Muon Physics Programs in China: A Particle Physics Perspective

Liang Li

Shanghai Jiao Tong University

Muon Physics Programs in China

- Emerging and fast-growing program
 - China's muon efforts are transitioning from participation abroad to building domestic initiatives.
 - Early milestones in beams, detectors, and analysis show strong momentum. International collaboration and participation is warmly welcomed.
- Intensity Frontier: Next-gen particle/muon sources and experiments
 - High-Intensity heavy-ion Accelerator Facility (HIAF)
 - China-initiative Accelerator-Driven Subcritical system (CiADS)
 - China Spallation Neutron Source (CSNS): Muon Station for Science,
 Technology, and Industry (MELODY), SHINE Muon Source
- Broader impact beyond HEP (not covered in this talk)
 - Applied science: muon tomography (critical infrastructure, archaeology), nondestructive assay of dense cargo/containers.
 - Nuclear & condensed-matter: µSR for magnetic/quantum materials; isotope production and nuclear-structure probes.
- Abundant Collaboration Opportunities

HIAF and CIADS

Two Major National Science and Technology Infrastructure Projects, approved by central government in December 2015.

Total investment: ~ 6.8 billion CNY Construction periods:

HIAF: Dec. 2018 - Dec. 2025

CiADS: July 2021 – July 2027

Courtesy Y. He

HIAF and CIADS

High-Intensity heavy-ion Accelerator Facility (HIAF): World's most advanced heavy-ion accelerator with the highest pulsed beam intensity

China-initiative Accelerator-Driven
Subcritical system (CiADS): World's first
megawatt-level ADS research facility

HIAF beam: 0.5 - 7.5 GeV, $4-8*10^6$ µ/s (Baseline Max Intensity) CiADS beam: 0.5 - 0.6 GeV, $5*10^8$ µ/s (Phase-I)

Scientific goals:

- 1. Nuclear force
- 2. Origin of heavy elements
- 3. High-energy/intensity physics
- 4. Space radiation simulation

Scientific goals:

- Stable, reliable, and long-term operation of accelerator, spallation target, and reactor systems
- 2. Foundation for future industrial-scale ADS facility
- 3. Fundamental physics and applied physics research

Courtesy Y. He

HIAF

	iLinac	BR	ing	SRin	ıg		
Length / circumference (m)	114	569		277			
Final energy of U (MeV/u)	17 (U ³⁵⁺)/150	835 (U ³⁵⁺)	9300 (p)	800 (U ⁹²⁺)	3500 (p)		
Max. magnetic rigidity (Tm)		34		15			
Max. beam intensity of U (ppp)	28 pμΑ	2×10 ¹¹	$(1-3)\times10^{13}$	$(0.5-1)\times10^{12}$	$(1-3)\times10^{13}$		
Operation mode	CW or pulse	Fast ramping (12T/s, 3Hz) DC, decelerate		eration			
Emittance or Acceptance (H/V, π·mm·mrad, dp/p)	5/5	200/100, 0.5% 40/40, 1.5% (normal mode)					

HIAF

Muon production

- High-intensity proton/ion to drive the surface/decay muon source
- Fast or slow extraction mode of BRing provides pulse or continuous beam

Muon Terminal

- Decay muon: muon application (tomography) and experiment
- Surface muon: μSR

GeV Muon Beam with HIAF

Length [m]	Max.angular acceptance [mrad]	Max. momentum acceptance [%]	$B\rho_{max}\\[T{\cdot}m]$
191.38	±30 (X) ±25 (Y)	±2.0	25

- High-rigidity Radioactive Ion Beam Line (HIRIBL): world's longest and highest rigidity beamline
- HIRIBL is long enough for GeV energy pion/muon production, decay and transportation
- Intensity of muon with momentum of 3 GeV can reach 4*10⁶/s

Searching for New Physics with HIAF

PKMu Experiment: GeV Muon beam complementary to higher energy experiments like NA64 and MUonE

NA64 Results

Phys. Rev. Lett. 132, 211803

Dark Boson Z' Search with HIAF

MuonE: Phys.Rev.D 106 (2022) 5, L051702

PKMu simulation result

PKMu: More sensitive to dark boson at MeV region

Courtesy Q. LI

Flavor Changing Z' Search with HIAF

DREAMuS: Dark matter REsearch with Advanced Muon Source

- Dark matter (χ) from a heavy, flavor-violating Z'
- 3 GeV muon interaction with 350 µm tungsten target

Flavor Changing Z' Search with HIAF

Particle (veto) detector

- Muon veto: TOF > 11 ns
 - Remove muon beam remnant
- Proton veto: TOF < 14 ns

Single track with Tracker/TOF

- Number of track = 1
- Tracking efficiency: 99%

Geometry acceptance:

• Electron θ acceptance: $|\theta| < 120^{\circ}$

Electron p_T **selection**:

pT > 20 MeV

Electron θ selection:

• $|\theta| > 0.75$ radian (43 °)

Flavor Changing Z' Search Sensitivity with HIAF

Stringent limit on flavor violating Z' model

- 6*10¹² MOT with background free assumption, $m_{z'} = 3m_{\chi}$
- 90% C.L. limit on g₇: ~10⁻⁵
- In comparison with $L_{\mu} L_{\tau}$ "vanila" model

Other Physics Potentials with HIAF

Proton charge radius

Proton Structure

LUNE: Low-energy mUon-Nucleon scattering Experiment

Other Physics Potentials with HIAF

Proton charge radius

Proton Structure

LUNE: Low-energy mUon-Nucleon scattering Experiment

CiADS Design

Courtesy R. Wang

CiADS Muon Source: MuST

- ☐ Muon terminal area: ~800 m²
- □ Construction plan of 2 phases
 - ➤ Phase I (2025–2028): one target station (0.5 mA, 600 MeV, CW wave & time-structed beam), two muon beamlines
 - ➤ Phase II (2029–2032): Add one additional target station and two beamlines, power upgradable to 3 MW

□ Current design parameters

Beam power	Target	Focusing method	Muon intensity (μ+/s)	
1st phase	Graphite rotating target	Solenoid + quadrupole	> 5E7	
300 kW		Full solenoid	> 5E8	
2 nd phase	Liquid lithium target	Solenoid + quadrupole	> 1E9	
3 MW		Full solenoid	> 1E10	

Courtesy Y. He

CiADS Physics Potential

- High-precision tests of rare processes of muon and muonium Crystal
- $(\mu^+ e^-) \to \mu^- e^+, (\mu^+ e^-) \to e^+ e^-, (\mu^+ e^-) \to_{\text{ron Me}}^{\text{Tled thing}}$
- \checkmark (μ^+e^-) → invisible
- ✓ Experiments like Mu2e, COMET, MEG, Mu3e...

MACE Phase-I

MACE: Muonium-to-Antimuonium Conversion Experiment

Searching for charged lepton flavor violation,

new physics beyond the standard model, CPT test

Courtesy J. Tang

High-precision X-ray measurement of muonic atom

Muon orbits with a much smaller distance to charge center

Precision test of strong filed QED, and looking for the fifth interaction in muonic atom!

China Spallation Neutron Source

Accelerator: 170kW 25Hz 1.6GeV proton beam Neutron Spectrometers: 9 built and 2 under construction

China Spallation Neutron Source II

MELODY: Muon station for sciEnce technoLOgy and inDustrY

- Design parameters
- 1. Momentum: 28 MeV/c, Polarizability: >95%
- 2. Intensity: $>10^5 \,\mu/s$, Positron background: <1%
- ◆ Optical design by Transport
- 1. Fully focusing solenoids, 3 dipole bending magnet.
- 2. SMWF, SMK, 5 collimators
- 3. Deflection angle: SMBA @34, SMBB @40.9, SMBC @90, Kicker @8, Septum @15

AI optimization

2 terminals: SMT1 for muSR SMT2 for R&D

Courtesy Y. Bao

Muon Source at SHINE

SHINE is high-repetition X-FEL facility under construction at Shanghai (2019-2027)

- Electron beam: 8 GeV, 1 MHz, 100 pC per bunch
- Possible to drive a muon facility

Muon facility

- Available space (underground)
- Shared beam time,
 50 kHz
- 2.5*10⁷ μ+/s (surface μ), 500 μ/bunch, for μSR applications
- Under design and testing

$$e^- + Z_1 \rightarrow Z_1 + \gamma$$

 $\gamma + Z_2 \rightarrow \pi^{\pm} + Z_3$

The largest place in Shaft #2 is the best candidate

Shaft #2 is a good location for a muon beamline

- Sufficient space
- · Existing beamlines, cost savings possible

Shaft #3 is also available

- There is no undulator line at the moment
- · Not in the plan, will take 5-10 years

Courtesy J.Y. Tang, K.S. Khaw

Laser-driven Muon Sources

Several groups in China studying laserdriven muon sources and muon acceleration by laser-plasma wake-field

- Experiment at SULF (10PW/1PW-0.1Hz): conversion eff. 0.01μ/e
- TeV muon acceleration driven by laser plasma at PKU (slowing down plasma wave)

Shanghai Super-intense Ultrafast Laser Facility (SULF)

nature physics

Explore content > About the journal > Publish with us >

nature > nature physics > articles > article

Article | Published: 06 May 2025

Proof-of-principle demonstration of muon production with an ultrashort high-intensity laser

Feng Zhang, Li Deng, Yanjie Ge, Jiaxing Wen, Bo Cui, Ke Feng, Hao Wang, Chen Wu, Ziwen Pan, Hongjie Liu, Zhigang Deng, Zongxin Zhang, Liangwen Chen ⊠, Duo Yan, Liangiang Shan, Zongqiang Yuan, Chao Tian, Jiayi Qian, Jiacheng Zhu, Yi Xu, Yuhong Yu, Xueheng Zhang, Lei Yang, Weimin Zhou ⊠, ... Ruxin Li + Show authors

Nature Physics 21, 1050–1056 (2025) | Cite this article

3874 Accesses | 7 Citations | 61 Altmetric | Metrics

Courtesy J.Y. Tang

Conclusion and Outlook

- Young and accelerating muon physics program in China
 - Several muon facilities under construction: HIAF, CiADS, MELODAY, SHINE etc.
- Wide participation in international experiments and projects (not covered in this talk)
 - Fermilab g-2, J-PARC g-2/EDM, COMET, Mu2e, MUonE, IMCC etc.
- High leverage for international collaboration.
 - Detector R&D, manpower and resources, data and computing strategy
 - Joint efforts are hightly encouraged
- Unique particle physics potential with HIAF/CiADS muon source
 - HIAF will operate by end of 2025, CiADS by end of 2027