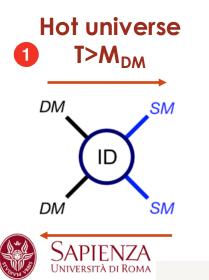
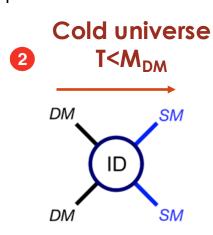
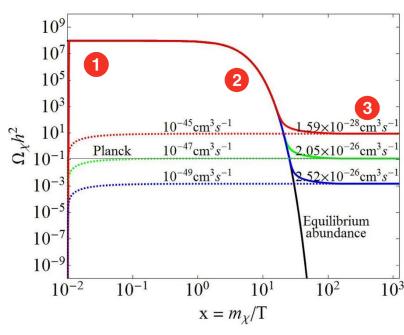

## **Hunting Dark Matter at Accelerators**




Mauro Raggi, Sapienza Università di Roma e INFN Roma


FCCP2025 Workshop Anacapri
29 September 1 October 2025 Villa Orlandi, Anacapri, Capri Island, Italy

### Universe and the dark matter





Thermal dark matter production

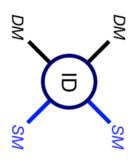




## DM freezeout mechanism

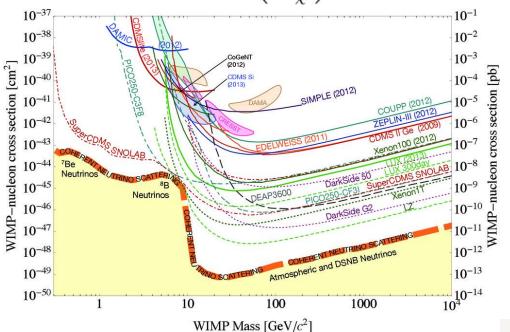


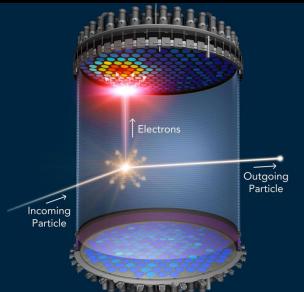


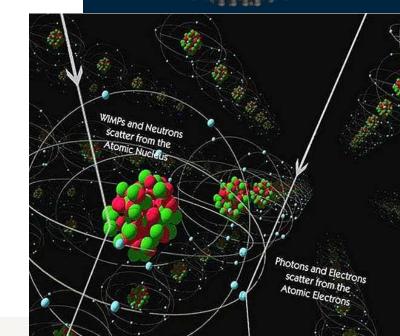

# The wimp miracle

The relic density is set by the annihilation cross-section:

$$\Omega_{DM} h^2 \sim \frac{3 \cdot 10^{-27} cm^3 s^{-1}}{\langle \sigma v \rangle}$$


From CMB we can fit the relic density value


$$\Omega_{DM}h^2 \simeq 0.1$$
, hence:  $\langle \sigma v \rangle \simeq 3 \cdot 10^{-26} cm^3 s^{-1}$ 




corresponding to weakly coupled GeV TeV mass particle:

$$\langle \sigma v \rangle_{\text{WIMP}} \sim 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1} \left( \frac{\text{TeV}}{m_{\chi}} \right)^2$$



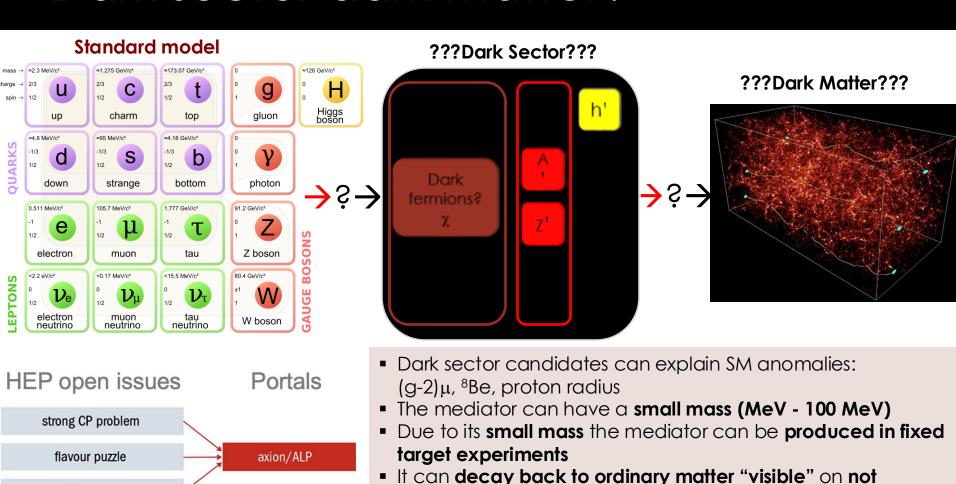




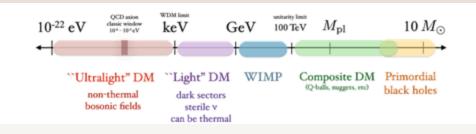
### Dark sector dark matter?

dark photon

heavy neutral lepton

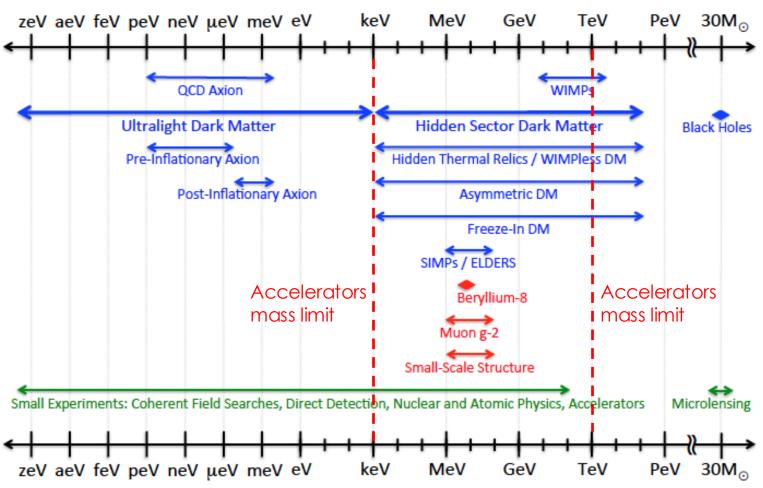

dark matter

neutrino masses


EW symmetry breaking

hierarchy of scales

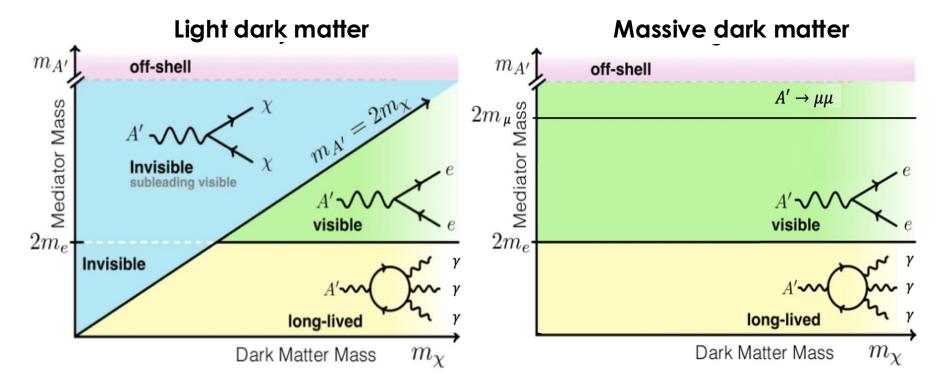
matter-antimatter asymmetry




"invisible"



## Which mass region is accessible

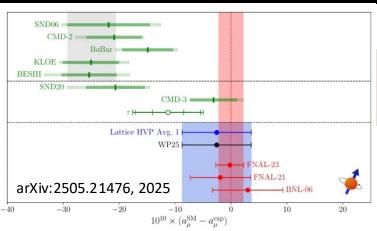

Dark Sector Candidates, Anomalies, and Search Techniques

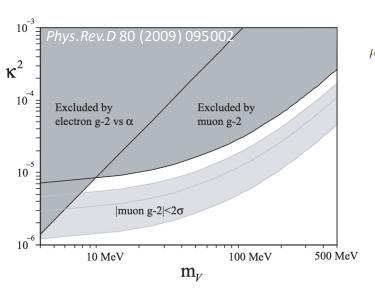


Accelerator limit energy scale ~1 TeV allows to access most of the models SM anomalies at low energy guide the eye in this region



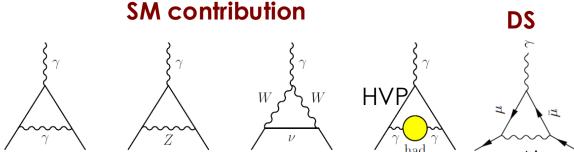
## Visible or invisible?





- X particle decays in dark matter χ if there are light dark matter particles (m<sub>γ</sub><m<sub>χ</sub>/2)
  - Subdominant SM decays are suppressed coup<sup>2</sup>
- "Invisible" decays are dominant.

- X particle decays into SM particles if dark matter is massive m<sub>χ</sub>>m<sub>χ</sub>/2.
  - SM decays are the only allowed
- Visible decay scenario




# Muon g-2 anomaly and dark sectors





#### g-2 puzzle in the standard model

- $\sim 3\sigma$  discrepancy between dispersive theory and experiments
- Fixed by recent lattice QCD results
- Lattice is still in tension with dispersive theory and experiment



Additional diagram with dark photon exchange can contribute to fix the discrepancy (with sub GeV A' masses)

$$a_{\mu}^{\text{dark photon}} = \frac{\alpha}{2\pi} \varepsilon^2 F(m_V/m_{\mu}),$$
 (17)

where  $F(x) = \int_0^1 2z(1-z)^2/[(1-z)^2+x^2z] dz$ . For values of  $\varepsilon \sim 1-2 \cdot 10^{-3}$  and  $m_V \sim 10-100$  MeV, the dark photon, which was originally motivated by cosmology, can provide a viable solution to the muon g-2 discrepancy. Searches for the dark

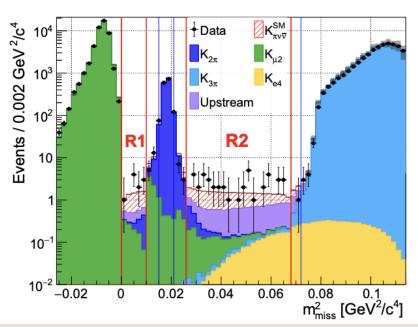
This possibility has now been ruled out or very severely constrained by lattice results.

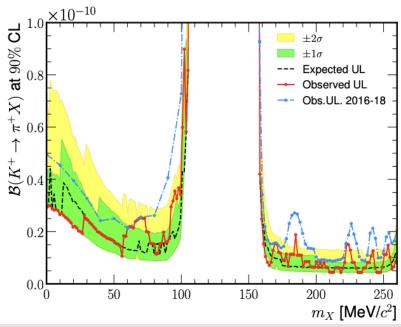


### Searches for DM in flavor factories

#### ■ Rare Decays (on shell mediator or DM):

◆ Flavour experiments are sensitive to new physics in <u>rare processes</u>, such as <u>rare B and K meson decays</u>, whose rate could be modified by the production of an on shell <u>dark mediator</u> or dark matter particles.


#### ■ Flavor Violating Interactions (LFV or LNV throug Z'):


Flavored dark matter models introduce new flavor-violating interactions, that are not allowed in the SM. These new interactions provide unique signatures in rare meson and lepton decays.

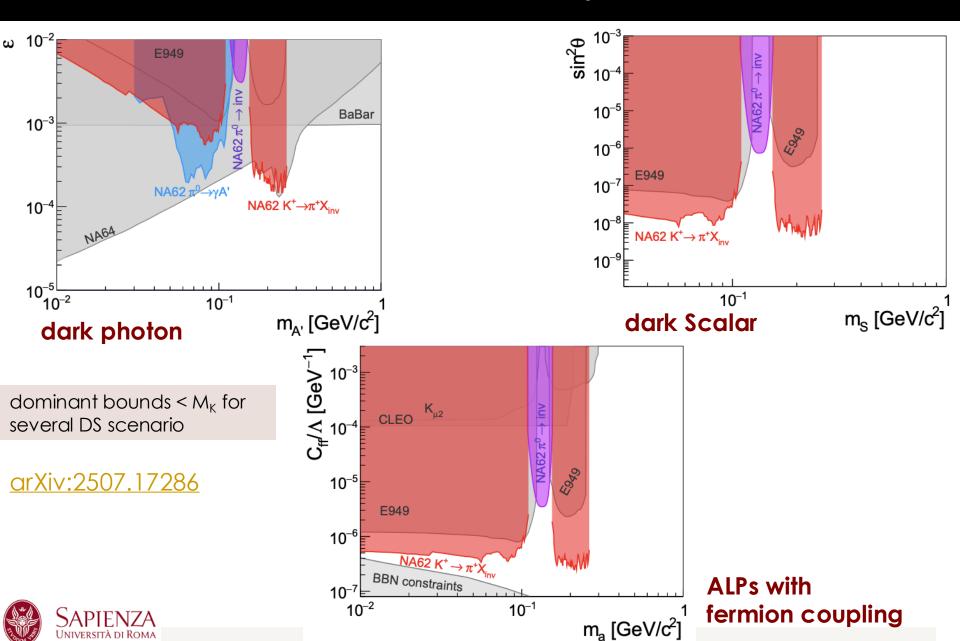
#### ■ Precision Measurements (off shell mediator):

 Besides directly producing DM or mediators, DM could influence the SM decay rates through virtual effects. Flavor experiments can study these effects by precisely measuring decay rates.

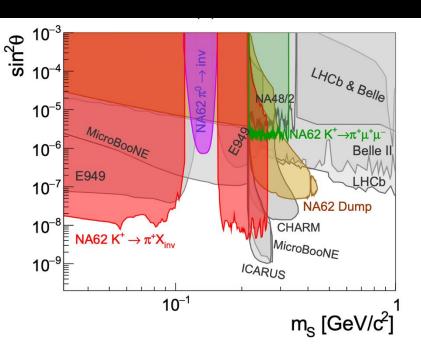
### From $K^+ - > \pi^+ \nu \nu$ to $K^+ - > \pi^+ X$ , X - > invisible






- Start from the  $m_{miss}^2$  spectrum used for the NA62 K+ $\to \pi^+ \nu \nu$  searches on 2016-22 data [JHEP 02 (2025) 191]
- Obtain the UL on the BR(K<sup>+</sup>  $\rightarrow$   $\pi$ <sup>+</sup>X) as function of X mass (p<sub>X</sub> mom of X in the K rest frame):

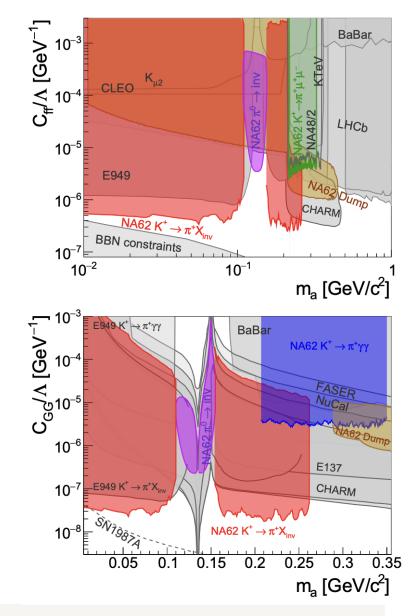
$$\mathcal{B}(K^+ \to \pi^+ X) = \frac{p_X}{8\pi \Gamma_K m_K^2} |\mathcal{M}|^2 \qquad \Gamma_K = 5.32 \times 10^{-14} \,\text{MeV}$$


- Recast the limit under different model assumptions (Vector, scalar, pseudoscalar) changing | M | <sup>2</sup>
  - Add lifetime corrections to obtain visible decay limits for the same model.



## Constraints on invisible particles

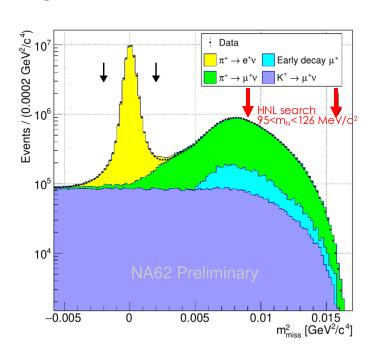



## Constraints on visible decay searches

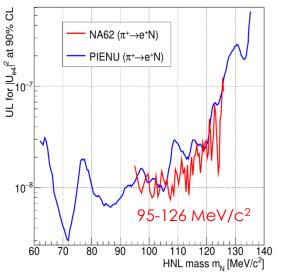


Dominant limits on all scenarios form  $K^+->\pi^+X$ 

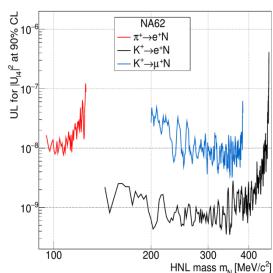
Additional limits from several K<sup>+</sup> decays even if not world leading


arXiv:2507.17286






### NA62 limits on HNL $\pi$ ,K decay: K<sup>+</sup>, $\pi$ <sup>+</sup>–>e<sup>+</sup>N


#### Single e<sup>+</sup> with no other activity



#### e<sup>+</sup> dominance BC6



#### Univ. lepton coupling



ArXiv:2507.07345v1

- K<sup>+</sup>, $\pi$ <sup>+</sup>–>e<sup>+</sup>N with N HNL decaying to invisible.
  - Searches in both K and beam pion decays.
- Experimental searches at NA62
  - NA62:  $K^+ \rightarrow e^+N$  (2016–2018 data) [Phys.Lett.B 807 (2020) 135599]
  - NA62:  $K^+ \rightarrow \mu^+ N$  (2016–2018 data) [Phys.Lett.B 816 (2021) 136259]
  - NA62:  $\pi^+ \to e^+ N \text{ [ArXiv: } \underline{2507.07345v1} \text{]}$





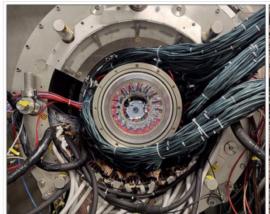


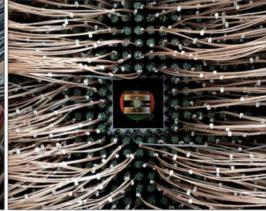
# The Be or X17 anomaly

## CERNCOURIER | Reporting on international high-energy physics

Physics **▼** 

Technology ▼


**Community ▼** 


Magazine

SEARCHES FOR NEW PHYSICS | NEWS

#### Mixed signals from X17

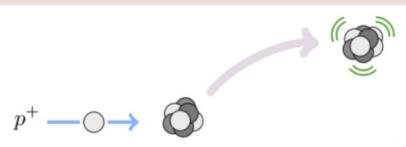
9 September 2025





Square peg in a round hole Independent checks by the MEG II (left) and PADME (right) experiments report conflicting early indications on the true nature of the ATOMKI anomaly. Credit:

INFN

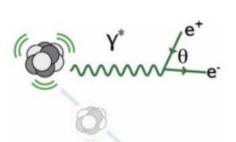

https://cerncourier.com/g/mixed-signals-from-x17/



## New Physics in nuclear transitions?

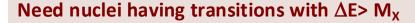
#### **Excite the nucleus by proton capture:**

choose the level by using appropriate p energy (few MeV)




#### **Standard Model deexcitation mechanisms:**

- a) γ emission
- b) Internal Pair Creation (IPC):
  - emit an off-shell photon  $\gamma^*$
  - $\gamma^*$  decays to ee pair

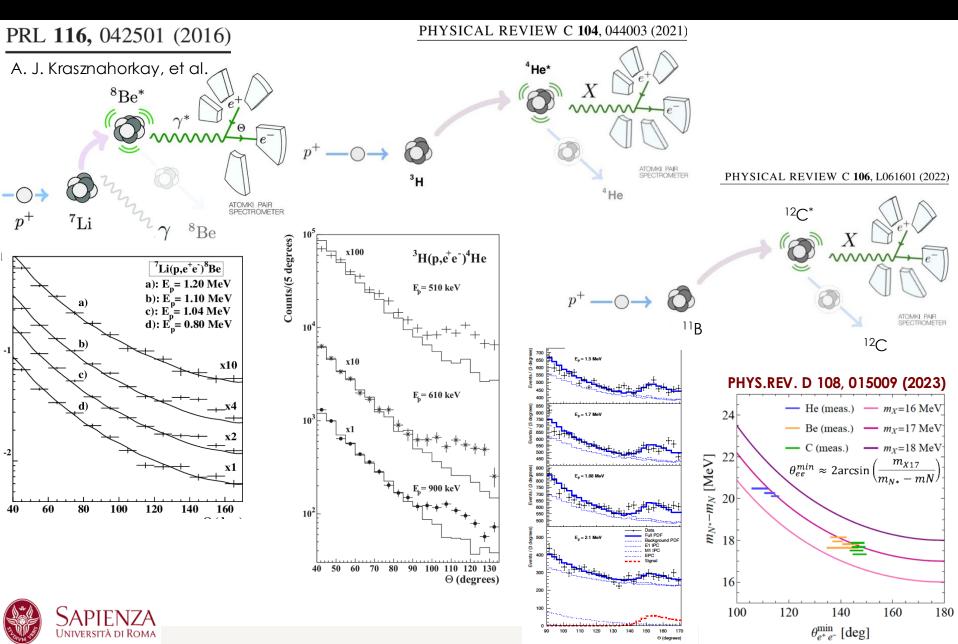



γ emission

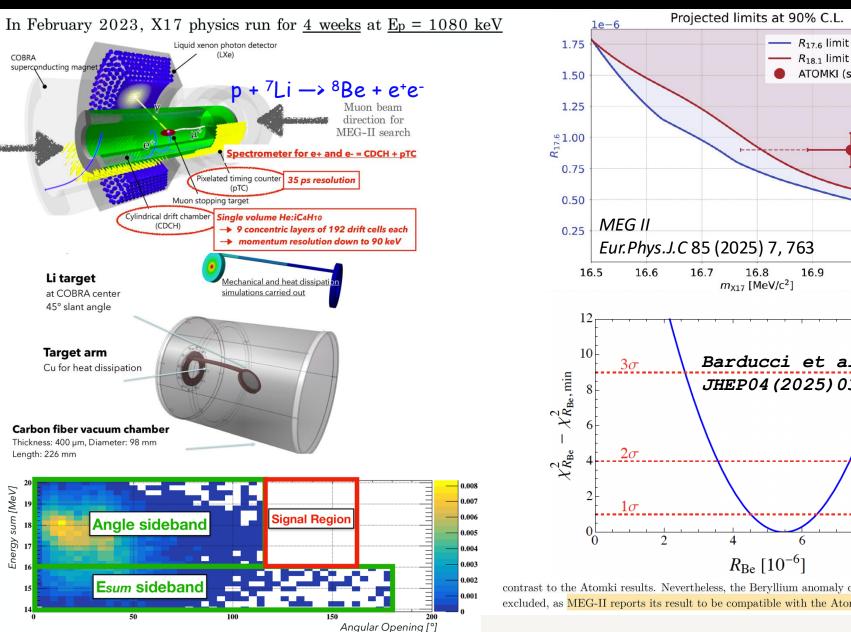




- Produce an intermediate on shell new particle X (mass M<sub>x</sub>)
- X decays to e<sup>+</sup>e<sup>-</sup> pair




New Particles will produce enhanced IPC rate




New particle will appear as a peak in the  $\theta_{\text{ee}}$  distribution

# The ATOMKY anomaly



# <sup>8</sup>Be anomaly at MEG II PSI



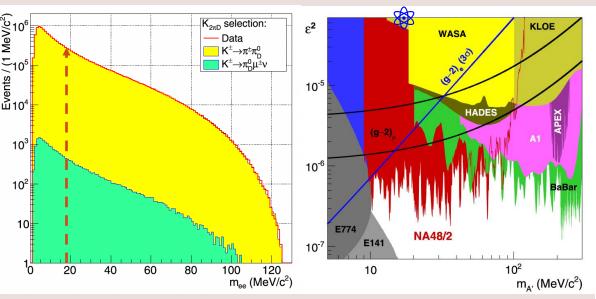
contrast to the Atomki results. Nevertheless, the Beryllium anomaly cannot be definitively excluded, as MEG-II reports its result to be compatible with the Atomki ones within  $1.5\sigma$ .

### Pure dark photon: excluded by NA48/2

For genuine A'  $\varepsilon_f = \varepsilon q_f$  Feng et. al from the X17 rate:

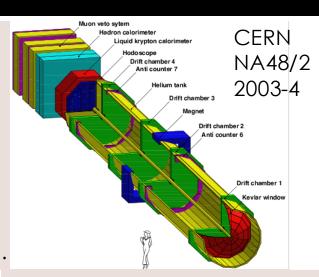
$$\frac{B(^{8}\text{Be}^{*} \to {}^{8}\text{Be} X)}{B(^{8}\text{Be}^{*} \to {}^{8}\text{Be} \gamma)} = (\varepsilon_{p} + \varepsilon_{n})^{2} \frac{|\vec{p}_{X}|^{3}}{|\vec{p}_{\gamma}|^{3}} \approx 5.8 \times 10^{-6} \qquad \begin{aligned} & [\text{PRL 117, 071803 (2016)}] \\ & |\varepsilon_{p} + \varepsilon_{n}| \approx 0.011, \end{aligned}$$

**NA48/2** experiment limits for A' in  $K^{\pm}_{2pD}$ :


$$K^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{D}$$
 with  $\pi^{0}_{D} = \gamma e^{+} e^{-}$ 

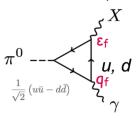
[PLB 746 (2015) 178-185]

In case X17 is a dark photon we should have in addition:


 $\pi^0 \rightarrow \gamma X17 \rightarrow \gamma e^+e^-$ 

X17 should appear as a peak at 17 MeV in the  $m_{ee}$  spectrum.




#### Universal coupled vector hypothesis A' firmly excluded





#### $\pi$ -phobic/P-phobic vector particle:

[PRL 117, 071803 (2016)]



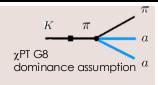
$$\pi^0 \rightarrow X \odot : |2\epsilon_u + \epsilon_d| < 8 \times 10^{-4} \text{ (NA48/2)}$$

$$B_{X17}/B_{\odot}$$
:  $|\epsilon_u + \epsilon_d| \approx 4 \times 10^{-3}$  (Atomki)

$$\varepsilon_{d} \approx -2 \ \varepsilon_{u} \ (\pm 10\%) \implies \varepsilon_{p} = 2 \varepsilon_{u} + \varepsilon_{d} \approx 0;$$

$$2\epsilon_u + \epsilon_d \approx 0 ==> \pi^0 -> X ©= 0$$

 $\pi$ -phobic vector still alive!

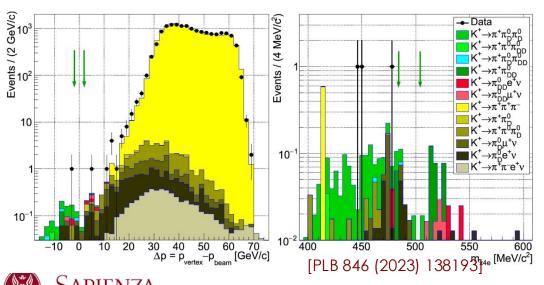

## X17 as QCD Axion: excluded by NA62

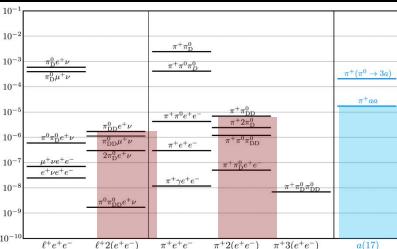
#### M. Pospelov noted: [PRD 105, 015017 (2022)]

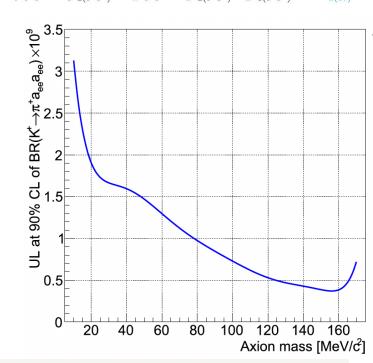
$$BR(K^+ \to \pi^+ aa) \simeq 1.7 \times 10^{-5}$$

If a=X17 X17->e+e- and we have  $\pi$ +4e final state

- a) main SM background  $K^+ \rightarrow \pi^+ \pi^0_{DD}$  has lower rate
- b) m<sub>ee</sub>= m<sub>a</sub> is a strong kinematical constraint





#### **NA62 Search for K**<sup>+</sup> $\rightarrow \pi$ <sup>+</sup>**aa** $\rightarrow \pi$ <sup>+</sup>**e**<sup>+</sup>**e**<sup>-</sup>**e**<sup>+</sup>**e**<sup>-</sup> [PLB 846 (2023) 138193]


- Full NA62cdata set collected in 2017–2018
- Expected BG =  $0.18\pm0.14$  events
- No events are observed in the signal region  $m_{\pi 4e} \sim m_{K+}$
- NA62 obtained:

$$BR(K^+ \to \pi^+ aa) \le 2.1 \times 10^{-9} \ at \ 90\% \ CL$$

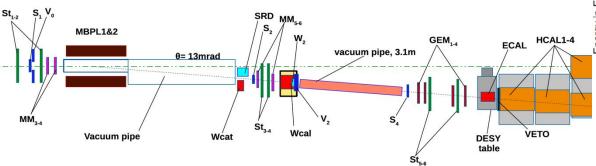
which rules out the QCD axion hypothesis for the X17.

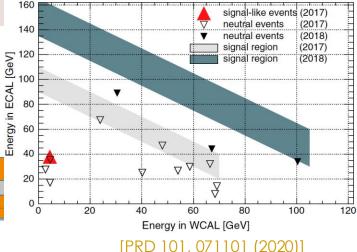









## Generical vector constraints NA64

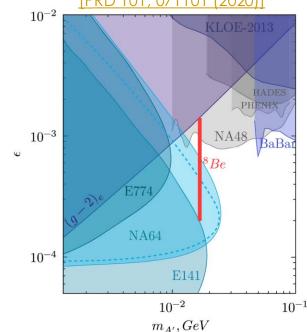

NA64 CERN NA, uses 150 GeV e<sup>-</sup> beam on thick target.

$$e^{-} + Z \rightarrow e^{-} + Z + A'(X), \qquad A'(X) \rightarrow e^{+}e^{-}$$

$$A'(X) \rightarrow e^+e^-$$

only e--> no problem with extra couplings!






#### How it works:

- 1) Beam e<sup>-</sup> losses part of its energy in W<sub>cal</sub> before radiating.
- 2) After radiating A' is absrobed by W<sub>cal</sub> depsiting all of its energy.
- 3) A' is radiated and decays after the W<sub>cal</sub>
- 4) Energy of the ee pair from the A' decay is measured by ECal

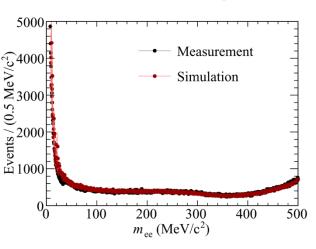
#### **Dump experiment:**

- limited in the high  $\varepsilon$  values by X17 lifetime
- No possibility to measure mass of eventually observed events
- just counts general event excess

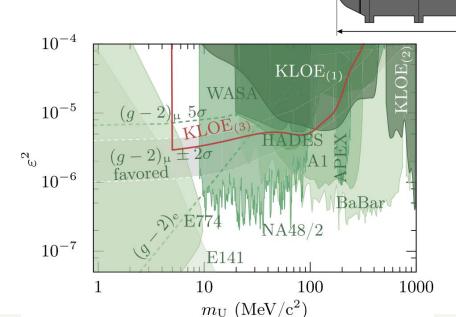




### Collider constraints: KLOE


Physics Letters B 750 (2015) 633-637

Contents lists available at ScienceDirect


Physics Letters B

www.elsevier.com/locate/physletb

Limit on the production of a low-mass vector boson in  $e^+e^- \rightarrow U\gamma$ ,  $U \rightarrow e^+e^-$  with the KLOE experiment

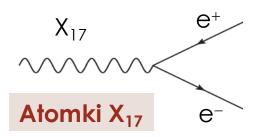


$$\varepsilon^{2}(m_{\rm ee}) = \frac{N_{\rm U}(m_{\rm ee})}{\epsilon_{\rm eff}(m_{\rm ee})} \frac{1}{H(m_{\rm ee}) \ I(m_{\rm ee}) \ L}$$



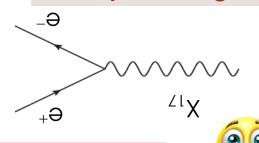
S.C. coil

Barrel EMC


**Drift chamber** 

 $6 \, \mathrm{m}$ 

Crvosta




### As simple as possible: the resonance search



[M.R., E. Nardi et al. PRD 97, 095004 (2018)]

#### Just flip the diagram



and connect!

 $X_{17}$ 

 $+\Theta$ 

No model dependence just electron coupling!

Extremely high production rate Breit-Wigner enhancement

$$\sigma_{\rm res}(E_e) = \sigma_{\rm peak} \frac{\Gamma_{A'}^2/4}{(\sqrt{s} - m_{A'})^2 + \Gamma_{A'}^2/4} \quad \sigma_{\rm peak} = 12\pi/m_{A'}^2$$

Lowest possible  $\alpha$  suppression

E. Nardi M.R. et al. Phys. Rev. D 97 (2018) 9, 095004

Extremely small 
$$\Gamma_{\rm X17}$$
  $\Gamma_{A'} \simeq \epsilon^2 \alpha m_{A'}/3$  <10<sup>-2</sup> eV

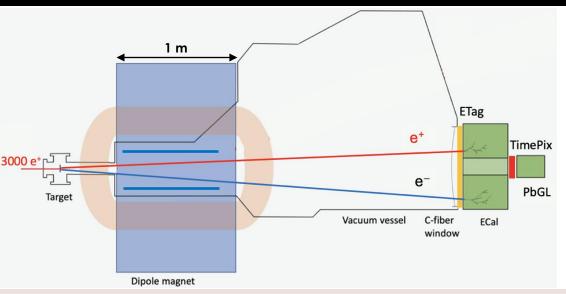
$$\Gamma_{A'} \simeq \epsilon^2 \alpha m_{A'}/3$$

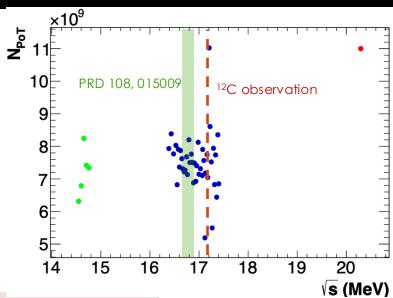


We need a lot of positrons in very limited COM energy range

We can have >1E10 e+ in 20KeV CoM energy at LNF!

Ok let's do that at PADME!


[L. Darmé E. Nardi, Mancini M.R. et al. PRD 106,1150361






e-

### PADME detector in Run III 2022





#### 2022 Run-III setup adapted for the X17 search:

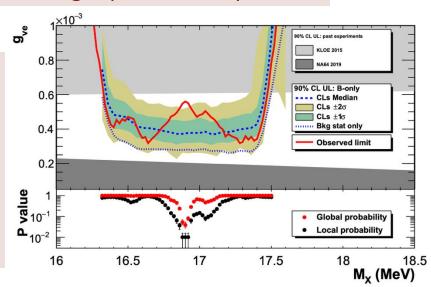
- Active target, CVD polycrystalline diamond with X,Y coordinates
- <u>ECal</u>, 616 21x21x230 mm<sup>3</sup> BGO crystals
- Newly built ETag in front of Ecal for  $e/\gamma$
- <u>Timepix</u> silicon-pixel detector for beam spot imaging
- <u>Lead-glass</u> beam catcher (NA62 LAV spare block)

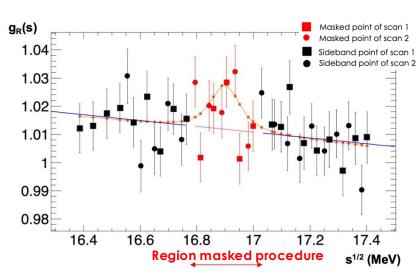
On resonance points **spaced** by ~ **0.75 MeV**Point spacing equal to the energy resolution

- Mass region 16.4 MeV <M<sub>X17</sub>< 17.5 MeV
- Statistics ~1x10<sup>10</sup> NPoT per point



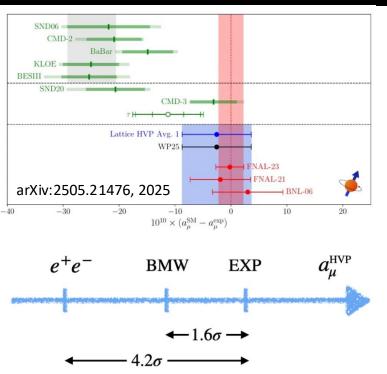
# Observed limit after box opening


An excess is observed beyond the  $2\sigma$  local coverage (2.5  $\sigma$  local)


At  $M_x = 16.90(2)$  MeV,  $g_{ye} \sim 5.6 \times 10^{-4}$ , the global probability dip reaches 3.9<sub>-1.1</sub>+1.5 %, corresponding to (1.77 $\pm$ 0.15)  $\sigma$  one-sided (look-elsewhere calculated exactly from the toy pseudo-events)

A second excess is present at larger masses ~ 17.1 MeV, but the absolute probability there is ~ 40%

If a  $3\sigma$  interval is assumed for observation following the estimate  $M_x = 16.85(4)$  of PRD 108, 015009 (2023),


the p-value dip deepens to  $2.2_{-0.8}^{+1.2}\%$ corresponding to (2.0±0.2)  $\sigma$  one-sided







## New possibilities?

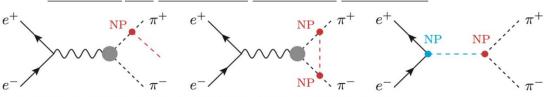


needed to explain  $\Delta a_{\mu}$  can be divided in two regions: i)  $m_{Z'} \gtrsim 0.3$  GeV which requires  $|\epsilon| \approx 10^{-2}$  and  $\gamma \gtrsim 10^{-3}$  and ii)  $m_{Z'} \lesssim 0.3$  GeV which requires  $|\epsilon| \approx 10^{-2}$  and basically no relevant constraint on  $\gamma$  (as evident from Eq. (13)). We note that in principle it could be possible to directly observe (with a dedicated scanning analysis) the new resonance in  $e^+e^-$  data for particular choices of the Z' mass and width parameters. However, since there

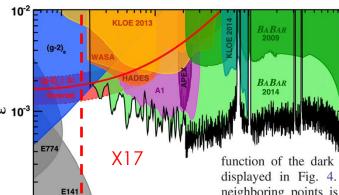




10<sup>-2</sup>


#### Physics Letters B

Volume 829, 10 June 2022, 137037




# New physics behind the new muon *g*-2 puzzle?

Luca Di Luzio a b 💍 🖾 , Antonio Masiero a b, Paride Paradisi a b, Massimo Passera b



2. Leptonic processes. The Z' coupling to electrons is also tightly constrained. In particular, the non-observation at BaBar of the process  $e^+e^- \to \gamma Z'$  followed by the decay  $Z' \to e^+e^-$  yields  $g_V^e \lesssim 2 \cdot 10^{-4}$  [42] if the Z' decays dominantly into electrons. Therefore, in our framework, this bound applies only for  $m_{Z'} \lesssim 0.3$ 

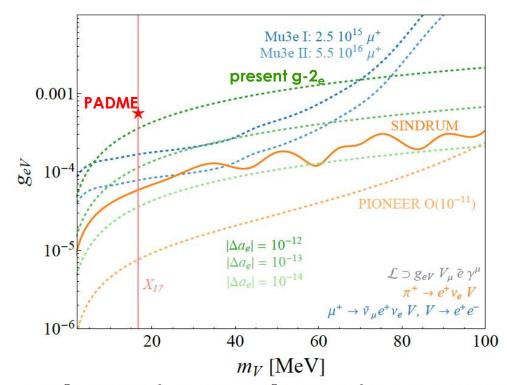


PRL 113, 201801 (2014)

function of the dark photon mass [10]. The results are displayed in Fig. 4. The average correlation between neighboring points is around 90%. Bounds at the level of  $10^{-4}-10^{-3}$  for  $0.02 < m_{A'} < 10.2$  GeV are set, significantly improving previous constraints derived from beam-

m<sub>A'</sub> (GeV) dump experiments [11,12,18], the electron anomalous

# More on X17 and $g-2_e$


Hunting for a 17 MeV particle coupled to electrons

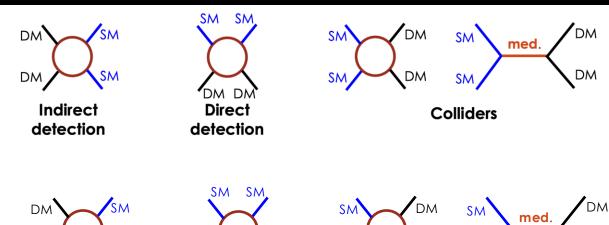
arXiv:2504.14014v2

Luca Di Luzio,<sup>1,\*</sup> Paride Paradisi,<sup>2,1,†</sup> and Nudžeim Selimović<sup>1,‡</sup>

$$\Delta a_e^X = \frac{g_{eX}^2}{4\pi^2} \frac{m_e^2}{m_X^2} L_X \qquad L_V = \frac{1}{3}$$

$$\Delta a_e^V \approx 2.4 \times 10^{-12} \left( \frac{g_{eV}}{5.6 \times 10^{-4}} \right)^2 \left( \frac{17 \,\mathrm{MeV}}{m_V} \right)^2$$




other beam-dump experiments. We have shown that the  $e^+e^-$  PADME excess is already in tension with the electron g-2, as well as exotic pion decay data from SINDRUM, although it remains marginally viable and testable.



### Conclusions

- Low energy physics it's an important player in dark matter searches
  - Flavor factories, dump experiments, precision measurements.
- Flavor physics is a excellent testing ground for dark sector searches
  - NA62 recently delibred would leading results for:
     Dark Photons, dark scalars, ALPs and HNL.
- Searches for X17 particle after 10 years may be facing a crucial stage
  - ♦ MEG II and PADME able to clarify the situation in the next 2-3 years
- Contribution of postulated X17 to the g-2 puzzle needs deeper scrutiny.





DM DM

Direct

detection

DM

**Colliders** 



Indirect

detection