  $B_s^0 \to \mu^+ \mu^-$  in the presence of  $\Delta \Gamma_s \neq 0$ ?

 $\rightarrow$  have shown that the muon helicity has *not* to be measured:

• The theoretical  $B_s^0 \to \mu^+ \mu^-$  SM branching ratio has to be rescaled by  $1/(1-y_s)$  for the comparison with the experimental branching ratio:

 $\Rightarrow$  new SM reference:  $BR(B_s \rightarrow \mu^+ \mu^-)_{SM}|_{y_s} = (3.5 \pm 0.2) \times 10^{-9}$ 

- The  $B_s^0 \to \mu^+ \mu^-$  decay is a sensitive probe for New Physics:
  - $\mathcal{A}_{\Delta\Gamma} \in [-1, +1] \Rightarrow$  additional relative error of  $\pm y_s = \pm 9\%$  for BR<sub>exp</sub>.
  - $y_s$  can be *included* in the constraints for NP from  $BR(B_s \to \mu^+ \mu^-)_{exp}$ .
- The effective lifetime  $\tau_{\mu^+\mu^-}$  offers a new observable (yielding  $\mathcal{A}_{\Delta\Gamma}$ ):
  - Allows the extraction of the "theoretical"  $B_s \rightarrow \mu^+ \mu^-$  branching ratio.
  - New theoretically clean observable to search for NP:  $A_{\Delta\Gamma}^{SM} = +1$ 
    - \* In contrast to  $BR_{SM}$  no dependence on the  $B_s$ -decay constant  $f_{B_s}$ .
    - \* May reveal NP effects even if BR is close to the SM prediction: still largely unconstrained (pseudo-)scalar operators  $O_{(P)S}$ ,  $O'_{(P)S}$ 
      - $\Rightarrow$  should be added to the LHC upgrade physics programme!