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Cabibbo-Kobayashi-Maskawa

δVus/Vus ~ 0.2%  δVud/Vud ~ 0.03%  δVub/Vub ~ 5% 

~1.5 ⨉10-5~0.05 ~0..95 

  Vud and Vus are the most accurately known 
elements of the CKM matrix ⇒ 

1st row provides the most stringent test of 
universality & sensitivity to new physics 

Semi-leptonic charged-current processes

• In the SM,  W exchange between L-handed fermions ⇒  “V-A” currents  &  universality relations 

Cabibbo universality (CKM unitarity)
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Semi-leptonic charged-current processes
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Current precision ⇒  probe effective scale Λ ~ 10 TeV

New physics can spoil universality:   
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at low 
energy

 GF(μ) Vij  ~ 1/v2 Vij

Compelling but challenging!

• In the SM,  W exchange between L-handed fermions ⇒  “V-A” currents  &  universality relations 



• Overview:  paths to  Vud & Vus  and current puzzles 

• A closer look:  

• Status and prospects for selected channels  

• Radiative corrections to neutron and nuclear decays in EFT 
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Outline



Paths to  Vud &  Vus:  status and puzzles 



Paths to Vud and Vus

5

Vud

€ 

Λ→ peν,...  

€ 

K→π l ν

€ 

K→ µνVus

⌧ ! hNS⌫ ⌧ ! hS⌫

mN � m⇡ � mn �mp

⇤� ⇠ O(mN) ⇠ O(4⇡F⇡) ⇠ 1 GeV

m⇡ ⇠ 140 MeV

� ⌘ m� �mN = 293 MeV
⇤

�

qext ⇠ mn �mp ⇠ me ⇠ 1 MeV

✏� = m⇡/⇤� ⇠ 0.1

✏recoil = qext/⇤� ⇠ 10�3
⇠ ↵/⇡

⇠ ↵/⇡

✏/⇡ = qext/m⇡ ⇠ 10�2

✏recoil ⇠ ↵/(4⇡) ⇠ 10�3

O(↵2
,↵✏recoil, ✏

2
recoil)

↵em✏
n
�✏

m
/⇡

2

⌧ ! hNS⌫ ⌧ ! hS⌫

mN � m⇡ � mn �mp

⇤� ⇠ O(mN) ⇠ O(4⇡F⇡) ⇠ 1 GeV

m⇡ ⇠ 140 MeV

� ⌘ m� �mN = 293 MeV
⇤

�

qext ⇠ mn �mp ⇠ me ⇠ 1 MeV

✏� = m⇡/⇤� ⇠ 0.1

✏recoil = qext/⇤� ⇠ 10�3
⇠ ↵/⇡

⇠ ↵/⇡

✏/⇡ = qext/m⇡ ⇠ 10�2

✏recoil ⇠ ↵/(4⇡) ⇠ 10�3

O(↵2
,↵✏recoil, ✏

2
recoil)

↵em✏
n
�✏

m
/⇡

2

Nucl. mirror decays

€ 

(π ± →π 0eν)

€ 

n→ peν

.                 

Hadron decays Lepton decays

Nucl.  0+ →0+ 
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The challenge of CKM precision tests

6

Extract  Vus=sinθC =λ and  Vud=cosθC ≃1 - λ2/2  
with sub-percent precision from decays involving hadrons       

(currently δλ/λ ~ 0.2-0.5%)
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The challenge of CKM precision tests

6

Extract  Vus=sinθC =λ and  Vud=cosθC ≃1 - λ2/2  
with sub-percent precision from decays involving hadrons       

(currently δλ/λ ~ 0.2-0.5%)

Experimental input

Lifetimes, 
BRs

Q-values, form 
factors, … →
phase space

Muon 
decay
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The challenge of CKM precision tests

6

Extract  Vus=sinθC =λ and  Vud=cosθC ≃1 - λ2/2  
with sub-percent precision from decays involving hadrons       

(currently δλ/λ ~ 0.2-0.5%)

Theory input

Hadronic / nuclear matrix elements of the weak V-A current,  
including small corrections such as those induced by 

electromagnetic radiative corrections  [(α/π)~ 2.⨉ 10-3]
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(π ± →π 0eν)

Hadronic matrix elements
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Hadron decays Lepton decays

Hadronic matrix elements:  ‘Vector - Axial’ quark current

A

<0 | Aμ |M>
(decay constants)
from Lattice QCD

[~0.2%]

V,  A

Use combination of 
data and theory 

(pQCD + lattice QCD)

Berhends-Sirlin     
  Ademollo-Gatto

Traditionally “Golden modes”:
 <f |Vμ |i> known in SU(2) [SU(3)] limit 

& 
corrections are 2nd order in                     

SU(2) [SU(3)] breaking. 
Computed in lattice QCD for K →π

V V,  A

Need experimental input on 
<f |A|i> / <f |V |i> 

For neutron and hyperons, 
Lattice QCD catching up but 
not as precise as experiment 

Nucl. mirror decaysNucl.  0+ →0+ 



Radiative corrections
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Hadron decays Lepton decays

Electroweak radiative corrections

Nucl. mirror decays

€ 

(π ± →π 0eν)

€ 

n→ peν
Nucl.  0+ →0+ 

Mesons and neutron: 
well developed  Effective Field 
Theory (EFT) framework, with 

non-perturbative input from lattice 
QCD and / or dispersive methods 

— systematically improvable

For leptonic meson decays: 
full lattice QCD+QED available

For exclusive channels, difficult 
to estimate the hadronic 

structure-dependent effects.  
Lattice QCD+QED? 

.                 

Recent activity to assess nuclear 
structure uncertainties:   

- Dispersive approach
- Chiral EFT

            



The Cabibbo angle — global view

Vus

Convert  Vud to  Vus via unitarity 
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Tension among the most precise determinations
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Tensions in the Vud-Vus plane
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• Bands don’t intersect in the same region                                
on the unitarity circle

• ~3σ effect in global fit (ΔCKM= −1.48(53) ⨉10-3)

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in

0.960 0.965 0.970 0.975
0.220

0.222

0.224

0.226

0.228

V

us

Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-

2

Vus

Vud

 K→
 μν 

/ π→
 μν 

 

(0.22%)

K→ πlν (0.25%)

unitarityNeutron (0.043%)
0+ → 0+ (0.031%)

VC-Crivellin-Hoferichter-Moulson  2208.11707  
[and references therein]

ΔCKM = |Vud|2 + |Vus|2  + |Vub|2 - 1



Tensions in the Vud-Vus plane

10

• Bands don’t intersect in the same region                                
on the unitarity circle

• ~3σ effect in global fit (ΔCKM= −1.48(53) ⨉10-3)

• Until ~2018, bands did intersect in the same region                                
on the unitarity circle (< 2σ)

• Main changes since then: 

• Vus from Kl3 decreased (<V> increased with 
smaller uncertainty, 2+1+1 lattice QCD)

• Vud decreased (radiative corrections in 
nuclear & neutron increased with smaller 
uncertainty, dispersive) 

For the enthusiasts  

Seng et al., 1807.10197  

MILC Collab. 

with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].
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situation depicted in Fig. 1: on the one hand, there is a ten-
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sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to
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K`2/⇡`2
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where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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A closer look at selected channels
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Vud from pion β decay

• Vector form factor

• Radiative corrections
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Box diagram in 
Lattice QCD

2

tablished [2] that only the axial �W -box contribution is
sensitive to hadronic scales; see Fig. 1 for the �W dia-
grams. The relevant hadronic tensor TV A

µ⌫
is defined as

TV A

µ⌫
=
1

2 �
d4xeiqx�Hf(p)�T �J

em

µ
(x)JW,A

⌫
(0)� �Hi(p)�,

(1)
for a semileptonic decay process Hi → Hfe⌫̄e. Above,
Hi�f are given by neutron and proton for the neutron
beta decay, and by ⇡− and ⇡0 for the pion semileptonic
decay, respectively. Furthermore, Jem

µ
=

2
3 ū�µu−

1
3 d̄�µd−

1
3 s̄�µs is the electromagnetic quark current, and JW,A

⌫
=

ū�⌫�5d is the axial part of the weak charged current.

Figure 1. The �W -box diagrams for the semileptonic decay
process Hi →Hfe⌫̄e.

The spin-independent part of TV A

µ⌫
has only one term,

TV A

µ⌫
= i✏µ⌫↵�q

↵p�T3 + . . . , where T3 is a scalar function.
For the neutron beta decay, the spin-dependent contri-
butions, denoted by the ellipses here, are absorbed into
the definition of the nucleon axial charge gA, which can
be measured directly from experiments. According to
current algebra [2], it is this spin-independent term that
gives rise to the hadron structure-dependent contribution
and dominates the uncertainty in the theoretical predic-
tion. Using T3 as input, the axial �W -box correction to
the tree-level amplitude is given as [3]

�
V A

�W
�
H
=

1

FH+
↵e

⇡ �
∞

0
dQ2 m2

W

m2
W
+Q2

×�

�
Q2

−�Q2

dQ0

⇡

(Q2
−Q2

0)
3
2

(Q2)2
T3(Q0,Q

2
). (2)

Here Q2
= −q2 > 0 is the spacelike four-momentum

square. The normalization factor FH+ arises from the lo-
cal matrix element �Hf(p

′
)�JW,V

µ
�Hi(p)� = (p + p

′
)µF

H+ ,

with FH+ = 1 for the neutron and
√
2 for the pion decay.

Methodology – In the framework of lattice QCD, the
hadronic tensor TV A

µ⌫
in Euclidean spacetime is given by

TV A

µ⌫
=
1

2 �
dt e−iQ0t

� d3xe−i �Q⋅�xHV A

µ⌫
(t, �x) (3)

with HV A

µ⌫
(t, �x) defined as

H
V A

µ⌫
(t, �x) ≡ �Hf(P )�T �J

em

µ
(t, �x)JW,A

⌫
(0)� �Hi(P )�. (4)

Here the Euclidean momenta P and Q are chosen as

P = (imH ,�0), Q = (Q0, �Q) (5)

with mH the hadron mass.
By multiplying ✏µ⌫↵�Q↵P� to TV A

µ⌫
, we can extract the

function T3(Q0,Q
2
) through

T3(Q0,Q
2
) = −

I

2m2
H
� �Q�2

, I = ✏µ⌫↵�Q↵P�T
V A

µ⌫
. (6)

Here I can be written in terms of HV A

µ⌫
as

I =
i

2
✏µ⌫↵0Q↵mH � dt e−iQ0t

� d3�xe−i �Q⋅�xHV A

µ⌫

=
mH

2 �
dt e−iQ0t

� d3�xe−i �Q⋅�x✏µ⌫↵0 @H
V A

µ⌫

@x↵

. (7)

We can average over the spatial directions for �Q and have

I =
mH

2 �
dt e−iQ0t

� d3�x j0 �� �Q���x�� ✏µ⌫↵0
@HV A

µ⌫

@x↵

=
mH

2 �
dt e−iQ0t

� d3�x
� �Q�

��x�
j1 �� �Q���x�� ✏µ⌫↵0x↵H

V A

µ⌫
,

(8)

where jn(x) are the spherical Bessel functions. A key
ingredient in this approach is that once the Lorentz scalar
function ✏µ⌫↵0x↵H

V A

µ⌫
is prepared, e.g. from a lattice

QCD calculation, one can determine T3(Q0,Q
2
) directly.

Putting Eqs. (8) and (6) into Eq. (2) and changing

the variables as � �Q� =
�

Q2 cos ✓ and Q0 =
�

Q2 sin ✓, we
obtain the master formula

�
V A

�W
�
H
=
3↵e

2⇡ �
dQ2

Q2

m2
W

m2
W
+Q2

MH(Q
2
) (9)

with

MH(Q
2
) = −

1

6

1

FH+

�

Q2

mH

� d4x!(t, �x)✏µ⌫↵0x↵H
V A

µ⌫
(t, �x),
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2

−⇡
2

cos3 ✓ d✓

⇡

j1 �
�

Q2��x� cos ✓�

��x�
cos �
�

Q2t sin ✓� .

(10)

For small Q2, lattice QCD can determine the function
MH(Q

2
) with lattice discretization errors under control.

For largeQ2, we utilize the operator product expansion

1

2 �
d4xe−iQxT �Jem

µ
(x)JW,A

⌫
(0)�

=
i

2Q2
�Ca(Q

2
)�µ⌫Q↵ −Cb(Q

2
)�µ↵Q⌫

−Cc(Q
2
)�⌫↵Qµ�J

W,A

↵
(0)

+
1

6Q2
Cd(Q

2
)✏µ⌫↵�Q↵J

W,V

�
(0) +�. (11)

There are only four possible local operators at leading
twist. (For the pion decay, the hadronic matrix ele-
ments for the first three operators vanish.) Multiplying

Uncertainty in π0 mass! 
[M. Hoferichter]



Vud from neutron decay

13

• Radiative corrections:  radiative corrections in the Sirlin framework with dispersive input   

• Experimental input:  PDG averages include large scale factor, particularly for gA /gV 

6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as

�n =
G

2
F
|Vud|

2
m

5
e

2⇡3

�
1 + 3�2

�
· f0 ·

�
1 +�f

�
·
�
1 +�R

�
, (107)

where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)

1 +�R = [gV (µ�)]
2

✓
1 +

´
x0

1 w(x, x0)FNR (�(x)) (1 + �recoil (xme)) �RC (xme, µ�) dx

f0(1 +�f )

◆
, (110)

where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2

 
1 +

↵ (µ�)

2⇡

 
3

2
ln

µ
2
�

m2
e

+
5

4
+ ĝ (E0)

!!
� 1, (113)

where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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3 STEYERL 12 is a detailed reanalysis of neutron storage loss corrections to the raw data
of MAMPE 89, and it replaces that value.

4WILSON 21 extract the value from the flux of n escaping the moon using data from the
Lunar Prospector Neutron Spectrometer.

5YUE 13 differs from NICO 05 in that a different and better method was used to measure
the neutron density in the fiducial volume. This shifted the lifetime by +1.4 seconds and
reduced the previously largest source of systematic uncertainty by a factor of five.

6ARZUMANOV 12 reanalyzes its systematic corrections in ARZUMANOV 00 and obtains
this corrected value.

7 IGNATOVICH 95 calls into question some of the corrections and averaging procedures
used by MAMPE 93. The response, BONDARENKO 96, denies the validity of the
criticisms.

8The NESVIZHEVSKII 92 measurement has been withdrawn by A. Serebrov.
9The BYRNE 80 measurement has been withdrawn (J. Byrne, private communication,
1990).

WEIGHTED AVERAGE
878.4±0.5 (Error scaled by 1.8)

SEREBROV 05 CNTR 0.0
PICHLMAIER 10 CNTR 1.6
STEYERL 12 CNTR 3.9
ARZUMANOV 15 CNTR 2.2
SEREBROV 18 CNTR 11.0
PATTIE 18 CNTR 0.9
EZHOV 18 CNTR 0.0
GONZALEZ 21 CNTR 3.7

χ2

      23.3
(Confidence Level = 0.0015)

874 876 878 880 882 884 886 888

neutron mean life (s)

n MAGNETIC MOMENTn MAGNETIC MOMENTn MAGNETIC MOMENTn MAGNETIC MOMENT

See the “Quark Model” review.

VALUE (µN ) DOCUMENT ID TECN COMMENT

−1.91304273±0.00000045−1.91304273±0.00000045−1.91304273±0.00000045−1.91304273±0.00000045 TIESINGA 21 RVUE 2018 CODATA value

• • • We do not use the following data for averages, fits, limits, etc. • • •

−1.91304273±0.00000045 MOHR 16 RVUE 2014 CODATA value
−1.91304272±0.00000045 MOHR 12 RVUE 2010 CODATA value
−1.91304273±0.00000045 MOHR 08 RVUE 2006 CODATA value
−1.91304273±0.00000045 MOHR 05 RVUE 2002 CODATA value
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WEIGHTED AVERAGE
-1.2754±0.0013 (Error scaled by 2.7)

BOPP 86 SPEC
YEROZLIM... 97 CNTR 17.7
LIAUD 97 TPC 5.5
MOSTOVOI 01 CNTR
SCHUMANN 08 CNTR
MUND 13 SPEC 0.2
BROWN 18 UCNA 0.8
MAERKISCH 19 SPEC 3.4
BECK 20 SPEC 7.5
HASSAN 21 SPEC

χ2

      35.1
(Confidence Level < 0.0001)

-1.29 -1.28 -1.27 -1.26 -1.25 -1.24

λ ≡ gA / gV
1HASSAN 21 include earlier data of DARIUS 17. The value is extracted from the angular
correlation coefficient a.

2 BECK 20 calculates this value from the measurement of the β-decay e–νe angular
correlation coefficient a.

3MAERKISCH 19 gets A = −0.11985 ± 0.00017 ± 0.00012.
4BROWN 18 gets A = −0.12054 ± 0.00044 ± 0.00068 and λ = −1.2783 ± 0.0022.
We quote the combined values that include the earlier UCNA measurements (MENDEN-
HALL 13).

5This MUND 13 value includes earlier PERKEO II measurements (ABELE 02 and
ABELE 97D).

6MOSTOVOI 01 measures the two P-odd correlations A and B, or rather SA and SB,
where S is the n polarization, in free neutron decay.

7YEROZOLIMSKY 97 makes a correction to the EROZOLIMSKII 91 value.
8 SAUL 20 quote this value of λ under the SM assumption of the Fierz term b = 0. In a
combined fit authors extract a value of λ = −1.2792 ± 0.0060.

9DARIUS 17 calculates this value from the measurement of the a parameter (see below).
Data is included in HASSAN 21.

10MENDENHALL 13 gets A = −0.11954 ± 0.00055 ± 0.00098 and λ = −1.2756 ±
0.0030. We quote the nearly identical values that include the earlier UCNA measurement
(PLASTER 12), with a correction to that result.

11This PLASTER 12 value is identical with that given in LIU 10, but the experiment is
now described in detail.

12This is the combined result of ABELE 02 and ABELE 97D.
13These experiments measure the absolute value of gA/gV only.
14KROHN 75 includes events of CHRISTENSEN 70.
15KROPF 74 reviews all data through 1972.

e− ASYMMETRY PARAMETER Ae− ASYMMETRY PARAMETER Ae− ASYMMETRY PARAMETER Ae− ASYMMETRY PARAMETER A
This is the neutron-spin electron-momentum correlation coefficient. Unless otherwise
noted, the values are corrected for radiative effects and weak magnetism. In the
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Vud from neutron decay

13

• Radiative corrections:  radiative corrections in the Sirlin framework with dispersive input   

• Experimental input:  PDG averages include large scale factor, particularly for gA /gV 

6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as

�n =
G

2
F
|Vud|

2
m

5
e

2⇡3

�
1 + 3�2

�
· f0 ·

�
1 +�f

�
·
�
1 +�R

�
, (107)

where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)

1 +�R = [gV (µ�)]
2

✓
1 +

´
x0

1 w(x, x0)FNR (�(x)) (1 + �recoil (xme)) �RC (xme, µ�) dx

f0(1 +�f )

◆
, (110)

where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2

 
1 +

↵ (µ�)

2⇡

 
3

2
ln

µ
2
�

m2
e

+
5

4
+ ĝ (E0)

!!
� 1, (113)

where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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λ=gA/gV 

VC,  Crivellin,  Hoferichter. Moulson 2208.11707 
and references therein  

Gonzalez et al, 
2106.10375

Maerkish et al, 
1812.04666

Single most precise 
measurements of lifetime 

and λ imply very 
competitive Vud! 

Need improvements in lifetime 
and gA /gV .

Within reach in next 5 years

2022 PLB paper

V n,PDG
ud

= 0.97441(3)�f
(13)�R(82)�(28)⌧n [88]total

V n,best
ud

= 0.97413(3)�f
(13)�R(35)�(20)⌧n [43]total

Update 2025

V n,PDG
ud

= 0.97424(2)�f
(13)�R(82)�(28)⌧n [88]total

V n,best
ud

= 0.97396(2)�f
(13)�R(35)�(20)⌧n [42]total
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• ‘End-to-end’ EFT approach for neutron decay, motivated by widely separated scales 

VC,  W. Dekens, E. Mereghetti,   O.Tomalak,  2306. 03138 

Development: EFT for radiative corrections 

ΛBSM  >> MW >> Λχ  >> Q ~ kF ~ mπ  >> me ~ qext        

E

Λχ 
 (~GeV)

kF, mπ

   MW.Z

1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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a1) b1) c1) d1)

f1) g1) h1) i1)

e1)

j1)

c2)a2) b2)

LO

NLO

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

qext, me

γ

γW W

γ 4

a) b) c) d)

f) g) h) i)

e)

j)

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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a1) b1) c1) d1)

f1) g1) h1) i1)

e1)

j1)

c2)a2) b2)

LO

NLO

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

qext, me

γ

γW W

γ 4

a) b) c) d)

f) g) h) i)

e)

j)

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present

n p

eν

GF, GFα, GFαεχ   

scattering” region of the �W box in the literature) that amounts to a net +0.007% in �R; (iv) finally,
di↵erent choices in the factorization between electroweak and mN/me logarithms compared to Refs. [7, 37]
account for the remaining mismatch.

Using �f,R from Eqs. (6)-(5), respectively, in the master formula (4), we can extract Vud. This requires
experimental input for the neutron lifetime ⌧n and the ratio � of axial to vector couplings. Using the
PDG [56, 57] averages for the experimental input, we obtain

V
n, PDG
ud

= 0.97430(2)�f (13)�R(82)�(28)⌧n [88]total. (7)

Both ⌧n and � carry an inflated error due to scale factors. Following Ref. [7], if we instead use the most
precise neutron lifetime measurement ⌧n = 877.75(36) s from UCN⌧@LANL [58] and the determination
of � from the most precise measurement of the beta asymmetry in polarized neutron decay by PERKEO-
III [59, 60], we obtain a very competitive extraction of Vud from neutron decay:

V
n, best
ud

= 0.97402(2)�f (13)�R(35)�(20)⌧n [42]total, (8)

with an uncertainty approaching the currently quoted error �Vud = 31 ⇥ 10�5 from 0+ ! 0+ nuclear
beta decays [6]. Compared to the baseline correction of Refs. [1–5, 7, 49], the positive shift of +0.061%
in �R and the negative shift of �0.035% in �f partially compensate, producing a smaller positive shift
of +0.026% in the correction to the rate. This one, in turn, provides a negative shift in Vud, �Vud '

�13⇥ 10�5, compared to the results quoted in Ref. [7].
In the remainder of this paper, we provide details on the derivation of the results presented above.

3 Step I: matching the Standard Model to LEFT

In this Section, we perform the matching of the Standard Model to the LEFT at one-loop level and
present the RGE that control the e↵ective couplings in the LEFT between the electroweak and QCD
scales. We then introduce spurions and external sources in the LEFT to describe the electromagnetic
and weak interactions of quarks [46, 61], which is particularly useful in the matching of LEFT to chiral
perturbation theory, to be described in subsequent sections. Throughout, we regulate the UV divergences
in dimensional regularization, working in d = 4� 2✏ spacetime dimensions.

3.1 Wilson coe�cient and RGE

The part of the LEFT Lagrangian relevant for muon and � decays just below the weak scale reads

LFermi = �
GF
p
2
Vud C�(µ) ¯̀�↵(1� �5)⌫` ū�

↵(1� �5)d+ ... (9)

hf | |ii

hf | |ii

LLEFT = �2
p
2GF ēL�⇢µL ⌫̄µL�

⇢
⌫eL � 2

p
2GFVud C

r

�(a, µ) ēL�⇢⌫eL ūL�
⇢
dL + h.c.+ ... . (10)

Here µ denotes the MS renormalization scale and

GF =
⇡↵ (µ) g (µ)

p
2M2

W
(µ) s2

W
(µ)

, (11)

is the scale-independent Fermi constant, that is extracted from precise measurements of the muon life-
time [62–65], expressed in terms of MS Standard Model parameters (with s

2
W

= 1 � M
2
W
/M

2
Z
). The

function g (µ) can be found in Ref. [66] and reduces to g (µ) = 1 at tree level. The e↵ective coupling
multiplying the semileptonic operator that mediates � decays involves the same GF as the pure-leptonic

7

Cβ(μ) ~ 1 + # (ɑ/π) ln(Mw/μ) + …            

Known to  LL~ (ɑ ln(Mw/μ)n   and NLL ~ ɑ (ɑS ln(Mw/μ))n ,  ɑ (ɑ ln(Mw/μ))n              
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√
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V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
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cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by
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Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N
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4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
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⇡N , while diamonds on a pion line represent insertions of Le2p0
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FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:
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the full amplitude Afull to O(αs) (mi = 0, p2 < 0):
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Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.
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Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

qext, me

γ

γW W

γ 4

a) b) c) d)

f) g) h) i)

e)

j)

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present
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Figure 4: World data of the first Nachtmann moment
M⌫p+⌫̄p

3 (1, Q2). The red curve is the pQCD-corrected GLS
sum rule above Q2

⇡ 2 GeV2, and the blue curve is the result
of the fit for AWW and BWW in (19).

Llewellyn-Smith sum rule [36] corrected by pQCD [37],
while at low Q2, the �-resonance and the Born contri-
bution saturate the Nachtmann moment [34]. At large
W 2, the ! trajectory controls the leading behavior, and
couples to the external currents by the a1 and ⇢ mesons
(see Fig. 3b), leading to

F ⌫p+⌫̄p
R = CWW fth

m2
⇢

m2
⇢ +Q2

m2
a1

m2
a1

+Q2

✓
⌫

⌫0

◆↵!
0

. (18)

We then fit the unknown function CWW (Q2) to the data
for M⌫p+⌫̄p

3 (1, Q2) in the range Q2
 2 GeV2. Due to

the quality of the data, we choose the simple linear form

CWW (Q2) = AWW (1 +BWWQ2) (19)

and obtain AWW = 5.2± 1.5, BWW = 1.08+0.48
�0.28 GeV�2.

The result of the fit is shown by the blue curve in Fig. 4.
The solid curve corresponds to the central value of the fit,
and the dotted curve indicates the maximum variation in
M⌫p+⌫̄p

3 allowed by the errors in the fit. We do not fit
the three data points below Q2 = 0.1 GeV2 where Born
and resonance contributions dominate the GLS sum rule:
rather, we use the resonance parameters obtained in [27]
from a fit to modern neutrino data.

Finally, to obtain C�W (Q2), we require the ratio

of Nachtmann moments M (0)
3,R(1, Q

2)/M⌫p+⌫̄p
3,R (1, Q2) to

agree with the value predicted by VMD at Q2 = 0, and
the QCD-corrected parton model at Q2 = 2 GeV2. Since
the ⇢ and ! Regge trajectories are nearly degenerate [31],
the two conditions predict the same ratio [21]

M (0)
3,R(1, 0)

M⌫p+⌫̄p
3,R (1, 0)

⇡
M (0)

3,R(1, 2 GeV2)

M⌫p+⌫̄p
3,R (1, 2 GeV2)

⇡
1

36
. (20)

For the linear parametrization in Eq. (19), this implies

C�W (Q2) =
1

36
CWW (Q2) , (21)

providing us with the final piece of FR in (17).
Upon inserting our parameterization (12) for the struc-

ture function F (0)
3 into (9, 10) and performing the inte-

grations, we obtain the following contributions to ⇤V A
�W

in units of 10�3: 2.17(0) from parton+pQCD, 1.06(6)
from Born and 0.56(8) from Regge+resonance+⇡N , the
digit in parentheses indicating the uncertainty. Com-
bining them with the remaining known contributions
[MS] gives our new values, �V

R = 0.02467(22) and
|Vud| = 0.97366(15). Our reevaluation of �V

R repre-
sents a reduction in theoretical uncertainty over the pre-
vious [MS] result by nearly a factor of 2. However,
it also leads to a substantial upward shift in the cen-
tral value of �V

R and a corresponding downward shift of
|Vud| by nearly three times their quoted error, now rais-
ing tension with the first-row CKM unitarity constraint:
|Vud|

2 + |Vus|
2 + |Vub|

2 = 0.9983(4).

10⁻⁵ 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁰ 10¹ 10² 10³ 10⁴ 10⁵
Q² (GeV²)

0.02

0.04

0.06

0.08 This work
MS

M
3(0

)  (1
,Q

2 ) /
 (1

 +
 Q

2 / M
w

2 )

Figure 5: Log-linear plot of
M2

W
M2

W+Q2M
(0)
3 (1, Q2) as a function

of Q2. The blue curve is the result of our parameterization
in (12), and the red curve is the piecewise parametrization
used by [MS]. For a given parametrization, the contribution
to ⇤V A

�W is proportional to the area under the curve, see (9).

We pause to comment on the origin of the large shift
in the central value for �V

R with respect to [MS]. In Fig.

5 we plot the integrand M2
W

M2
W+Q2M

(0)
3 (1, Q2) of Eq. (9)

as a function of Q2. In solid blue, we show the re-
sult of our parametrization (12) after integrating over
x. In dashed red, we show the piecewise parametriza-
tion by [MS] obtained with the help of (11). The dis-
continuity in their parametrization at Q2 = (1.5 GeV)2

arises from their choice of matching the Q2 integrals of
pQCD and the interpolating function over the short dis-
tance domain, rather than matching the functions them-
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To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)

gµ⌫T
µ⌫

V V
(q, v)

��
OPE

=
iv · q

q2 � µ2
0

⇣
2� d+ 2

↵s

⇡

⌘
, (49)

where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain
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!
, (50)

where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain

g
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4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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• ‘End-to-end’ EFT approach for neutron decay, motivated by widely separated scales 
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Development: EFT for radiative corrections 

ΛBSM  >> MW >> Λχ  >> Q ~ kF ~ mπ  >> me ~ qext        
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1 Introduction

1.1 General View

The basic starting point for any serious phenomenology of weak decays of hadrons is the

effective weak Hamiltonian which has the following generic structure

Heff =
GF√

2

∑

i

V i
CKMCi(µ)Qi . (1.1)

Here GF is the Fermi constant and Qi are the relevant local operators which govern the

decays in question. The Cabibbo-Kobayashi-Maskawa factors V i
CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.

In the simplest case of the β-decay, Heff takes the familiar form

H(β)
eff =

GF√
2

cos θc[ūγµ(1 − γ5)d ⊗ ēγµ(1 − γ5)νe] , (1.2)

where Vud has been expressed in terms of the Cabibbo angle. In this particular case the Wilson

Coefficient is equal unity and the local operator, the object between the square brackets, is

given by a product of two V −A currents. This local operator is represented by the diagram

(b) in fig. 1. Equation (1.2) represents the Fermi theory for β-decays as formulated by

W

d u

ν e

(a)

d u

ν e

(b)

Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.

Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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Sudarshan and Marshak [5] and Feynman and Gell-Mann [6] forty years ago, except that

in (1.2) the quark language has been used and following Cabibbo a small departure of Vud

from unity has been incorporated. In this context the basic formula (1.1) can be regarded

as a generalization of the Fermi Theory to include all known quarks and leptons as well as

their strong and electroweak interactions as summarized by the Standard Model. It should

be stressed that the formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects. We will discuss this issue briefly in these

lectures.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)
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N
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4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination

qext, me

γ

γW W

γ 4

a) b) c) d)

f) g) h) i)

e)

j)

FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present
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Matching   LEFT → ChPT at NLL approximation 

NLL RGEs in Fermi theory

Figure 2: Diagrams that contribute to �VW in HBChPT are shown. Single lines denote electrons and
neutrinos. The remaining notations are the same as in Fig. 1. In this case, the sources inject zero
momentum. The first two diagrams originate from the LO ⇡N Lagrangian L

p

⇡N
, the last diagram denotes

contributions from L
e
2
p

⇡N`
. Diagrams with the sources coupling to pions do not contribute at this order.

To highlight the UV structure of Eq. (47), we add and subtract the high-energy limit of the hadronic
tensor provided by the operator product expansion (OPE)

gµ⌫T
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V V
(q, v)

��
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2� d+ 2

↵s
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⌘
, (49)

where for the OPE of the relevant currents we use results from Refs. [83, 84], adapted to include the
appropriate color factors [35]. Since our calculation is only accurate at leading logarithm in O(↵↵s),
the O(↵s) correction to the OPE is computed in d = 4. Note that in Eq. (49) we have introduced an
arbitrary scale µ0 to regulate infrared divergences that appear when evaluating the convolution integrals
with TOPE. Performing the relevant integrations, we obtain
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where T denotes the subtracted hadronic tensor, T = T � TOPE. T depends on µ0 in such a way that the
final results are µ0-independent. Finally, note that we are dropping terms of O(↵↵s) that appear without
logarithmic enhancements, because they are beyond the accuracy of our calculation.

Equating Eqs. (45) and (46), we obtain a representation for g9:
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Alternatively, to control the infrared region and see a cancellation of the infrared divergences, we can
introduce the combination T̃ = T �TIR, where TIR is the leading infrared contribution gµ⌫T

µ⌫

IR = i/ (v · q)
and obtain

g
r
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4.3 Electroweak coupling constants

We follow the same strategy for the determination of the electroweak coupling constants. In this case, the
operators V1 and V2 receive contributions from the isovector component of the electromagnetic charges,
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Figure 3: HBChPT diagrams contributing to the anomalous dimension of gV and to �̃RC at two loop.
Only the first two diagrams give rise to terms in the �̃1 enhanced by ⇡

2 [100]. These diagrams also give
rise to the leading ↵

2
⇡
2
/�

2 behavior captured by the nonrelativistic Fermi function.

We thus arrive to our final form for the di↵erential decay rate:
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. (104)

Compared to state-of-the-art analyses of neutron decay in the literature (see e.g. Ref. [38]), our result (104)
amounts to replacing the relativistic Fermi function [53, 109–111, 124–127] with the nonrelativistic one,
F0 ! FNR. While we arrived at this result by constructing the relevant terms of the amplitude in the
EFT framework, one could also argue for this replacement along the following lines. First, recall that
the leading corrections to the phase space coming from the distortion of the electron wavefunction in the
Coulomb field of the proton is usually captured by the function [53]

F0(�) =
2

1 + �
F (�) = 4(2Ee�R)2(��1)

e
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|�(� + iy)|2

(�(1 + 2�))2
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�
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p
1� ↵2. (105)

This form is obtained by solving the Dirac equation for an electron moving in the charge distribution
of a uniformly charged sphere of radius R [53], but corresponds to a rescaling of the solution of the
Dirac equation for a point-like proton, F (�), evaluated not at the origin, where the wavefunction diverges
logarithmically, but at the “nucleon radius” R. R corresponds to a mass scale much larger than me, and
e↵ectively acts as a UV regulator. So we see that while F0(�) coincides with FNR(�) at one-loop level, F0

includes a dependence on the UV regulator via the logarithms of R that first appear at O(↵2). Expanding
F0 in series of ↵, one obtains

F0(�) = FNR (�)
⇥
1� ↵

2 (�E � 3 + ln(2EeR�)) +O(↵4)
⇤
. (106)

The dependence on the UV regulator R ⇠ 1/µ does not match the µ-dependence of gV (µ) in the MS�
scheme presented so far. In dimensional regularization, indeed, the lnR term in Eq. (106) corresponds to
a UV singularity that appears in the first two diagrams in Fig. 3, when we consider only the contribution
arising from picking the two nucleon poles. This is only one piece of the full anomalous dimension �̃1. In
order not to double-count large logarithms, one should set the logarithmic term in F0 to zero when using
the RGEs to evaluate the large logarithms as we do here. The remaining O(↵2) terms in Eq. (106) are
incomplete and beyond the accuracy of our calculation, which allows us to drop them and replace the
relativistic Fermi function F0 by its nonrelativistic counterpart FNR.
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CKM [1, 2] and the Wilson

Coefficients Ci [3, 4] describe the strength with which a given operator enters the Hamiltonian.
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Figure 1: β-decay at the quark level in the full (a) and effective (b) theory.
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freedom. In the case at hand the effective theory is constructed by integrating out the W field

only. The matching procedure which gives the values of C1 and C2 proceeds in three steps

[61]. The explicit three steps presented below are sufficient for the subsequent summation of

the leading logarithms or equvalently for the leading term of the RG improved perturbation

theory. We will generalize these steps in the next section in order to be able to include also

the NLO term in this expansion.

Here we go:

Step 1: Calculation of Afull

The current-current diagrams of fig. 15 (a)–(c) and their symmetric counterparts, give for

the full amplitude Afull to O(αs) (mi = 0, p2 < 0):

Afull =
GF√

2
V ∗

csVud

[(

1 + 2CF
αs

4π
(
1

ε
+ ln

µ2

−p2
)

)

S2 +
3

N

αs

4π
ln

M2
W

−p2
S2

−3
αs

4π
ln

M2
W

−p2
S1

]
(5.23)

Here:

S1 ≡ ⟨Q1⟩tree = (s̄αcβ)V −A(ūβdα)V −A (5.24)

S2 ≡ ⟨Q2⟩tree = (s̄αcα)V −A(ūβdβ)V −A (5.25)

are just the tree level matrix elements of Q1 and Q2. A few comments should be made.

• We use the term “amplitude” in the meaning of an “amputated Green function” (multi-

plied by ”i”). Correspondingly operator matrix elements are amputated Green functions

with operator insertion. Thus gluonic self energy corrections on external legs are not

included.

W

g

(a)

Wg

(b)

W g

(c)

Figure 15: One-loop current-current diagrams in the full theory.

• For simplicity we have chosen all external momenta p to be equal and set all quark

masses to zero. As we will see below this choice has no impact on the coefficients Ci.
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�) (upper panel) and O(✏�) (lower panel).
Single, double, wavy, and dashed lines denote, respectively, leptons, nucleons, photons, and pions. Dots refer to interactions

from the lowest-order chiral Lagrangians L
p2
⇡ and L

p
⇡N , while diamonds represent insertions of L

e2p0
⇡ . Circled dots denote

interactions from the NLO chiral Lagrangian L
p2

⇡N .

only considered the asymptotic and elastic contributions
to Eq. (11), i.e. inserting a complete set of states in
between every current and retaining only the nucleon.
Assuming isospin symmetry then leads to a vanishing
contribution for the three-point function [15]. Recogniz-
ing diagrams i1, j1, a2, . . . in Fig. 1 to correspond to an
explicit treatment of these vertex corrections, the results
presented here expand upon the simplified approach of
Ref. [15] to find much larger than anticipated isospin-
breaking corrections.

Numerical impact — We now estimate the numerical
impact of the various corrections, starting with our main
new finding, i.e., the electromagnetic shift to � = gA/gV .
Including BSM contributions, the relation between the
experimentally extracted � and the (isosymmetric) QCD
axial charge is given by [9]

� = g
QCD

A

⇣
1 + �

(�)
RC

� 2Re(✏R)
⌘
, (12)

where ✏R ⇠ (246GeV/⇤BSM)2 is a BSM right-handed
current contribution appearing at an energy scale ⇤BSM

[9, 10]. To the order we are working the radiative correc-
tion is

�
(�)
RC

=
↵

2⇡

⇣
�(0)

A,em +�(1)

A,em ��(0)

V em

⌘
. (13)

For the numerical evaluation of the loop contributions to

�(0),(1)
A,em we use Z⇡ = 0.81 (obtained from the physical

pion mass di↵erence and F⇡ = 92.4 MeV) and the av-
erage nucleon mass mN = 938.9 MeV. In the loops we

set g
(0)

A = gA ⇡ 1.27 [6], as the di↵erence formally con-
tributes to higher chiral order. Existing lattice data in-
deed indicate that gA has a mild m⇡ dependence [11, 42].
The NLO LECs c3 and c4 have been extracted from pion-
nucleon scattering [43, 44]. They show a sizable depen-
dence on the chiral order at which the fit to ⇡-N data is
carried out, with a big change between NLO and N2LO,
stabilizing between N2LO and N3LO. For the corrections
we find

�(0)

A�V,em 2 {2.4, 5.7} , �(1)

A,em = {10.0, 14.5, 15.9}, (14)

where the range in �(0)

A�V,em is obtained by setting

ĈA(µ)� ĈV = 0 and varying µ between 0.5 and 1 GeV,

while the three values of �(1)

A,em are obtained by using

c3,4 extracted to NLO, N2LO, and N3LO [44]. While the
NLO correction is somewhat larger than the LO one, we
stress that we do not know the full LO correction because
we have set the counter term contribution ĈA � ĈV to
zero. In addition, in an EFT without explicit � degrees
of freedom, c3 and c4 are dominated by � contributions
and thus anomalously large. Combining the corrections,
we estimate a correction to � at the percent level,

�
(�)
RC

2 {1.4, 2.6} · 10�2
. (15)

This shift has no impact on the current first-row CKM
discrepancy because the most accurate determination
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FIG. 1: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏0�). Single, double, wavy and dashed lines
denote, respectively, leptons, nucleons, photons and pions. Dots denote interactions from the lowest order chiral Lagrangians

L
p2
⇡ and L

p
⇡N , while diamonds on a pion line represent insertions of Le2p0

⇡ .

FIG. 2: Diagrams contributing to the matching between �PT and /⇡EFT at O(✏�). Circled dots denote interactions from the

NLO chiral Lagrangian L
p2

⇡N , while diamonds on a nucleon line represent insertions of Le2p0

⇡N . All other notation is as in Fig. 1.

Numerical impact — We now estimate the numerical

impact of the various corrections beginning with �(0,1)
em .

Existing lattice data indicate that gA has a mild m⇡ de-

pendence [10], and we set g
(0)

A = gA = 1.27. Using the
physical masses of charged and neutral pions, the average
nucleon mass mN = 938.9 MeV, and F⇡ = 92.4 MeV, we
obtain Z⇡ = 0.81. The NLO LECs c3 and c4 have been
extracted from pion-nucleon scattering [31, 32]. They
show a sizable dependence on the chiral order at which
the fit to ⇡-N data is carried out (stabilizing between
N2LO and N3LO). In an EFT without explicit � degrees
of freedom, they are dominated by virtual � contribu-
tions and thus anomalously large. We then obtain

c3|NLO
= �3.61(5)GeV�1

, c4|NLO
= 2.17(3)GeV�1

c3|N2LO
= �5.39(5)GeV�1

, c4|N2LO
= 3, 62(3)GeV�1

.

c3|N3LO
= �5.67(6)GeV�1

, c4|N3LO
= 4.35(4)GeV�1

.

(12)

With this input, we obtain
↵

2⇡
�(0)

em
2 {0.25, 0.65} · 10�2

, (13)

↵

2⇡
�(1)

em
2 {1.15, 1.85} · 10�2

, (14)

↵

2⇡
�(1)

em
= {1.15, 1, 70, 1.85} · 10�2

, (15)

where the range in �(0)

em is obtained by setting Ĉ⇡(µ) = 0
and varying µ between mN/2 and mN . The range in

�(1)

em by taking NLO or N3LO extractions of c3,4 [32] (the
N2LO results would give 1.7 · 10�2). While the NLO
correction is somewhat larger than the LO correction,
we stress that this is not the full correction because of
the counter term contribution Ĉ⇡. Combining LO and
NLO corrections, we estimate a correction to gA at the
percent level

�gA/g
(0)

A =
↵

2⇡
�(0+1)

em
2 {1.4, 2.5} · 10�2

. (16)

This shift due to isospin breaking has no impact on the
current first-row CKM discrepancy as the most accurate
determination of gA is extracted from experiments, where
these corrections are automatically included. comment
on future work on isospin-breaking nuclear corrections?
The correction does have a big impact on first-principle
lattice-QCD computations of neutron � decay. Present

n p
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Figure 3: HBChPT diagrams contributing to the anomalous dimension of gV and to �̃RC at two loop.
Only the first two diagrams give rise to terms in the �̃1 enhanced by ⇡

2 [100]. These diagrams also give
rise to the leading ↵

2
⇡
2
/�

2 behavior captured by the nonrelativistic Fermi function.

We thus arrive to our final form for the di↵erential decay rate:

d�n

dEe

=
G

2
F
|Vud|

2

(2⇡)5
�
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�
peEe(E0�Ee)
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◆
. (104)

Compared to state-of-the-art analyses of neutron decay in the literature (see e.g. Ref. [38]), our result (104)
amounts to replacing the relativistic Fermi function [53, 109–111, 124–127] with the nonrelativistic one,
F0 ! FNR. While we arrived at this result by constructing the relevant terms of the amplitude in the
EFT framework, one could also argue for this replacement along the following lines. First, recall that
the leading corrections to the phase space coming from the distortion of the electron wavefunction in the
Coulomb field of the proton is usually captured by the function [53]

F0(�) =
2

1 + �
F (�) = 4(2Ee�R)2(��1)

e
⇡y

|�(� + iy)|2

(�(1 + 2�))2
, y =

↵

�
, � =

p
1� ↵2. (105)

This form is obtained by solving the Dirac equation for an electron moving in the charge distribution
of a uniformly charged sphere of radius R [53], but corresponds to a rescaling of the solution of the
Dirac equation for a point-like proton, F (�), evaluated not at the origin, where the wavefunction diverges
logarithmically, but at the “nucleon radius” R. R corresponds to a mass scale much larger than me, and
e↵ectively acts as a UV regulator. So we see that while F0(�) coincides with FNR(�) at one-loop level, F0

includes a dependence on the UV regulator via the logarithms of R that first appear at O(↵2). Expanding
F0 in series of ↵, one obtains

F0(�) = FNR (�)
⇥
1� ↵

2 (�E � 3 + ln(2EeR�)) +O(↵4)
⇤
. (106)

The dependence on the UV regulator R ⇠ 1/µ does not match the µ-dependence of gV (µ) in the MS�
scheme presented so far. In dimensional regularization, indeed, the lnR term in Eq. (106) corresponds to
a UV singularity that appears in the first two diagrams in Fig. 3, when we consider only the contribution
arising from picking the two nucleon poles. This is only one piece of the full anomalous dimension �̃1. In
order not to double-count large logarithms, one should set the logarithmic term in F0 to zero when using
the RGEs to evaluate the large logarithms as we do here. The remaining O(↵2) terms in Eq. (106) are
incomplete and beyond the accuracy of our calculation, which allows us to drop them and replace the
relativistic Fermi function F0 by its nonrelativistic counterpart FNR.

24

No large logs but enhanced contributions ~ (πα/β), which we 
re-sum via the non-relativistic Fermi function ansatz 

where E0 = (m2
n�m

2
p+m

2
e)/(2mn) is the electron endpoint energy and � ⌘ gA/gV is the ratio of e↵ective

axial and vector couplings in the low-energy Lagrangian (1). The ratio � = �
QCD(1 + �

(�)
RC) is a↵ected

by a µ�-independent electromagnetic correction �
(�)
RC parameterized in terms of calculable pion loops and

certain chiral LECs (see Ref. [44]). � itself can be extracted from beta decay correlation experiments, so

that we do not need to know �
(�)
RC for the purpose of studying total decay rates and the extraction of Vud .

�recoil(Ee) collects recoil corrections that can be found in Ref. [46]. They are usually factorized since the
impact of the product of radiative times recoil corrections is estimated to be well below 10�4. Finally,
�̃RC(Ee) represents the electromagnetic corrections arising from the matrix element squared. To O(↵),
one finds

�̃RC(Ee, µ�) =
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where ĝ(Ee, E0) is a “subtracted” Sirlin function

ĝ (Ee, E0) = g (Ee, E0)�
3

2
ln

m
2
N

m2
e

, (99)

defined in terms of the Sirlin function g (Ee, E0) of Ref. [33]. ĝ (Ee, E0) arises naturally in the EFT
calculation and does not contain any large logarithm of mN/me.

The corrections proportional to ⇡↵/� in Eq. (98) are enhanced by a factor of ⇡2 compared to the
naive scaling of loop corrections, and are numerically dominant even for � ⇠ O(1). The leading terms in
the series in ⇡↵/� arise from the momentum regions of loop integrals in which the photon momentum
has potential scaling, k0 ⇠ me�

2
⌧ |~k| ⇠ me�, and they can be identified with nonrelativistic EFT

methods [104–107]. Their resummation leads to the nonrelativistic Fermi function FNR(�) [108–118]
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which we include in the matrix element squared as

1 + �̃RC(Ee, µ�) = FNR(�) +
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As we discuss in Appendix B, the factorization ansatz in Eq. (101) captures all numerically-enhanced
leading and subleading terms in 1/�, and reproduces similar results for the production of two heavy
quarks at threshold, derived with nonrelativistic QCD and potential nonrelativistic QCD [104–107, 119–
122]. At O(↵2), Eq. (101) gives
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Indeed, the first cross term �(11/4)↵2
/� corresponds to the matching coe�cient of heavy-

light to heavy-heavy current [123] in the MS� renormalization scheme. The second cross term
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�
comes from the product of the Fermi function with real radiation. These

terms are beyond the accuracy of our calculation and can be booked as O(↵2
�
3) in the nonrelativistic

limit. In the case of neutron decay, this term provides a negligible shift of 1.6⇥ 10�5 to the decay rate.
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where ĝ(Ee, E0) is a “subtracted” Sirlin function
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defined in terms of the Sirlin function g (Ee, E0) of Ref. [33]. ĝ (Ee, E0) arises naturally in the EFT
calculation and does not contain any large logarithm of mN/me.
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The short-distance radiative correction

�R(µUV) ⌘ g2
V
(µUV)� 1, (27)

encodes short-distance electroweak and hadronic physics above the scale µUV [4, 5, 7, 35, 51]; we do not
include an estimate for isospin breaking in �R since its numerical value (⇠ �4 ⇥ 10�5 [52]) is roughly six
times smaller than the current error estimate on �R. The term �R,static encodes the long-distance radiative
corrections (as given above), and �recoil and �rad.rec. are recoil and radiative recoil corrections. The recoil
corrections are computed as described in Refs. [2, 26], and we include the e↵ect of the induced pseudoscalar
form factor (i.e., one-pion exchange) [26]. The radiative-recoil correction includes the dominant interference
between recoil terms and the first-order ⇡↵/� correction, and the shift between the electron velocity in the
proton versus neutron rest frame [26]. A summary of recoil and radiative recoil corrections is given in the
Supplemental Material.

In terms of |Vud|, �, and �R(µUV = �) the neutron lifetime is thus given by (restoring ~ for SI units and
using inputs for mn, mp, GF from the Particle Data Group (2024) [53])2

⌧n ⇥ |Vud|2(1 + 3�2)


1 +�R(µUV = �)

�
1 + 27.04(7)⇥ 10�3

�
=

2⇡3~
G2

F
�5fstatic

= 5263.284(17) s . (28)

As an illustrative example, let us take the lifetime of the neutron from the most recent UCN⌧ average,
⌧n = 877.82(30) s [54] and the measurement of � from the PERKEO-III experiment [55], � = �1.27641(56).
Using �R(µUV = �) = 45.37(27)⇥ 10�3 [51],3 we obtain

|Vud| = 0.97393(17)⌧ (35)�(13)�R(3)�R

= 0.97393(41) ,
(29)

where in the final line, errors have been added in quadrature. Using average values from Ref. [53] for ⌧n
(878.4(5)s excluding beam measurements or 878.6(6)s including beam measurements) in place of the most
precise measurement (⌧n = 877.82(30)s [54]) yields a similar result in Eq. (29) (⇠ 1� downward shift in
|Vud| and similar total error). Using the average from Ref. [53] for � (�1.2754(13)) in place of the most
precise measurement (� = �1.27641(56) [55]) yields a consistent central value, and approximately two times
larger total error. An in-beam measurement of ⌧n [56] is ⇠ 4� discrepant with the ultracold neutrons (UCN)
measurements, which dominate the average.4 For a discussion of the discrepancy between in-beam and UCN
measurements of ⌧n, see Refs. [58, 59]. We have computed radiative corrections to the decay rate for the process
n ! pe⌫̄(�). This rate determines the neutron lifetime in the Standard Model, but should be interpreted as a
partial rate if neutron decay modes beyond the Standard Model are present.

6 Discussion

Our new result, Eq. (24), modifies the long-distance radiative correction to neutron beta decay. Compared to
previous work [7, 51], the largest e↵ect corresponds to the replacement of the Fermi function ansatz,
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with the resummation (10),
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+ . . . . (31)

2The normalization factor �5fstatic is defined in the static limit, cf. Eq. (26), and di↵ers from the quantity m5
ef0 used in

Ref. [51], Eq. (4). We combine this di↵erence with other recoil corrections in our �recoil. The total e↵ect of recoil corrections is
the same in our accounting as in Ref. [51] up to subleading corrections, cf. the discussion after Eq. (33) below.

3This value for �R is taken from Ref. [51] (see also Table 2 of Ref. [23] and Refs. [4, 5, 7–9, 12]). We have converted between
the renormalization scheme of Ref. [51] and conventional MS at renormalization scale µ = �.

4The in-beam-measurement of ⌧n also yields a value for |Vud| that is discrepant with determinations from superallowed beta
decays [57].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as

�n =
G

2
F
|Vud|

2
m

5
e

2⇡3

�
1 + 3�2

�
· f0 ·

�
1 +�f

�
·
�
1 +�R

�
, (107)

where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)

1 +�R = [gV (µ�)]
2

✓
1 +

´
x0

1 w(x, x0)FNR (�(x)) (1 + �recoil (xme)) �RC (xme, µ�) dx

f0(1 +�f )

◆
, (110)

where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2

 
1 +

↵ (µ�)

2⇡

 
3

2
ln

µ
2
�

m2
e

+
5

4
+ ĝ (E0)

!!
� 1, (113)

where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵

⇡
ln (mN/me), and O

⇣
↵⇡

�

⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵

⇡
ln (mN/me), and O

⇣
↵⇡

�

⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =
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x0
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w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation

|Vud|
2
⌧n

�
1 + 3�2

�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
the central value is almost entirely due to the di↵erent treatment of the next-to-leading logarithmic
terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling

as ↵
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ln (mN/me), and O
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⌘
terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)

large logarithmic corrections arise entirely from the two-loop anomalous dimension contribution to the
RGE (88) for the e↵ective coupling gV (µ�) and produce a positive shift in �R of 0.010%. In the EFT
approach, there are no other sources of large logarithms of the ratio (mN/me) in the matrix element of
the four-fermion operator (1) to O(↵2). In the literature, this class of e↵ects is not associated with the
running of gV , but arises through the negative correction ↵/(2⇡)⇥ � = �0.043%, introduced in Ref. [38]
by adapting the results of Refs. [54, 55].1 The mismatch of the two approaches produces a +0.053% shift
in our results. The remaining di↵erence is due to a combination of the following, individually smaller,
e↵ects: (i) we re-evaluate the “elastic” hadronic contribution, as discussed in Section 5.2, which leads
to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
result di↵ers from the one in Ref. [38], producing a negative shift of approximately �0.011%; (iii) we do

1
In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as

�n =
G

2
F
|Vud|

2
m

5
e

2⇡3

�
1 + 3�2

�
· f0 ·

�
1 +�f

�
·
�
1 +�R

�
, (107)

where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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where the phase space integral is given by
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1
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p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by
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where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by
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where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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to gV (µ� ⇠ me), resumming large next-to-leading logarithms of order ↵
2 ln (mN/me). The resulting

gV (µ� ⇠ me) is directly relevant to the calculation of neutron decay and can be used as input for the
one-body contribution to nuclear decays.

In this work, we have focused on the application to neutron decay. With gV (µ� ⇠ me) at hand, we
combined both virtual and real photon corrections to the decay rate [33, 44, 46] to obtain the e↵ective
phase-space correction �f and the radiative correction �R to the neutron lifetime, see Section 6, and the
relation
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�
(1 +�f ) (1 +�R) = 5283.321(5) s, (4)

with �f and �R given in Eqs. (109) and (110), respectively. Our definitions for �f and �R di↵er from the
traditional approach both conceptually and numerically. Technically, the bulk of this di↵erence is in shift-
ing all short-distance contributions from �f to �R. �f describes Coulomb-enhanced long-distance con-
tributions and recoil corrections, while �R includes all electroweak and HBChPT short-distance contribu-
tions along with the non-Coulomb radiative corrections in /⇡EFT, as specified in Eqs. (78), (89), and (113).
Numerically, we find

�f = 3.573(5)⇥ 10�2
, (5)

�R = 4.044(24)Had(8)↵↵2
s
(7)↵✏2�(5)µ� [27]total ⇥ 10�2

. (6)

The uncertainty in �f stems from an estimate of mixed recoil times Coulomb corrections. The dominant
sources of uncertainty to �R are given by: the non-perturbative hadronic contributions, associated to
the “�W box” diagram in the standard approach [1–6]; contributions of O(↵↵2

s) not included in our
renormalization group analysis in the LEFT; chiral corrections of ↵✏2�; residual dependence on the /⇡EFT

renormalization scale, varied between me/
p
2 and

p
2me, which is an indicator of the O(↵2) corrections.

A detailed discussion of uncertainties is presented in Sections 5.4 (for gV ) and 6.2 (for the remaining
contributions to �R).

Our result for �f in Eq. (5) di↵ers from the one found in the literature �f = 3.608 ⇥ 10�2 [38] by
�0.035%. This is because in the phase space integration we use the nonrelativistic Fermi function, for the
reasons discussed in Section 6.1, and neglect corrections induced by modeling the proton as a uniformly
charged sphere of radius Rp ' 1 fm [53] (this e↵ect is at the level of 0.005%).

Our result for �R in Eq. (6) exceeds the current value �R = 3.983(27) ⇥ 10�2, compiled in Ref. [8]
by combining the results of [1–6], by about twice the estimated uncertainties. The +0.061% shift in
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terms at the hadronic level, i.e., the terms that scale as ↵

2 ln (mN/me). In both approaches, there is a
contribution of this type coming from the cross term between the one-loop RGE correction to gV , scaling
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terms in the Fermi function. In our approach, additional ↵2 ln (mN/me)
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to a �0.006% shift to �R; (ii) for the next-to-leading logarithmic corrections of O(↵2 ln(MW /mc)), our
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In the standard non-EFT approach, additional terms scaling as ↵2

ln (mN/me) (or ↵2
ln(Rpme) after including finite

nucleon size e↵ects) are included in the relativistic Fermi function, see discussion in Section 6.1, and booked as e↵ective

phase-space corrections appearing in �f . It is worth noting that, for neutron decay, the ↵2
ln(Rpme) terms in the relativistic

Fermi function cancel the corresponding terms in the correction ↵/(2⇡)⇥ � [38].
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6.2 Total decay rate and extraction of Vud

Upon performing the integration over Ee in Eq. (104), the decay rate can be written as
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where the phase space integral is given by

f0 =

ˆ
x0

1
w(x, x0) dx, w(x, x0) = x (x0 � x)2

p
x2 � 1, (108)

with x0 = E0/me and E0 = 1.292581 MeV, and takes the value f0(x0) = 1.62989. Following standard
practice [38, 53], in Eq. (107) we have lumped the Coulomb (FNR) and recoil terms into an e↵ective
phase-space correction �f , separating the remaining radiative corrections into �R. In this factorization
scheme, the various corrections to the decay rate are defined by

f0 (1 +�f ) =

ˆ
x0

1
w(x, x0)FNR (�(x)) (1 + �recoil (xme)) dx, (109)

1 +�R = [gV (µ�)]
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◆
, (110)

where �(x) =
p
1� 1/x2. A few remarks are in order:

• The decay rate in Eq. (107) corresponds to the usual definition adopted in the literature [38], upon
identifying f ⌘ f0(1 +�f ). Therefore, the total shift in the decay rate

�TOT = �1 + (1 +�f )(1 +�R), (111)

which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.

• Up to the accuracy of our calculation, the remaining radiative correction �R in our framework is
given by

�R = [gV (µ�)]
2

 
1 +

↵ (µ�)

2⇡

 
3

2
ln

µ
2
�

m2
e

+
5

4
+ ĝ (E0)

!!
� 1, (113)

where µ� ⇠ me and ĝ (E0) = �9.58766 is obtained by averaging the subtracted Sirlin function
ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
dence in Eq (113) cancels between the coupling constant gV (µ�) and virtual one-loop contributions,
while higher-order perturbative logarithms from virtual diagrams at scales µ� ⇠ me are small.
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which impacts the extraction of Vud, requires specifying both �f and �R. The expressions and
numerical values of �f and �R in our EFT approach di↵er from the results found in the literature
(see Ref. [38] and most recent calculations of �R [1–6, 8]). In what follows, when necessary we will
discuss the origin of the di↵erences.

• For �f , which encodes Coulomb and recoil corrections, we find

�f = 3.573(5)%, (112)

where we estimated the uncertainty to be of the size of Coulomb corrections times recoil cross term.
The di↵erence from the standard result �f = 3.608 ⇥ 10�2 [38] is mainly due to the fact that
we use the nonrelativistic Fermi function, for the reasons discussed above, while Ref. [38] uses the
relativistic Fermi function. We also do not include the corrections induced by modeling the proton
as a uniformly charged sphere of radius Rp ' 1 fm [53]: this is a small e↵ect shifting �f by 0.005%.
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ĝ(Ee, E0) over the phase space, according to Eq. (110). At leading order in ↵, the µ�-scale depen-
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Figure 2: Representative diagrams contributing to radiative corrections to nuclear b decays. Double solid lines
represent nucleons, single solid lines represent leptons, single (double) wavy lines represent photons (W bosons),
dashed lines represent pions. The quark-W vertex is proportional to Vud . The blue ellipse represents the strong
interaction among nucleons and the red and green ellipses represent the infinite diagrams contributing to the nuclear
wavefunction. In terms of the corrections introduced in Eq. (1), the left topology contributes (in various regimes) to
DV

R and d 0
R, the two middle ones to dNS, and the right one to dC.

and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]

log2
f t

=
G2

Fm5
e |Vud |2

p3 (1+DV
R +d 0

R +dNS �dC) (1)

where t is the measured partial half life, f is a dimensionless phase space factor determined by the measured
Q value, GF is the Fermi constant extracted from muon decay, and DV

R , dNS, d 0
R, and dC are theoretical

corrections of % size. DV
R denotes the so-called “inner radiative corrections” and does not depend on the

particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
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and weak interaction eigenstates of quarks. CKM unitarity implies DCKM ⌘ |Vud |2 + |Vus|2 + |Vub|2 �1 = 0,
where Vud , Vus, Vub represent the mixing of up with down, strange, and beauty quarks, respectively. In prac-
tice |Vub|2 < 10�5 can be neglected and CKM unitarity reduces to the original Cabibbo universality, with
the identifications Vud = cosqC and Vus = sinqC, where qC is the Cabibbo angle [2]. Measurements of the b
decay of the neutron and of nuclei, with precision between 0.1% and 0.01%, are very competitive probes of
BSM physics, sensitive to both CKM unitarity and to “non V-A” BSM interactions.

The CKM mixing parameters VuD (D = d,s) are determined from various hadronic and nuclear weak
decays hi ! h f `n` (` = e,µ). Currently, the most precise determination of Vud is obtained by nuclear
0+ ! 0+ decays through the relation [4]
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particular transition considered: it can be calculated at the single-nucleon level and its nucleon-structure
dependence arises from the so-called g�W box diagrams [5–7] (see top part of left panel in Fig. 2), in which
a virtual photon is exchanged between the electron and the charged hadrons. d 0

R and dNS parameterize the
transition-dependent part of the electromagnetic radiative corrections. d 0

R is the “outer radiative correction”
and depends only on the electron’s energy and the Z of the decay product [8–11] (left panel in Fig. 2). dNS
depends on the nuclear structure details and arises form generalized g �W box diagrams in which a virtual
photon is exchanged between the electron and a proton that is not interacting with the W boson [12–15]
(middle panel in Fig. 2). Finally, dC is a correction arising from isospin breaking effects in the nuclear
wavefunctions, due to the fact that isobaric analog nuclei participating in superallowed transitions are not
pure isospin states in presence of Coulomb (right panel in Fig. 2) and other isospin-breaking nucleon-level
interactions [11, 16–19]. The most recent survey [4] of experimental and theoretical input leads to Vud =
0.97373(31). This incorporates a reduction in the uncertainty in DV

R [5, 7] and an increase in uncertainty due
to nuclear-structure dependent effects with input from Refs. [6, 14, 15]. Currently, the theoretical uncertainty
on the nuclear-structure dependent electromagnetic corrections dNS �dC dominates the error on Vud .

Thanks to higher precision measurements of the lifetime [20] and beta asymmetry [21] (see Ref. [22]
for a recent review), neutron decay is becoming competitive with superallowed beta decays on the precision
of Vud . Following the PDG analysis [23] one finds Vud = 0.97338(33)t(32)gA(10)RC = 0.97338(47), with
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ΔR Universal radiative correction
 High-energy γW box + ZW box amplitudes
δR′ Long-distance radiative correction
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δC Coulomb correction
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FIG. 3. (a) In the top panel are plotted the uncorrected experi-
mental f t values for the 15 precisely known superallowed transitions
as a function of the charge on the daughter nucleus. (b) In the bottom
panel, the corresponding Ft values are given; they differ from the f t
values by the inclusion of the correction terms δ′

R, δNS, and δC . The
horizontal gray band gives one standard deviation around the average
Ft value. All transitions are labeled by their parent nuclei.

be established with high precision. Relatively imprecise mea-
surements of the tiny Gamow-Teller branches, which must be
subtracted from 100%, are all that is required.

Not so for the decays of the Tz = −1 parents. They are
even-even nuclei that decay to odd-odd daughters, where 1+

states are available at low excitation energy. The Gamow-
Teller transitions to these states turn out to be strong enough to
compete with, and often surpass, the superallowed transitions.
This raises a serious experimental challenge: the intensity
of the Gamow-Teller branches—or the superallowed branch
itself—must be measured directly with high relative precision.
Considerable progress has been made in the last few years
in improving the measurements of superallowed branching
ratios from Tz = −1 parents, but they still cannot match the
precision of the Tz = 0 parents’ branching ratios.

The eight cases included in Fig. 5 are much more limited
by experiment. All but 66As and 70Br are Tz = −1 parents,
which will require very difficult measurements to arrive at
precise branching ratios. All but 18Ne and 30S are quite far
from stability and will be difficult to produce in sufficient
quantity for high statistical precision. Overall, the two most
advanced candidates are 18Ne and 30S but even they will

FIG. 4. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final Ft values for the 15 precisely measured
superallowed transitions used in the Ft-value average. The two bars
cut off with jagged lines at about 0.20% actually rise to 0.23%
for 62Ga and 0.29% for 74Rb. The bars for δ′

R and δC-δNS include
provision for systematic uncertainty as well as statistical. See text.
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FIG. 5. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final Ft values for the eight tabulated superallowed
transitions not known precisely enough to contribute to the Ft-value
average. The three bars cut off with jagged lines at about 4.0%
indicate that no useful experimental measurement has been made of
those parameters. The bars for δ′

R and δC-δNS include provision for
systematic uncertainty as well as statistical. See text.
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conserved vector current (CVC) hypothesis, the experimental
f t value for such a transition should be directly related to the
vector coupling constant, GV , a fundamental constant, which
must be the same for all such transitions.

In practice, the f t values are subject to several small
(∼1%) correction terms. It is convenient to combine some
of these terms with the f t value and define a “corrected” Ft
value, which replaces f t in satisfying the CVC expectations.
Thus, we write [7]

Ft ≡ f t (1 + δ′
R)(1 + δNS − δC ) = K

2G2
V

(
1 + "V

R

) , (1)

where K/(h̄c)6 = 2π3h̄ ln 2/(mec2)5 = 8120.27648(26) ×
10−10 GeV−4s, GV is the vector coupling constant for
semileptonic weak interactions, δC is the isospin-symmetry-
breaking correction, and "V

R is the transition-independent part
of the radiative correction. The terms δ′

R and δNS comprise
the transition-dependent part of the radiative correction, the
former being a function only of the electron’s energy and the
Z of the daughter nucleus, while the latter, like δC , depends
in its evaluation on the details of nuclear structure. From
this equation, it can be seen that each measured transition
establishes an individual value for GV and, if GV is not
renormalized in the nuclear medium as CVC asserts it is not,
all such values—and all the Ft values themselves—should be
identical within uncertainties, regardless of the specific nuclei
involved.

What makes the study of superallowed 0+ → 0+ β decays
so compelling is that their precisely determined Ft values
have proved indeed to be consistent with one another. Thus
their average yields an even more precise value for the vector
coupling constant GV , which in turn can be used to determine
Vud via the relation

Vud = GV /GF , (2)

where GF is the well-known weak-interaction constant for
muon decay. Once the value of Vud is established it can be
used to test the top-row unitarity of the CKM matrix, i.e.,
asking whether V 2

ud + V 2
us +V 2

ub equals 1. For the past decade
and more, the answer has consistently been “yes” but re-
cent theoretical developments have made the answer today
more ambiguous. We will present the current status of CKM
unitarity.

Our procedure in this paper is to examine all experimental
data related to 23 superallowed transitions, comprising all
those that have been well studied, together with other cases
that are now coming under scrutiny after becoming accessi-
ble to precision measurement in relatively recent years. The
methods used in data evaluation are presented in Sec. II along
with tables of all the relevant world data. The calculations and
corrections required to extract Ft values from these data are
described and applied in Sec. III. Then in Sec. IV we examine
the resultant Ft values, their consistency, and their constituent
uncertainties. Finally, in Sec. V we explore the impact of these
results on two weak-interaction issues: CKM unitarity and
the possible existence of scalar interactions. This is much the
same pattern as we followed in our three most recent reviews
[5–7].

II. EXPERIMENTAL DATA

The f t value that characterizes any β transition depends
on three measured quantities: the total transition energy QEC,
the half-life t1/2 of the parent state, and the branching ratio
R for the particular transition of interest. The QEC value is
required to determine the statistical rate function, f , while
the half-life and branching ratio combine to yield the partial
half-life, t . In Tables I–VII we present the measured val-
ues of these three quantities and supporting information for
a total of 23 superallowed 0+ → 0+ transitions. Of these
23 transitions, 15 have been fully characterized by precise
measurements; their f t values are currently known with a
relative precision of ±0.23% or better, and they all play a
role in important weak-interaction tests to be described in later
sections.

The remaining eight transitions are much less well known
for now, but they are accessible to experiment and their data
could be significantly improved in future. We include them for
completeness and to encourage their further study. There are,
of course, even more 0+ → 0+ transitions that are known or
anticipated to exist. However, we omit them entirely because
their parents are exotic enough that we consider it unlikely
they could be precisely characterized in the foreseeable future.

A. Evaluation principles

In our treatment of the data, we considered all measure-
ments formally published or accepted before the end of March
2020. We scrutinized all the original experimental reports in
detail. Where necessary and possible, we used the information
provided there to correct the results for calibration data that
have improved since the measurement was made. All cases
for which such a correction has been made are recorded in
Table VI. If corrections were evidently required but insuffi-
cient information was provided to make them, then the results
were rejected; these are noted in Table VII.

Of the surviving results, only those with (updated) uncer-
tainties that are within a factor of 10 of the most precise
measurement for each quantity were retained for averaging in
the tables. Each datum appearing in the tables is attributed
to its original journal reference via an alphanumeric code
comprising the initial two letters of the first author’s name
and the two last digits of the publication date. These codes
are correlated with the actual reference numbers [8–181] in
Table VIII.

The statistical procedures we have followed in analyzing
the tabulated data are based on those used by the Particle Data
Group in their periodic reviews of particle properties, e.g.,
see Ref. [182], and adopted by us in earlier surveys [1–7] of
superallowed 0+ → 0+ β decay. In the tables and through-
out this work, “error bars” and “uncertainties” always refer
to plus-and-minus one standard deviation (68% confidence
level). For a set of N uncoupled measurements, xi ± δxi, of
a particular quantity, a Gaussian distribution is assumed, the
weighted average being calculated according to:

x ± δx =
∑

i wixi∑
i wi

±
(∑

iwi
)−1/2

, (3)
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lept = ēa�µ(1� �5)⌫b · ⌫̄c�
µ(1� �5)ed

LFermi = �
GF
p
2
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• Soft, potential, and ultra-soft photons contribute to multi-nucleon amplitudes 
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FIG. 2. Representative diagrams for RC to superallowed decays in EFT. Leptons, nucleons, photons, and pions are denoted by plain,
double, wavy, and dashed lines, respectively. A blue circle denotes the insertion of the EW current, including O(α) corrections from hard
photon exchange, see Eq. (6). Black circles denotes 1b EW and EM currents and pion-nucleon vertices from the chiral Lagrangian. The red
and green ovals denote the wave functions of the initial and final nuclei, the blue oval the nuclear Green’s function.

Finally, we have diagrams in which the only external scales
involved are of O(qext ) [such loops do not involve virtual
pions to O(ϵ1

/π )]. These ultrasoft loops scale similarly to soft
loops on replacing Q → qext:

(iii) Ultrasoft: Each loop integration picks up a factor
q4

ext/(4π )2. Each photon propagator scales as 1/q2
ext.

Each heavy-baryon nucleon propagator or electron
propagator scales as 1/qext.

Let us now apply these PC rules to the diagrams in Fig. 2
starting with diagram 2(a). This diagram involves at LO just
the single nucleon β-decay vertex proportional to GF . In addi-
tion, there appear A + 1 intermediate nucleon propagators and
A − 1 loop integrations but these are common to all diagrams
and can be omitted when estimating their relative importance.
We thus estimate

Aa ≃ O(GF ). (15)

Diagram 2(b) involves (apart from the blue oval which counts
as O(1), see above) one ultrasoft loop because the loop mo-
menta can always be routed in such a way that the electron, the
photon, and one nucleon propagator only become sensitive to
the external scale qext. With respect to Aa, this diagram then
picks up one ultrasoft loop q4

ext/(4π )2, two insertions of the
charge ≃ e2, and the combinations of one ultrasoft electron,
one photon, and on nucleon propagator that become 1/q4

ext.
Altogether we obtain

Ab ≃ O
(

GF
α

π

)
. (16)

However, explicit calculation shows that part of the diagram
is actually enhanced by a factor π2 leading to O(GF α π )
contributions. These π2-enhanced terms are usually collected
in the Fermi function [74], while the terms following the PC
estimates are collected in the Sirlin function [75]; see Sec. V
for the matching to the traditional notation.

We emphasize that trying to account for numerical fac-
tors in the PC is only possible in case there are universal
features of certain topologies, e.g., the factors of 4π that
can be associated with NN loops [72,73], but, in general, the
PC cannot be expected to capture numerical enhancements
of dimensionless integrals.1 Another example for the intrica-
cies of such π -enhanced contributions concerns the multiple
scattering series in pion-deuteron and NN scattering [79–83],
for which Coulombic pion propagators produce π2-enhanced
contribution that do not correspond to a special momentum
scaling. For that reason, we only consider the universal 4π
factors mentioned above, while other enhanced contributions,
such as the numerical enhancement in the Fermi function,
require explicit calculations.

Next, in diagram 2(c) the additional loop can be either
ultrasoft or potential. Let us first consider the ultrasoft scaling,
in which case the extra loop gives q4

ext/(4π )2, the vertices
again e2, the electron and photon propagator are both ultrasoft
and give rise to 1/q3

ext. The extra nucleon propagator, however,
has potential scaling and picks up mN/Q2. This implies

Aus
c ≃ O

(
GF

α

π

qextmN

Q2

)
= O

(
GF

α

π

)
, (17)

where we again identified qext = Q2/mN . Accordingly, the
ultrasoft part of diagram 2(c) thus appears at the same order
as diagram 2(b), and we will show that the sum of these di-
agrams amounts to the Fermi and Sirlin functions. Assuming
potential scaling instead, the extra loop in diagram 2(c) gives
Q5/(4πmN ), the vertices e2, the photon and electron propa-
gator combined 1/Q3, and the nucleon propagator mN/Q2.

1In some cases, e.g., triangle diagrams for isospin-breaking correc-
tions to pion-nucleon scattering [76–78], π enhancements that one
might be able to guess from the topology of the diagram can be
further accompanied by large numerical prefactors, which can only
be found by an explicit calculation.
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where p = 1.79, n = �1.91 are the proton and neutron
anomalous magnetic moments. The coordinate-space ex-
pression of Eqs. (34) and (35) is given in Sec. VI and
App. B. Vmag
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in chiral EFT, the Coulomb-like potential in Eq. (34)
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tion in the 1S0 channel. At LO in chiral EFT, the RG
equations for g̃NN

V 1,V 2
are the same in dimensional regu-
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where µ denotes the renormalization scale in the MS or
power-divergence-subtraction schemes, or the UV cuto↵

9

a0) b0) c0)

a1) b1) c1) d1)

FIG. 3: Lowest-order diagrams contributing to the EW potentials V
0
E , Vme , and V

0. Single, double, and dashed lines denote
leptons, nucleons, and pions, respectively. Dots and circled dots refer to interactions from the LO and NLO chiral Lagrangians,
diamonds to isospin-breaking interactions.

V
mag

0
(q) =

X

j<k

e2

3

gA
mN

1

q2

✓
�(j)

· �(k) +
1

2
S(jk)

◆h
(1 + p)⌧

+(j)P (k)
p + n⌧

+(j)P (k)
n + (j $ k)

i
, (34)

V
rec

0
(q,P) =

X

j<k


� i

e2gA
4mN

⌧+(j)P (k)
p

q4
((Pj �Pk)⇥ q) · �(j)

�
Z⇡e2g2A
mN

⌧+(j)⌧ (k)
3

(q2 +M2
⇡)

2
�(j)

· q�(k)
·Pj + (j $ k)

�
, (35)

where p = 1.79, n = �1.91 are the proton and neutron
anomalous magnetic moments. The coordinate-space ex-
pression of Eqs. (34) and (35) is given in Sec. VI and
App. B. Vmag

0
has a Coulombic scaling, ' 1/q2, with an

isospin-one/-two component proportional to (1+p)±n,
respectively. In momentum space this class of poten-
tials scales as O(e2/(k2F⇤�)) and contributes to �NS at
O(↵✏�).

When applied to 1S0 wave functions obtained at LO
in chiral EFT, the Coulomb-like potential in Eq. (34)
gives rise to nuclear matrix elements that are logarith-
mically dependent on the ultraviolet (UV) cuto↵ used in
the solution of the Lippmann–Schwinger or Schrödinger
equation [55, 56]. This signals sensitivity to UV physics,
related to the exchange of hard photons with virtual mo-
menta larger than ⇤�, which can be absorbed by the 2b
short-range operators in Eq. (13). To properly renor-
malize nuclear matrix elements, gNN

V 1,V 2
need to scale as

O(1/(F 2
⇡⇤�)). Their contribution to the e↵ective Hamil-

tonian is

V
CT

0
= e2

�
gNN
V 1

O1 + gNN
V 2

O2

�
, (36)

where

O1 =
X

j 6=k

⌧+(j)1k, O2 =
X

j<k

⇥
⌧+(j)⌧ (k)

3
+ (j $ k)

⇤
.

(37)
Following essentially the same steps discussed in

Refs. [55, 56] we can derive the cuto↵ dependence of
gNN
V 1,V 2

. First, we introduce the dimensionless couplings

g̃NN
V 1,V 2

as

gNN
V 1,V 2

=
1

mN

✓
mNC1S0

4⇡

◆2

g̃NN
V 1,V 2

, (38)

where C1S0
= 3CT � CS is the LO NN contact interac-

tion in the 1S0 channel. At LO in chiral EFT, the RG
equations for g̃NN

V 1,V 2
are the same in dimensional regu-

larization and several cuto↵ schemes [56] and are given
by

dg̃NN
V 1

d logµ
= �gA(1 + p + n) = �1.12,

dg̃NN
V 2

d logµ
= �gA(1 + p � n) = �5.99, (39)

where µ denotes the renormalization scale in the MS or
power-divergence-subtraction schemes, or the UV cuto↵

9

a0) b0) c0)

a1) b1) c1) d1)

FIG. 3: Lowest-order diagrams contributing to the EW potentials V
0
E , Vme , and V

0. Single, double, and dashed lines denote
leptons, nucleons, and pions, respectively. Dots and circled dots refer to interactions from the LO and NLO chiral Lagrangians,
diamonds to isospin-breaking interactions.

V
mag

0
(q) =

X

j<k

e2

3

gA
mN

1

q2

✓
�(j)

· �(k) +
1

2
S(jk)

◆h
(1 + p)⌧

+(j)P (k)
p + n⌧

+(j)P (k)
n + (j $ k)

i
, (34)

V
rec

0
(q,P) =

X

j<k


� i

e2gA
4mN

⌧+(j)P (k)
p

q4
((Pj �Pk)⇥ q) · �(j)

�
Z⇡e2g2A
mN

⌧+(j)⌧ (k)
3

(q2 +M2
⇡)

2
�(j)

· q�(k)
·Pj + (j $ k)

�
, (35)

where p = 1.79, n = �1.91 are the proton and neutron
anomalous magnetic moments. The coordinate-space ex-
pression of Eqs. (34) and (35) is given in Sec. VI and
App. B. Vmag

0
has a Coulombic scaling, ' 1/q2, with an

isospin-one/-two component proportional to (1+p)±n,
respectively. In momentum space this class of poten-
tials scales as O(e2/(k2F⇤�)) and contributes to �NS at
O(↵✏�).

When applied to 1S0 wave functions obtained at LO
in chiral EFT, the Coulomb-like potential in Eq. (34)
gives rise to nuclear matrix elements that are logarith-
mically dependent on the ultraviolet (UV) cuto↵ used in
the solution of the Lippmann–Schwinger or Schrödinger
equation [55, 56]. This signals sensitivity to UV physics,
related to the exchange of hard photons with virtual mo-
menta larger than ⇤�, which can be absorbed by the 2b
short-range operators in Eq. (13). To properly renor-
malize nuclear matrix elements, gNN

V 1,V 2
need to scale as

O(1/(F 2
⇡⇤�)). Their contribution to the e↵ective Hamil-

tonian is

V
CT

0
= e2

�
gNN
V 1

O1 + gNN
V 2

O2

�
, (36)

where

O1 =
X

j 6=k

⌧+(j)1k, O2 =
X

j<k

⇥
⌧+(j)⌧ (k)

3
+ (j $ k)

⇤
.

(37)
Following essentially the same steps discussed in

Refs. [55, 56] we can derive the cuto↵ dependence of
gNN
V 1,V 2

. First, we introduce the dimensionless couplings

g̃NN
V 1,V 2

as

gNN
V 1,V 2

=
1

mN

✓
mNC1S0

4⇡

◆2

g̃NN
V 1,V 2

, (38)

where C1S0
= 3CT � CS is the LO NN contact interac-

tion in the 1S0 channel. At LO in chiral EFT, the RG
equations for g̃NN

V 1,V 2
are the same in dimensional regu-

larization and several cuto↵ schemes [56] and are given
by

dg̃NN
V 1

d logµ
= �gA(1 + p + n) = �1.12,

dg̃NN
V 2

d logµ
= �gA(1 + p � n) = �5.99, (39)

where µ denotes the renormalization scale in the MS or
power-divergence-subtraction schemes, or the UV cuto↵

p

eν

N N

Test
Test
Test
Test
Test
Test

GFermi

�f = 3.573(5)↵⇥recoil % ! �f = 3.584(5)↵⇥recoil %

�f = 3.584(5)↵⇥recoil %

�f = 3.584(5)%

V n,PDG
ud = 0.97430(2)�f

(13)�R(82)�(28)⌧n [88]total

V n,best
ud = 0.97402(2)�f

(13)�R(35)�(20)⌧n [42]total

GFermi ⇠
g2

M2
W

⇠
1

(250GeV)2

� ⇠ G2
F E2

CM � ⇠ G2
Fermi E

2
CM

L
2b
W = �

p
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Oabij
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• Chiral EFT (NN, NNN, …) with dynamical leptons and photons  
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• Hard photons leave behind local multi-nucleon 
electroweak operators (as in the one-nucleon case) 
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2e2GFVud ēL�0⌫L ⇥N †⌧+N

�
e2gNN

V 1 N †N + e2gNN
V 2 N †⌧ 3N

�

L/⇡

HNuclear +Hweak +HEM

L� = L⇡,K,⌘ + L⇡N + LNN + ...

LLEFT = LFermi �
GFVuidj

p
2

X

n

✏nOn + LQCD+QED

Oabij
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lept = ēa�µ(1� �5)⌫b · ⌫̄c�
µ(1� �5)ed

LFermi = �
GF
p
2
ē�µ(1��5)⌫e·⌫̄µ�

µ(1��5)µ�
GFVuidj

p
2

C�(µ) ¯̀�µ(1��5)⌫`·ūi�
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where p = 1.79, n = �1.91 are the proton and neutron
anomalous magnetic moments. The coordinate-space ex-
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FIG. 3: Lowest-order diagrams contributing to the EW potentials V
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where p = 1.79, n = �1.91 are the proton and neutron
anomalous magnetic moments. The coordinate-space ex-
pression of Eqs. (34) and (35) is given in Sec. VI and
App. B. Vmag
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µ(1��5)dj

2

VE ⇠
e2 Ee,⌫

q4

Vmag ⇠
e2

mNq
2

Vcontact ⇠ e2 gNN
V1,V2

⇠ e2
1

⇤�F 2
⇡

gNN
V1,V2

⇠
1

⇤�F 2
⇡

L/⇡

HNuclear +Hweak +HEM

L� = L⇡,K,⌘ + L⇡N + LNN + ...

LLEFT = LFermi �
GFVuidj

p
2

X

n

✏nOn + LQCD+QED

Oabij
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lept = ēa�µ(1� �5)⌫b · ⌫̄c�
µ(1� �5)ed

LFermi = �
GF
p
2
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EFT for multi-nucleon systems

• Chiral EFT (NN, NNN, …) with dynamical leptons and photons  

VC,  W. Dekens,, J.de Vries, S. Gandolfi,  M. Hoferichter,  E, Mereghetti,   2405.18469, 2405.18464  

• Hard photons leave behind local multi-nucleon 
electroweak operators (as in the one-nucleon case) 
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P = ēa(1� �5)⌫b · ūi�5dj
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lept = ēa�µ(1� �5)⌫b · ⌫̄c�
µ(1� �5)ed

LFermi = �
GF
p
2
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µ(1��5)dj

1

• ‘Integrate out' soft & potential photons (and π’s) → obtain EW n-body transition operators (‘potentials’) 

• Ultrasoft photons:  Z-dependent running of effective couplings 
between mπ  and me & matrix elements at μ ~ me 

• Captures  and  

• Reproduces results from effective theory with nuclei  

• Usually captured in the Fermi function and  

(α2Z2L)n (α2ZL)n

δ2,3

• Ultrasoft photons generate Z dependent potentials  

• Induces Z-dependent RGEs 

EFT runningχ
e
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pn

100 MeV
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p p

p p

p p

e
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pn

…

e
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pn

pp

… pp

gV(mπ)

Ceff(me)

Borah, Hill, Plesid ’24; Hill, Plesid, ’23,’23; Jaus, Rasche ’97; Sirlin, Zucchini ‘86

Vn−body
δ ∼ (αZ )nτ+

L = ln mπ /me

dCeff
d ln μ

∼ [ 1 − α2Z(Z + 1) − 1] Ceff

Courtesy of 
W. Dekens 



 Reasonable agreement with HT & dispersive + NCSM  
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Nuclear Matrix Elements 
14O →14 N
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• Total: 

• For  gNN
V1,V2 = 1/(4mNF2

π)

• Magnetic/spin-orbit correspond to  
`traditional’   

• Similar result:  

δNS,B

δNS,B = − 1.96(50) ⋅ 10−3

δ(0)
NS = − (1.76+0.11±0.88) ⋅ 10−3

Towner ’94; Hardy, Towner ‘20

Largest uncertainty from unknown LECs.   
Assumes

Residual scale dependence 
due to missing terms of 

O(α2Z) in the Fermi function 

Impact on Vud: exploratory studies in QMC

• 14O →14N:  𝛅NS contributions in rough agreement with corresponding terms in Hardy-Towner 2020

(31) from δNS

VC,  W. Dekens,, J.de Vries, S. Gandolfi,  M. Hoferichter,  E, Mereghetti,   2405.18469, 2405.18464  
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• 10C →10B:

Gennari, Drissi,  Gorchtein,  
Navratil,, Seng, Phys. Rev. Lett. 

134,  012501 (2025) 

which, once again, is subdominant.

Finally, we assess the impact of using di↵erent nuclear models on the extraction of Vud.

We can extract Vud using the master formula
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Here t denotes the partial half-life given in Ref. [45]

t = 1321.8± 1.8 s, (42)

while the prefactor on the right-hand-side
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is known with negligible uncertainty. Using the recipe in Ref. [48], we find the combinationh
C

(gV )
e↵

i2
f̄(1 + �̄

0

R
) to be

h
C

(gV )
e↵

i2
f̄(1 + �̄

0

R
) = 2.39519(56)gV (87)µ, (44)

where the first error is due to the nonperturbative uncertainty in the nucleon W� box

[9, 17–22, 27]. The second error is obtained by varying the low-energy renormalization scale

µ between E0 and 4E0. This variation estimates some missing O(↵2
Z) terms in the phase

space factor f̄ . For the isospin breaking correction �C , we assume the result from Ref. [45]

�C = (1.75± 0.18) · 10�3
, (45)

even though this quantity should in principle be computed using the same many-body

method and chiral interactions as �̄NS.

Putting these factors together, we find that, using only the 10C measurement, one would
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The four di↵erent interactions we use result in a spread of 1.9 · 10�4, comparable with the

uncertainty due to gV and missing O(↵2
Z) terms, but smaller than the e↵ect due to the
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Even neglecting the large experimental error, the range of values we find is compatible with

Eqs. (50) and (51).

VII. CONCLUSION

This work details the calculation of the nuclear structure correction �̄NS to 10C superal-

lowed � decay using state-of-the-art nuclear many-body approaches with an EFT framework.

The formalism, developed in Refs. [9, 48, 49], allowed for the description of �̄NS in terms

of nuclear matrix elements of two-body currents. We employed two methods – VMC and

GFMC – to study both the values of the matrix elements, as well as their sensitivities to

the underlying nuclear dynamics. We presented a range of values for �̄NS arising from the

four models of nuclear interaction used in this work.

Our results can be compared with both the standard value of the review in Ref. [45], as

well as the recent NCSM calculation of Ref. [50] based on the dispersion formalism of Refs. [8,

17–19, 46, 47]. Treating the unknown low-energy constants as a theoretical uncertainty on

the GFMC results, we find that our number agrees with the other evaluations within error.

Our central values are in very good agreement with that of Ref. [50], but higher than Ref. [45].

The current theoretical uncertainty on our approach is larger than that obtained by the other

recent ab-initio evaluation in Ref. [50]; however, this could be improved with a determination

of the unknown low-energy constants, requiring a calculation of �̄NS in multiple isotopes with

the same nuclear Hamiltonian. Our error estimate reflects the uncertainty of using a small

class of chiral interactions, and may under- or over-estimate the true uncertainty from a full

exploration of the parameter space. With both the developments of order-by-order local

chiral interactions [74, 75] and emulators for QMC calculations [82, 83], one could make a

full quantification of the nuclear uncertainties on Vud. This work thus represents a first step
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FIG. 3: Comparison of the matrix elements obtained with the Ia interaction (filled symbols) vs Ia*

(empty symbols) computed using VMC.

su�cient to overtake the S = 0 np pairs, driving the sign change in OGT,n(r). Because the

formation of pairs is sensitive to the details of the nuclear interaction and correlations [86],

this makes the spin-dependent matrix elements much more sensitive to the structure inputs.

The density of the spin-orbit operator OLS,p, multipied by a factor of 10, is shown by

the yellow points in Fig. 1. For both the NV2+3-Ia and AV18+UX models, the LS matrix

element turns out to be negligible. This is due to a cancellation between the contributions

of the L and L
CM terms in Eq. (8). The same feature is observed in 14O, after the L

CM

contribution neglected in Ref. [48] is restored [87], and, to a lesser degree, in medium mass

nuclei [88].

Finally, we remark that the magnetic matrix elements MGT,p and MGT,n depend on

the ultraviolet cut-o↵ used in the interactions [48], which is di↵erent in the AV18 and

NV2-Ia potentials. The di↵erence could be absorbed by fitting the low-energy constants

g
NN

V 1 and g
NN

V 2 to lattice QCD or model calculations of two-nucleon scattering amplitudes,
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• Total: 

• For  gNN
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π)
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• Similar result:  

δNS,B

δNS,B = − 1.96(50) ⋅ 10−3
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Residual scale dependence 
due to missing terms of 

O(α2Z) in the Fermi function 
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• 14O →14N:  𝛅NS contributions in rough agreement with corresponding terms in Hardy-Towner 2020

(31) from δNS
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• 10C →10B:
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Navratil,, Seng, Phys. Rev. Lett. 
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which, once again, is subdominant.

Finally, we assess the impact of using di↵erent nuclear models on the extraction of Vud.

We can extract Vud using the master formula

1

t
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2
F
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(µ)] (1 + �̄NS) (1� �̄C) f̄(µ). (41)

Here t denotes the partial half-life given in Ref. [45]

t = 1321.8± 1.8 s, (42)

while the prefactor on the right-hand-side
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5
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= 3.350722(3)⇥ 10�4 s�1

, (43)

is known with negligible uncertainty. Using the recipe in Ref. [48], we find the combinationh
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) to be
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R
) = 2.39519(56)gV (87)µ, (44)

where the first error is due to the nonperturbative uncertainty in the nucleon W� box

[9, 17–22, 27]. The second error is obtained by varying the low-energy renormalization scale

µ between E0 and 4E0. This variation estimates some missing O(↵2
Z) terms in the phase

space factor f̄ . For the isospin breaking correction �C , we assume the result from Ref. [45]

�C = (1.75± 0.18) · 10�3
, (45)

even though this quantity should in principle be computed using the same many-body

method and chiral interactions as �̄NS.

Putting these factors together, we find that, using only the 10C measurement, one would

get the following values of Vud

NV2+3-Ia Vud|10C = 0.97355(66)exp(12)gV (17)µ(9)�C (38)gNN
V

, (46)
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V

, (47)

AV18+UX Vud|10C = 0.97336(66)exp(12)gV (17)µ(9)�C (23)gNN
V

, (48)

AV18+IL7 Vud|10C = 0.97349(66)exp(12)gV (17)µ(9)�C (31)gNN
V

. (49)

The four di↵erent interactions we use result in a spread of 1.9 · 10�4, comparable with the

uncertainty due to gV and missing O(↵2
Z) terms, but smaller than the e↵ect due to the

23
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chiral Hamiltonians

missing low-energy constants (denoted by g
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V

). For comparison, using 10C only and the

theoretical corrections discussed in Ref. [45], one would get
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(24)�NS(9)�C , (50)

while using �NS and �V

R
from Ref. [50] would yield

Vud|
[50]
10C = 0.97317(66)exp(9)�V

R
(16)�NS(9)�C . (51)

Even neglecting the large experimental error, the range of values we find is compatible with

Eqs. (50) and (51).

VII. CONCLUSION

This work details the calculation of the nuclear structure correction �̄NS to 10C superal-

lowed � decay using state-of-the-art nuclear many-body approaches with an EFT framework.

The formalism, developed in Refs. [9, 48, 49], allowed for the description of �̄NS in terms

of nuclear matrix elements of two-body currents. We employed two methods – VMC and

GFMC – to study both the values of the matrix elements, as well as their sensitivities to

the underlying nuclear dynamics. We presented a range of values for �̄NS arising from the

four models of nuclear interaction used in this work.

Our results can be compared with both the standard value of the review in Ref. [45], as

well as the recent NCSM calculation of Ref. [50] based on the dispersion formalism of Refs. [8,

17–19, 46, 47]. Treating the unknown low-energy constants as a theoretical uncertainty on

the GFMC results, we find that our number agrees with the other evaluations within error.

Our central values are in very good agreement with that of Ref. [50], but higher than Ref. [45].

The current theoretical uncertainty on our approach is larger than that obtained by the other

recent ab-initio evaluation in Ref. [50]; however, this could be improved with a determination

of the unknown low-energy constants, requiring a calculation of �̄NS in multiple isotopes with

the same nuclear Hamiltonian. Our error estimate reflects the uncertainty of using a small

class of chiral interactions, and may under- or over-estimate the true uncertainty from a full

exploration of the parameter space. With both the developments of order-by-order local

chiral interactions [74, 75] and emulators for QMC calculations [82, 83], one could make a

full quantification of the nuclear uncertainties on Vud. This work thus represents a first step
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FIG. 3: Comparison of the matrix elements obtained with the Ia interaction (filled symbols) vs Ia*

(empty symbols) computed using VMC.

su�cient to overtake the S = 0 np pairs, driving the sign change in OGT,n(r). Because the

formation of pairs is sensitive to the details of the nuclear interaction and correlations [86],

this makes the spin-dependent matrix elements much more sensitive to the structure inputs.

The density of the spin-orbit operator OLS,p, multipied by a factor of 10, is shown by

the yellow points in Fig. 1. For both the NV2+3-Ia and AV18+UX models, the LS matrix

element turns out to be negligible. This is due to a cancellation between the contributions

of the L and L
CM terms in Eq. (8). The same feature is observed in 14O, after the L

CM

contribution neglected in Ref. [48] is restored [87], and, to a lesser degree, in medium mass

nuclei [88].

Finally, we remark that the magnetic matrix elements MGT,p and MGT,n depend on

the ultraviolet cut-o↵ used in the interactions [48], which is di↵erent in the AV18 and

NV2-Ia potentials. The di↵erence could be absorbed by fitting the low-energy constants
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from Ref. [50] would yield

Vud|
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10C = 0.97317(66)exp(9)�V

R
(16)�NS(9)�C . (51)

Even neglecting the large experimental error, the range of values we find is compatible with

Eqs. (50) and (51).

VII. CONCLUSION

This work details the calculation of the nuclear structure correction �̄NS to 10C superal-

lowed � decay using state-of-the-art nuclear many-body approaches with an EFT framework.

The formalism, developed in Refs. [9, 48, 49], allowed for the description of �̄NS in terms

of nuclear matrix elements of two-body currents. We employed two methods – VMC and

GFMC – to study both the values of the matrix elements, as well as their sensitivities to

the underlying nuclear dynamics. We presented a range of values for �̄NS arising from the

four models of nuclear interaction used in this work.

Our results can be compared with both the standard value of the review in Ref. [45], as

well as the recent NCSM calculation of Ref. [50] based on the dispersion formalism of Refs. [8,

17–19, 46, 47]. Treating the unknown low-energy constants as a theoretical uncertainty on

the GFMC results, we find that our number agrees with the other evaluations within error.

Our central values are in very good agreement with that of Ref. [50], but higher than Ref. [45].

The current theoretical uncertainty on our approach is larger than that obtained by the other

recent ab-initio evaluation in Ref. [50]; however, this could be improved with a determination

of the unknown low-energy constants, requiring a calculation of �̄NS in multiple isotopes with

the same nuclear Hamiltonian. Our error estimate reflects the uncertainty of using a small

class of chiral interactions, and may under- or over-estimate the true uncertainty from a full

exploration of the parameter space. With both the developments of order-by-order local

chiral interactions [74, 75] and emulators for QMC calculations [82, 83], one could make a

full quantification of the nuclear uncertainties on Vud. This work thus represents a first step
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 King-Carlson-Flores-Gandolfi-Mereghetti-Pastore-
Piarulli-Wiringa,  arXiv:2509.07310

 Empty and filled symbols correspond 
to two different chiral interactions 

NCSM
FIG. 3: Comparison of the matrix elements obtained with the Ia interaction (filled symbols) vs Ia*

(empty symbols) computed using VMC.

su�cient to overtake the S = 0 np pairs, driving the sign change in OGT,n(r). Because the

formation of pairs is sensitive to the details of the nuclear interaction and correlations [86],

this makes the spin-dependent matrix elements much more sensitive to the structure inputs.

The density of the spin-orbit operator OLS,p, multipied by a factor of 10, is shown by

the yellow points in Fig. 1. For both the NV2+3-Ia and AV18+UX models, the LS matrix

element turns out to be negligible. This is due to a cancellation between the contributions

of the L and L
CM terms in Eq. (8). The same feature is observed in 14O, after the L

CM

contribution neglected in Ref. [48] is restored [87], and, to a lesser degree, in medium mass

nuclei [88].

Finally, we remark that the magnetic matrix elements MGT,p and MGT,n depend on

the ultraviolet cut-o↵ used in the interactions [48], which is di↵erent in the AV18 and

NV2-Ia potentials. The di↵erence could be absorbed by fitting the low-energy constants

g
NN

V 1 and g
NN

V 2 to lattice QCD or model calculations of two-nucleon scattering amplitudes,

15
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Hardy-Towner, PRC 2020
J. C. HARDY AND I. S. TOWNER PHYSICAL REVIEW C 102, 045501 (2020)

FIG. 3. (a) In the top panel are plotted the uncorrected experi-
mental f t values for the 15 precisely known superallowed transitions
as a function of the charge on the daughter nucleus. (b) In the bottom
panel, the corresponding Ft values are given; they differ from the f t
values by the inclusion of the correction terms δ′

R, δNS, and δC . The
horizontal gray band gives one standard deviation around the average
Ft value. All transitions are labeled by their parent nuclei.

be established with high precision. Relatively imprecise mea-
surements of the tiny Gamow-Teller branches, which must be
subtracted from 100%, are all that is required.

Not so for the decays of the Tz = −1 parents. They are
even-even nuclei that decay to odd-odd daughters, where 1+

states are available at low excitation energy. The Gamow-
Teller transitions to these states turn out to be strong enough to
compete with, and often surpass, the superallowed transitions.
This raises a serious experimental challenge: the intensity
of the Gamow-Teller branches—or the superallowed branch
itself—must be measured directly with high relative precision.
Considerable progress has been made in the last few years
in improving the measurements of superallowed branching
ratios from Tz = −1 parents, but they still cannot match the
precision of the Tz = 0 parents’ branching ratios.

The eight cases included in Fig. 5 are much more limited
by experiment. All but 66As and 70Br are Tz = −1 parents,
which will require very difficult measurements to arrive at
precise branching ratios. All but 18Ne and 30S are quite far
from stability and will be difficult to produce in sufficient
quantity for high statistical precision. Overall, the two most
advanced candidates are 18Ne and 30S but even they will

FIG. 4. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final Ft values for the 15 precisely measured
superallowed transitions used in the Ft-value average. The two bars
cut off with jagged lines at about 0.20% actually rise to 0.23%
for 62Ga and 0.29% for 74Rb. The bars for δ′

R and δC-δNS include
provision for systematic uncertainty as well as statistical. See text.
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FIG. 5. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final Ft values for the eight tabulated superallowed
transitions not known precisely enough to contribute to the Ft-value
average. The three bars cut off with jagged lines at about 4.0%
indicate that no useful experimental measurement has been made of
those parameters. The bars for δ′

R and δC-δNS include provision for
systematic uncertainty as well as statistical. See text.

045501-18

• EFT has identified new method to compute structure-
dependent corrections and (temporarily) increased the 
uncertainty.   But in the long run it will allow for robust 
uncertainty quantification 

• LECs can be obtained by 

• Fitting data (along with Vud and possibly BSM effective 
couplings) once NME calculations for several 
isotopes become available

• Theory: dispersive analysis,  Lattice QCD

VC,  W. Dekens,, J.de Vries, S. Gandolfi,  M. Hoferichter,  E, Mereghetti,   2405.18469, 2405.18464  



Vus from K →πlν decays

25

• New radiative corrections based on current algebra + lattice QCD + 
ChPT.  Consistent with old ChPT,  with reduced uncertainties   
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EM = 0.0116(3),

�K+e
EM = 0.0021(5), �K 0µ

EM = 0.0154(4), �K+µ
EM = 0.0005(5) Seng et al. 2022

Result:
V K`3

us = 0.22330(35)exp(39)f+(8)IB[53]total
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NEW: Seng et al,  1910.13209, 2103.00975. 2103.4843.  2107.14708. 
2203.05217. Ma et al. 2102.12048 

OLD:  VC, Giannotti, Neufeld 0807.4607 

Y. Aoki et al. FLAG Review 2021 2111.09849

Figure 8: Comparison of lattice results (squares) for f+(0) with various model estimates
based on �PT [63, 65–68] (blue circles). The black squares and grey bands indicate our
averages (77) – (79). The significance of the colours is explained in Sec. 2.

0.042 fm. The physical light-quark mass is simulated at four lattice spacings. They also
added a simulation at a small volume to study the finite-size e↵ects. The improvement of the
precision with respect to FNAL/MILC 13E is obtained mainly by an estimate of finite-size
e↵ects, which is claimed to be controlled at the level of ⇠ 0.05% by comparing two analyses
with and without the one-loop correction. The total uncertainty is largely reduced to ⇠ 0.2%.
An independent calculation of such high precision would be highly welcome to solidify the
lattice prediction of f+(0), which currently suggests a tension with CKM unitarity with the
updated value of |Vud| (see Sec. 4.4).

The result from the ETM collaboration, f+(0) = 0.9709(45)(9) (ETM 16), makes use
of the twisted-mass discretization adopting three values of the lattice spacing in the range
0.06�0.09 fm and pion masses simulated in the range 210�450 MeV. The chiral and continuum
extrapolations are performed in a combined fit together with the momentum dependence,
using both a SU(2)-�PT inspired ansatz (following Ref. [87]) and a modified z-expansion fit.
The uncertainties coming from the chiral extrapolation, the continuum extrapolation and the
finite-volume e↵ects turn out to be well below the dominant statistical error, which includes
also the error due to the fitting procedure. A set of synthetic data points, representing both
the vector and the scalar semileptonic form factors at the physical point for several selected
values of q2, is provided together with the corresponding correlation matrix.

The PACS collaboration obtained a new result for Nf =2 + 1, f+(0) = 0.9603(16)
�
+50
�48

�

(PACS 19), by creating an ensemble with the physical light-quark mass on a large lattice
volume of (10.9 fm)4 at a single spacing a = 0.085 fm [80]. Such a large lattice enables them to
interpolate f+(q2) to zero momentum transfer and study the momentum-transfer dependence

7 Updated Feb. 2023

Kaon decays and the Cabibbo Angle Anomaly – M. Moulson – CKM 2023 – Santiago de Compostela, 20 September 2023

Long-distance EM corrections
Mode-dependent corrections ΔEMKℓ to phase-space integrals IKℓ from 
EM-induced Dalitz plot modifications
• Values depend on acceptance for events with additional real photon(s)
• All recent measurements assumed fully inclusive

FlaviaNet analysis and updates used Cirigliano et al. ’08 
• Comprehensive analysis at fixed order e2p2

15

Seng et al.
JHEP 07 (2022)

Calculation of complete EW RC using hybrid current algebra and 
ChPT with resummation of largest terms to all chiral orders
• Reduced uncertainties at O(e2p4)
• Lattice evaluation of QCD contributions to γW box diagrams
• Conventional value of SEW subtracted from results for use with 

standard formula for Vus

Cirigliano et al. ’08 Seng et al. ’21

ΔEM(K0e3) [%] 0.50 ± 0.11 0.580 ± 0.016
ΔEM(K+e3) [%] 0.05 ± 0.12 0.105 ± 0.023
ΔEM(K+μ3) [%] 0.70 ± 0.11 0.770 ± 0.019
ΔEM(K0μ3) [%] 0.01 ± 0.12 0.025 ± 0.027
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Flavianet WG,  1005.2323           Moulson 1704.04104  

Potential issue:  definition of  ‘isosymmetric QCD’ in lattice (f+(0)) vs calculations of ΔEM, IB   

Vus from kaon decays – M. Moulson – ELECTRO 2022 – Mainz Institute for Theoretical Physics, 28 October 2022

|Vus| f+(0) from world data: 2022 update

24

% err BR τ Δ Int

KLe3 0.2162(5) 0.23 0.09 0.20 0.02 0.05

KLµ3 0.2165(6) 0.26 0.15 0.18 0.02 0.07

KSe3 0.2169(8) 0.39 0.38 0.02 0.02 0.05

KSµ3 0.2125(47) 2.2 2.2 0.02 0.02 0.08

K±e3 0.2169(6) 0.30 0.27 0.06 0.11 0.05

K±µ3 0.2168(10) 0.47 0.45 0.06 0.11 0.08

Approx. contrib. to % err from:|Vus| f+(0)

Average: |Vus| f+(0) = 0.21656(35)      χ2/ndf = 1.89/5 (86%)

V
(⇡�)
ud = 0.97386 (281)BR (9)⌧⇡ (14)RC (28)I⇡ [283]total

V
n,PDG
ud = 0.97430(2)�f

(13)�R(82)�(28)⌧n [88]total

V
n,best
ud = 0.97402(2)�f
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V
0+!0+

ud = 0.97367(11)exp(13)�V
R
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Vus
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����
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Vus

Vud

����
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= 0.23108(23)exp(42)FK/F⇡(16)RC+IB[51]total

V
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us = 0.22330(35)exp(39)f+(8)RC+IB[53]total
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• Experimental input has received only small updates since 2010



• Lattice QCD calculations of FK/Fπ are at the 0.2% level 

Vus from K→μν decays
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• First calculations of radiative and isospin-breaking corrections in LQCD.  
Compatible with ChPT,  factor of ~2 more precise

Y. Aoki et al. FLAG Review 2021 2111.09849

Figure 9: Comparison of lattice results for fK±/f⇡± . This ratio is obtained in pure QCD
including the SU(2) isospin-breaking correction (see Sec. 4.3). The black squares and grey
bands indicate our averages in Eqs. (82) – (84).

fK±/f⇡± is based on the same set of ensembles bar the ones at the finest lattice spacings
(namely, only a = 0.09 � 0.15 fm, scale set with f⇡+ and relative scale set with the Wilson
flow [125, 126]) supplemented by some simulation points with heavier quark masses. HPQCD
employs a global fit based on continuum NLO SU(3) �PT for the decay constants supple-
mented by a model for higher-order terms including discretization and finite-volume e↵ects
(61 parameters for 39 data points supplemented by Bayesian priors). Their final result is
fK±/f⇡± = 1.1916(15)stat(12)a2(1)FV (10), where the errors are statistical, due to the con-
tinuum extrapolation, due to finite-volume e↵ects and the last error contains the combined
uncertainties from the chiral extrapolation, the scale-setting uncertainty, the experimental
input in terms of f⇡+ and from the uncertainty in mu/md.

Because CalLat 20, FNAL/MILC 17 and HPQCD 13A partly share their gauge ensembles,
we assume a 100% correlation among their statistical errors. A 100% correlation on the total
systematic uncertainty is also assumed between FNAL/MILC 17 and HPQCD 13A with the
HISQ valence quarks.

For Nf = 2 + 1 the results BMW 16 and QCDSF/UKQCD 16 are eligible to enter the
FLAG average. BMW 16 has analyzed the decay constants evaluated for 47 gauge ensembles
generated using tree-level clover-improved fermions with two HEX-smearings and the tree-
level Symanzik-improved gauge action. The ensembles correspond to five values of the lattice
spacing (0.05�0.12 fm, scale set by ⌦ mass), to pion masses in the range 130�680 MeV and
to values of the lattice size from 1.7 to 5.6 fm, obtaining a good control over the interpolation
to the physical mass point and the extrapolation to the continuum and infinite volume limits.

QCDSF/UKQCD 16 has used the nonperturbatively O(a)-improved clover action for the

11 Updated Feb. 2023
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 LQCD1:  Di Carlo et al., 
1904.08731

ChPT:  
VC-Neufeld, 1102.0563

LQCD2:  Boyle et al.,  
2211.12865
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Figure 9: Comparison of lattice results for fK±/f⇡± . This ratio is obtained in pure QCD
including the SU(2) isospin-breaking correction (see Sec. 4.3). The black squares and grey
bands indicate our averages in Eqs. (82) – (84).

fK±/f⇡± is based on the same set of ensembles bar the ones at the finest lattice spacings
(namely, only a = 0.09 � 0.15 fm, scale set with f⇡+ and relative scale set with the Wilson
flow [125, 126]) supplemented by some simulation points with heavier quark masses. HPQCD
employs a global fit based on continuum NLO SU(3) �PT for the decay constants supple-
mented by a model for higher-order terms including discretization and finite-volume e↵ects
(61 parameters for 39 data points supplemented by Bayesian priors). Their final result is
fK±/f⇡± = 1.1916(15)stat(12)a2(1)FV (10), where the errors are statistical, due to the con-
tinuum extrapolation, due to finite-volume e↵ects and the last error contains the combined
uncertainties from the chiral extrapolation, the scale-setting uncertainty, the experimental
input in terms of f⇡+ and from the uncertainty in mu/md.

Because CalLat 20, FNAL/MILC 17 and HPQCD 13A partly share their gauge ensembles,
we assume a 100% correlation among their statistical errors. A 100% correlation on the total
systematic uncertainty is also assumed between FNAL/MILC 17 and HPQCD 13A with the
HISQ valence quarks.

For Nf = 2 + 1 the results BMW 16 and QCDSF/UKQCD 16 are eligible to enter the
FLAG average. BMW 16 has analyzed the decay constants evaluated for 47 gauge ensembles
generated using tree-level clover-improved fermions with two HEX-smearings and the tree-
level Symanzik-improved gauge action. The ensembles correspond to five values of the lattice
spacing (0.05�0.12 fm, scale set by ⌦ mass), to pion masses in the range 130�680 MeV and
to values of the lattice size from 1.7 to 5.6 fm, obtaining a good control over the interpolation
to the physical mass point and the extrapolation to the continuum and infinite volume limits.

QCDSF/UKQCD 16 has used the nonperturbatively O(a)-improved clover action for the

11 Updated Feb. 2023
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Potential issue:   

Kμ2  BR dominated by one 
measurement (KLOE) 
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would have significant impact (NA62)   
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 LQCD1:  Di Carlo et al., 
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ChPT:  
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• Inclusive (𝜏→Xsν):  need integrated spectral functions 

(exp) + theory (pQCD (OPE) → Lattice QCD) 

Vus from tau decays

Experimental prospects: 

 Belle-II and possibly                     
tau-charm factory & FCC-ee 

Theory prospects: 

(1) Radiative corrections are a bottleneck for 
exclusive modes; 

(2) lattice QCD provides first-principles  
inclusive determination                                         

(in the future also including IB) 

• Exclusive (𝜏→Kν / 𝜏→πν): need partial widths, 
decay constants (LQCD) & radiative corrections 

0.22 0.225

|
us

|V

 = 2+1+1
f

, Nl3 KusV

 0.0005±0.2233 

 = 2+1+1
f

, Nl2 KusV

 0.0005±0.2250 

ub & V
ud

CKM unitarity & V

 0.0011±0.2272 

 [OPE-1]νs X→  τ

 0.0010± 0.0018 ±0.2184 

 [OPE-2]νs X→  τ

 0.0022±0.2219 

 [latt-disp]νs X→  τ

 0.0018±0.2240 

 [latt-incl]νs X→  τ

 0.0007± 0.0018 ±0.2189 

νπ → τ / ν K→  τ

 0.0010± 0.0016 ±0.2229 

ν K→  τ

 0.0008± 0.0016 ±0.2224 

  exclusive averageτ

 0.0008± 0.0015 ±0.2225 

  averageτ

 0.0005± 0.0013 ±0.2208 

HFLAV

2023

Iso-symmetric Lattice QCD 
Evangelista et al. 2023  
Alexandrou et al 2024

• Yet another puzzle: lower value of  

• Inclusive                             result in HFLAV plot 
obtained using truncated OPE 

• Exclusive channels give results larger than 
 but smaller than that obtained 

imposing CKM unitarity

|Vus | τ-incl

|Vus | τ-incl

Inclusive hadronic  decaysτ

5

Provide an alternative precise determinations of |Vus |
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Summary of expected / desired developments
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• Experiment: 

• Neutron decay:  aim for  δτn ~ 0.1s  [UCN𝜏+] and  δgA/gA ~ 0.01%  [PERC] to get  δVud ~1.5 10-4

• Pion beta decay BR:  6x to 10x at PIONEER phases II, III  [~10 years]

• New Kμ3/Kμ2 BR measurement @0.2% at NA62 will shed light on Kl3 vs Kl2 tension

• 𝜏 decays:  Belle-II will reduce experimental uncertainties by > 2x  

• Theory: 

• Radiative corrections in lattice QCD+QED or hybrid:  K →πlν,  π+ →π0e+ν,  n →peν ,  𝜏→Kν,  𝜏 inclusive

• Nuclear decays:  EFT for radiative corrections coupled to first-principles nuclear calculations for δNS, δC  



• Current tensions in Cabibbo universality test could point to new physics at Λ ~ few TeV                      

• However,  further scrutiny is needed  

• Experiment: neutron, K, π,  𝜏

• Theory:  lattice QCD+QED for neutron, K, π, 𝜏 ;    EFT+ ‘ab-initio’ methods for nuclei  

Summary and outlook

29

Expect decisive improvements in the 5-10 year frame

The Cabibbo angle is the cornerstone of the CKM matrix and the

Cabibbo universality test is a precision tool to explore what may lie beyond the Standard Model 

For a detailed analysis in the SM-EFT see 
VC, W. Dekens, J. De Vries,  E. Mereghetti, T. Tong,  2311.00021
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Backup



Cabibbo universality 
and 

physics beyond the Standard Model
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E << Λ εΓ ~ εΓ ~ (v/Λ)2   ~

Semileptonic processes beyond the SM

BSM effects parameterized by 10(ud) +10(us) effective couplings at E ~ GeV 
They map into vertex corrections and 4-Fermion interactions above the EW scale 

WR, H+,  
leptoquarks,  

Vector-Like quarks, 
Z’, SUSY,…
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E << Λ εΓ ~ εΓ ~ (v/Λ)2   ~

Semileptonic processes beyond the SM

WR, H+,  
leptoquarks,  

Vector-Like quarks, 
Z’, SUSY,…

ΔCKM tension confirmed: points to specific new physics
ΔCKM  tension removed: strong constraints, complementary to traditional ‘precision electroweak observables’ 
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to

Vus

Vud

�����
K`2/⇡`2

= 0.23108(23)exp(42)FK/F⇡ (16)IB[51]total,

VK`3
us = 0.22330(35)exp(39) f+ (8)IB[53]total, (7)

where the errors refer to experiment, lattice input for the matrix
elements, and isospin-breaking corrections, respectively. To-
gether with the constraints on Vud, these bands give rise to the
situation depicted in Fig. 1: on the one hand, there is a ten-
sion between the best fit and CKM unitarity, but another ten-
sion, arising entirely from meson decays, is due to the fact that
the K`2 and K`3 constraints intersect away from the unitarity
circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
information on the compatibility of K`2 and K`3 data, especially
when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.

2. Global fit to kaon data and implications for CKM uni-
tarity

The current values for Vus and Vus/Vud given in Eq. (7) are
obtained from a global fit to kaon decays [34–37], updated
to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Figure 1: Constraints in the Vud–Vus plane. The partially overlapping vertical
bands correspond to V0+!0+

ud (leftmost, red) and Vn, best
ud (rightmost, violet). The

horizontal band (green) corresponds to VK`3
us . The diagonal band (blue) corre-

sponds to (Vus/Vud)K`2/⇡`2 . The unitarity circle is denoted by the black solid
line. The 68% C.L. ellipse from a fit to all four constraints is depicted in yel-
low (Vud = 0.97378(26), Vus = 0.22422(36), �2/dof = 6.4/2, p-value 4.1%),
it deviates from the unitarity line by 2.8�. Note that the significance tends to
increase in case ⌧ decays are included.

Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
double ratio Q = 22.5(5) and ratio ms/mud = 27.23(10), both
from Ref. [28] (the value of Q is consistent with Q = 22.1(7)
from ⌘ ! 3⇡ [101] and Q = 22.4(3) from the Cottingham
approach [102]), and the form-factor normalization f+(0) =
0.9698(17) [103, 104]. This global fit then defines the cur-
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with uncertainty entirely dominated by experiment [22]. A
competitive determination requires a dedicated experimental
campaign, as planned at the PIONEER experiment [26].

The best information on Vus comes from kaon decays, K`2 =
K ! `⌫` and K`3 = K ! ⇡`⌫`. The former is typically ana-
lyzed by normalizing to ⇡`2 decays [27], leading to a constraint
on Vus/Vud, while K`3 decays give direct access to Vus when the
corresponding form factor is provided from lattice QCD [28].
Details of the global fit to kaon decays, as well as the input
for decay constants, form factors, and radiative corrections, are
discussed in Sec. 2, leading to
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sion, arising entirely from meson decays, is due to the fact that
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circle. Additional information on Vus can be derived from ⌧
decays [29, 30], but given the larger errors [31, 32] we will
continue to focus on the kaon sector.

The main point of this Letter is that given the various ten-
sions in the Vud–Vus plane, there is urgent need for additional
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when it comes to interpreting either of the tensions (CKM uni-
tarity and K`2 versus K`3) in terms of physics beyond the SM
(BSM). In particular, the data base for K`2 is completely dom-
inated by a single experiment [33], and at the same time the
global fit to all kaon data displays a relatively poor fit quality.
All these points could be scrutinized by a new measurement of
the Kµ3/Kµ2 branching fraction at the level of a few permil, as
possible at the NA62 experiment. Further, once the experimen-
tal situation is clarified, more robust interpretations of the en-
suing tensions will be possible, especially regarding the role of
right-handed currents both in the strange and non-strange sec-
tor. To make the case for the proposed measurement of the
Kµ3/Kµ2 branching fraction, we first discuss in detail its impact
on the global fit to kaon data and the implications for CKM uni-
tarity in Sec. 2. The consequences for physics beyond the SM
are addressed in Sec. 3, before we conclude in Sec. 4.
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to include the latest measurements, radiative corrections, and
hadronic matrix elements. In particular, the fit includes data on
KS decays from Refs. [38–44], on KL decays from Refs. [45–
56], and on charged-kaon decays from Refs. [33, 57–70]. Since
we focus on the impact of a new Kµ3/Kµ2 measurement, e.g.,
at NA62, we reproduce the details of the charged kaon fit in
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Table 1, where, however, the value for Vus from K`3 decays in-
cludes all charge channels, accounting for correlations among
them. The extraction of Vus from K`3 decays requires further in-
put on the respective form factors, which are taken in the disper-
sive parameterization from Ref. [71], constrained by data from
Refs. [72–78]. This leaves form-factor normalizations, decay
constants, and isospin-breaking corrections in both K`2 and K`3
decays.

For K`2 we follow the established convention to consider the
ratio to ⇡`2 decays [27] (pion lifetime [62, 79–83] and branch-
ing fraction [84–87] are taken from Ref. [12]), since in this ratio
certain structure-dependent radiative corrections [88, 89] cancel
and only the ratio of decay constants FK/F⇡ needs to be pro-
vided. We use the isospin-breaking corrections from Ref. [90]
together with the Nf = 2 + 1 + 1 isospin-limit ratio of de-
cay constants FK/F⇡ = 1.1978(22) [91–94], where this aver-
age accounts for statistical and systematic correlations between
the results, some of which make use of the same lattice en-
sembles. For K`3 decays we use the radiative corrections from
Refs. [95–97] (in line with the earlier calculations [98, 99]), the
strong isospin-breaking correction �SU(2) = 0.0252(11) from
Refs. [98, 100] evaluated with the Nf = 2 + 1 + 1 quark-mass
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Unveiling R-handed quark currents?

ments by almost 0.5�, an e↵ect that would increase further for
the 0.2% scenario. In this case, the significance of the tension
in �(3)

CKM, the measure directly derived from kaon decays, would
increase or decrease by more than 1�, demonstrating that a new
precision measurement of the Kµ3/Kµ2 branching fraction really
has the potential to either resolve or substantially corroborate
the tension between the K`2 and K`3 CKM-element determina-
tions. Once the experimental situation in the kaon sector is clar-
ified, possible BSM interpretations become much more robust,
as we discuss in the subsequent section.

3. Constraints on physics beyond the Standard Model

The current tension with CKM unitarity has triggered re-
newed interest in possible BSM explanations [107, 108], in-
cluding interpretations in terms of vector-like quarks [109–
111] and leptons [112, 113], as modifications of the Fermi
constant [114, 115], in the context of lepton flavor universal-
ity [116–121], and even allowing for a correlation with di-
electron searches at the LHC [122, 123]. Here, we illustrate
the impact of our proposed Kµ3/Kµ2 measurement via the con-
straints on right-handed currents [32, 124–126], which can not
only address the tension between � and kaon decays, but also
between K`2 and K`3. This discussion becomes most transpar-
ent in terms of the �(i)

CKM introduced in Eq. (8).
In general, a single parameter is not su�cient to explain both

tensions, as they are governed by a-priori independent oper-
ators, and we therefore introduce two parameters ✏R, ✏(s)

R (or
equivalently ✏R and �✏R ⌘ ✏(s)

R � ✏R, normalized as in Ref. [32])
to quantify right-handed currents in the non-strange and strange
sectors, respectively. Working at first order in ✏, the CKM ele-
ments in Eq. (8) as extracted from the (vector-current mediated)
three-particle decays are contaminated by 1 + ✏, the ones from
the (axial-current mediated) two-particle decays by 1 � ✏, re-
sulting in

�(1)
CKM = 2✏R + 2�✏RV2

us,

�(2)
CKM = 2✏R � 2�✏RV2

us,

�(3)
CKM = 2✏R + 2�✏R

�
2 � V2

us
�
. (9)

The corresponding constraints are shown in Fig. 2 and point
to non-zero values for both ✏R and �✏R. ✏R can be isolated by
taking the average of �(1)

CKM and �(2)
CKM, while �✏R is obtained

from the combination
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Using current input from Eqs. (5) and (7), one obtains:

✏R = �0.69(27) ⇥ 10�3 [2.5�],

�✏R = �3.9(1.6) ⇥ 10�3 [2.4�]. (11)

With a projected measurement of the Kµ3/Kµ2 branching ratio
at 0.2% level at 2� above the current measurement, the above

Figure 2: Constraints in the �✏R–✏R plane from the �(i)
CKM introduced in Eq. (8).

The bands with positive slope (red) correspond to �(2)
CKM. The bands with small

negative slope (blue) correspond to �(1)
CKM, while the bands with steep negative

slope (green) correspond to �(3)
CKM. The filled bands reflect the current situa-

tion (11), the long-dashed ones the +2� scenario (12), and the short-dashed
ones the opposite case (13). Note that in each case the three bands essentially
overlap by construction, since Vud , Vus, subject to the unitarity constraint, and
the BSM contamination via �✏R, ✏R, amount to three free parameters. The main
impact of the proposed new measurement of the Kµ3/Kµ2 branching fraction
thus concerns a corresponding shift in the �(3)

CKM band if the ±2� scenarios
were realized.

numbers change to

✏R = �0.67(27) ⇥ 10�3 [2.5�],

�✏R = �1.8(1.6) ⇥ 10�3 [1.1�], (12)

while a future measurement at 0.2% with central value 2� be-
low the current one would give

✏R = �0.70(27) ⇥ 10�3 [2.6�],

�✏R = �5.7(1.6) ⇥ 10�3 [3.5�]. (13)

This shows that the proposed measurement would have a signif-
icant impact on revealing or further constraining right-handed
charged currents involving strange quarks. In particular, the
non-vanishing value of ✏R is mainly driven by the �-decay ob-
servables, while the goal of the new Kµ3/Kµ2 input would be
a conclusive answer to the question whether or not further
strangeness right-handed currents need to be invoked. Here,
the sensitivity of �✏R to the di↵erent scenarios reflects similar
changes in �(3)

CKM as observed in Table 1.
We note here that other probes of ✏R and �✏R are currently

less constraining and are not reported in Fig. 2. In particular, ✏R
can be determined from the comparison of the experimentally
measured axial charge � = gA/gV and its value computed in
lattice QCD [28, 127, 128], up to a recently uncovered electro-
magnetic correction [129]. This results in ✏R = �0.2(1.2)%.
Similarly, assuming a high-scale origin for the right-handed
couplings and writing the operator in an SU(2) ⇥ U(1) invariant
form, one obtains constraints from associated Higgs production
at the few-percent level [125].

A similar analysis could be performed in terms of pseu-
doscalar couplings ✏P, ✏(s)

P , which only a↵ect the axial-current
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• Does the R-handed current explanation survive after taking into account high energy data? 



εR: high scale origin and constraints
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• εR   originates from SU(2)xU(1) invariant vertex corrections

• εR   only weakly constrained by LHC processes

εR

W
εR εR

H

W

W
q

q’

1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW ϵIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

ϵIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH! (H†H)!(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†HGA
µνG

Aµν

QHG̃ H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνBµν

QHB̃ H†H B̃µνBµν

QHWB H†τIH W I
µνB

µν

Q
HW̃B

H†τIH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσµνer)τIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσµνTAur)H̃ GA
µν

QuW (q̄pσµνur)τIH̃ W I
µν

QuB (q̄pσµνur)H̃ Bµν

QdG (q̄pσµνTAdr)H GA
µν

QdW (q̄pσµνdr)τIH W I
µν

QdB (q̄pσµνdr)H Bµν

7 : ψ2H2D

Q(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q(3)
Hl (H†i

←→
D I

µH)(l̄pτIγµlr)

QHe (H†i
←→
D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)
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ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)
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Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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D µH)(ēpγµer)

Q(1)
Hq (H†i

←→
D µH)(q̄pγµqr)

Q(3)
Hq (H†i

←→
D I

µH)(q̄pτIγµqr)

QHu (H†i
←→
D µH)(ūpγµur)

QHd (H†i
←→
D µH)(d̄pγµdr)

QHud + h.c. i(H̃†DµH)(ūpγµdr)

8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγµqt)

Q(3)
qq (q̄pγµτIqr)(q̄sγµτIqt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt)

Q(3)
lq (l̄pγµτI lr)(q̄sγµτIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγµet)

Quu (ūpγµur)(ūsγµut)

Qdd (d̄pγµdr)(d̄sγµdt)

Qeu (ēpγµer)(ūsγµut)

Qed (ēpγµer)(d̄sγµdt)

Q(1)
ud (ūpγµur)(d̄sγµdt)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγµet)

Qlu (l̄pγµlr)(ūsγµut)

Qld (l̄pγµlr)(d̄sγµdt)

Qqe (q̄pγµqr)(ēsγµet)

Q(1)
qu (q̄pγµqr)(ūsγµut)

Q(8)
qu (q̄pγµTAqr)(ūsγµTAut)

Q(1)
qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q(1)
quqd (q̄jpur)ϵjk(q̄ks dt)

Q(8)
quqd (q̄jpT

Aur)ϵjk(q̄ksT
Adt)

Q(1)
lequ (l̄jper)ϵjk(q̄

k
sut)

Q(3)
lequ (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut)

Table 1. The 59 independent dimension-six operators built from Standard Model fields which conserve
baryon number, as given in Ref. [2]. The operators are divided into eight classes: X3, H6, etc.
Operators with +h.c. in the table heading also have hermitian conjugates, as does the ψ2H2D operator
QHud. The subscripts p, r, s, t are flavor indices, The notation is described in Sec. 2.
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moment operators,

µ
d

dµ
CeB

pr
=

1

16π2

[

4g1Nc (yu + yq)C
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CeW

pr
=

1

16π2

[

−2g2NcC
(3)
lequ
prst

[Yu]ts

]

+ . . .

µ
d

dµ
CuB

pr
=

1

16π2

[

4g1(ye + yl)C
(3)
lequ
stpr

[Ye]ts

]

+ . . .

µ
d

dµ
CuW

pr
=

1

16π2

[

−2g2C
(3)
lequ
stpr

[Ye]ts

]

+ . . . , (5.6)

where . . . denotes contributions from other operators, and yi are the U(1) hypercharges.

Eq. (5.6) is an example of non-zero mixing between “tree” and “loop” operators. Eq. (5.6)

cannot be cancelled by other terms, since there are no redundant operators in the basis we

use. The operator Q(3)
lequ can be Fierzed into scalar form (α is a color index),

Q(3)
lequ = (l̄jpσµνer)ϵjk(q̄

k
sσ

µνut) = −4(l̄jper)ϵjk(q̄kαs uαt)− 8(l̄jpuαt)ϵjk(q̄
kα
s er)

= −4Q(1)
lequ − 8(l̄jpuαt)ϵjk(q̄

kα
s er) (5.7)

and can be generated by the tree-level exchange of (3,2, 7/6) scalars, i.e. those with the

quantum numbers of a leptoquark doublet. Tree-level exchange of leptoquarks and heavy

(1,2, 1/2) scalars with H-field quantum numbers can generate any combination of Q(1)
lequ and

Q(3)
lequ.

6 λ,λ2,λy2 Contributions to the L(6) Anomalous Dimension Matrix

The computation of the λ,λ2,λy2 anomalous dimensions has some subtleties. An example

is the graph in Fig. 4 which generates, in addition to the QH! and QHD operators, the

EOM operator EH! of Eq. (3.1). Eq. (3.2) eliminates EH! in terms of our standard basis of

operators, so Fig. 4 contributes to the running of the H6 coefficient CH , as well as the ψ2H3

coefficients CuH , CdH and CeH , and to the running of the dimension four SM coefficients in

Eq. (4.4). Fig. 4 is an example of how terms get shuffled around by the EOM. Fig. 4 has only

external H fields, but contributes to the running of the ψ2H3 operators.

The equations presented below are not the complete RGE, but only the λ,λ2,λy2 terms.

The remaining terms are lengthy, and will be given a subsequent publication. The evolution

of the H6 coefficient is

µ
d

dµ
CH =

1

16π2
[
108λCH − 160λ2 CH! + 48λ2 CHD

]
+

8λ

16π2
η1 +

8λ

16π2
η2 (6.1)

where η1,2 are given in Eq. (4.5). The diagonal CH − CH term 108λ/(16π2) has a large

numerical coefficient, and is independent of the normalization chosen for the H6 operator,
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      pp → eν + X Associated Higgs +W production 

Current LHC 
results allow for 

to εR ~ 5%       
S. Alioli,  VC,  W. Dekens, J. de Vries, E. Mereghetti  1703.04751 VC, Graesser, Gonzalez-Alonso   1210.4553

Same shape as the 
SM W exchange  → 

weak sensitivity 

dR uR

W
H H

QLQL

~
• εR   can be generated at tree level by WL-WR mixing 

in LRSM or by exchange of vector-like quarks**

**Belfatto-Berezhiani 2103.05549.  …   **Belfatto-Trifinopoulos 2302.14097

For a detailed analysis in the SM-EFT see 
VC, W. Dekens, J. De Vries,  E. Mereghetti, T. Tong,  2311.00021
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Nuclear decay rate in EFT
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• EFT-based decay rate formula reorganizes ‘traditional’ corrections using EFT principles                                                  
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1. The Fermi function F̄ , given in Eq. (70).

2. The generalization of the traditional outer correc-
tions, �̃0R, that can be read o↵ from Eqs. (64), (65),
and (66).

3. The structure-dependent correction �̃NS, which
can be obtained from Eqs. (72)–(75), in terms

of the e↵ective couplings C(i)
e↵

(µ ' µ⇡) (with
i = {gV ,V0, V0

E , Vme ,V+, V3b
+
}) and transition-

dependent nuclear matrix elements. The e↵ec-
tive couplings at µ ' µ⇡ can be obtained from
Eqs. (10), (44), (43), (48), (57). In Sec. VI, we will
provide the first ab-initio results for light nuclei,
in particular for the phenomenologically relevant
14O !

14N decay.

4. The e↵ective vector coupling constant C(gV )

e↵
(µ '

µext), which can be obtained by solving the RG
equations (55) with boundary condition at µ ' µ⇡

from Eq. (10).

We will give an explicit example of how these di↵er-
ent ingredients can be combined for the case of 14O in
Sec. VII. As discussed in the previous section, the de-
pendence on the scale µ cancels among the various terms
in Eq. (83), up to higher-order terms not included in our

analysis. Large logarithms appear in C(gV )

e↵
(µ ' µext)

and are resummed using the RG equations.
Finally, upon integrating over the phase space we ar-

rive at the final formula for the half-life:

1

t
=

G2

F |Vud|
2m5

e

⇡3 log 2

h
C(gV )

e↵
(µ)

i2

⇥ [1 + �̄0R(µ)] (1 + �̄NS) (1� �̄C) f̄(µ), (86)

where

f̄(µ) =
1

m5
e

Z E0

me

dEew0(Ee) C̃(Ee) F̄ (�, µ), (87)

and we defined the phase-space average

Ḡ(µ) =

R E0

me
dEew0(Ee) C̃(Ee) F̄ (�, µ) G̃(Ee, µ)
R E0

me
dEew0(Ee) C̃(Ee) F̄ (�, µ)

, (88)

for G̃(Ee, µ) 2
�
�̃0R(Ee, µ), �̃NS(Ee)

 
.

At first sight, Eq. (86) looks very similar to Eq. (1), but
important di↵erences arise in the details, most notably
related to the separation of scales. For this reason, we
next provide a discussion of how the above decay rate
formula compares with the one commonly used in the
literature.

B. Comparison with the literature

We have cast the EFT-based formula for the half-life,
Eq. (86), in a form that resembles the traditional mas-
ter formula in Eq. (1), in order to facilitate the mapping

between the two approaches. Comparison of the two for-

mulae shows that [C(gV )

e↵
(µ)]2 � 1 is related to �V

R and
that the quantities f̄ , �̄0R, �̄NS, and �̄C are related to the
corresponding unbarred quantities that appear in Eq. (1).
However, we emphasize that these quantities do not co-
incide and can be quite di↵erent. Foremost, these di↵er-
ences originate from the fact that the traditional master
formula does not fully exploit the separation of scales in
the problem, while the EFT maximally does so. This
has several implications, which we delineate in this sub-
section, summarized in Table I. The main observations
are:

1. The EFT clearly identifies corrections of size
O(GF↵✏�) that at the two-nucleon level appear as
local interactions proportional to the LECs gNN

V 1,V 2
.

These are currently not accounted for in the tra-
ditional approach, where they appear implicitly,
through the high-energy part of matrix elements
of quark-level EW currents between nuclear states,
the so-called nuclear �W box contribution.

2. The EFT power counting allows one to greatly sim-
plify the calculation of nuclear-structure-dependent
e↵ects (�NS versus �̄NS), since the computation of
�̄NS in the EFT requires the matrix element of a
2b current between initial and final nuclear states,
while the calculation of �NS in the dispersive ap-
proach [7] requires a summation over intermediate
nuclear states, which can be very hard to accom-
plish in some ab-initio nuclear structure methods.
The approach in Ref. [101] is closer to ours, in that
potentials are evaluated between initial and final
states.

3. The EFT method allows one to sum large loga-
rithms through the RG equations. For example,
already in the single-nucleon case, only in the EFT
approach we can include the corrections to the vec-
tor amplitude to NLL accuracy, e.g., corrections to
gV of order ↵2 log mN

me
.

4. Some e↵ects that are present in both approaches
end up being labeled di↵erently. For example,
the large logarithms associated with the running

of C(gV )

e↵
(µ), captured by C(gV )

e↵
(µ ' µext) in the

EFT, in the traditional approach appear in multiple
places, such as �V

R , �
0

R, and in the Fermi function.
The EFT labeling has the advantage that changes
in the scale are properly taken into account via the
RG evolution, while the decomposition at a fixed
scale in the traditional approach requires an ulti-
mately arbitrary choice.

We discuss two specific cases in more detail. First,
subtleties arise when comparing (1 + �V

R)(1 + �0R) to

[C(gV )

e↵
(µ)]2(1 + �̄0R). In the standard approach, the large

logarithm associated with the running of gV ! C(gV )

e↵

between mN and qext is taken into account in the outer
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Point-like nucleus, O(α/π )  
[Sirlin function] Point-like nucleus, 

O((πα)m Zn)  
[Fermi function**] 

Additional corrections: 
nuclear EW form 

factor, nuclear recoil,             
atomic effects. All large logs from 

RGEs (μ>me)
Structure-dependent radiative 

correction <f |Vn |i>

Isospin-breaking in wave 
functions <f |𝜏+ |i> 

Hard and (ultra) soft 

Ultra-soft Ultra-soft

Hard, soft, potential 

Hard, soft, potential 

  ** See also. K. Borah,  R. 
Hill,  R. Plestid,  2309.07343, 

2309.15929, 2402.13307  

• Need for improvement

•  Two currently unknown LECs contributing to δNS to O(GFαεχ)
• Two- and three- body potentials to O(GFα(εχ)2):  may be relevant at 0.01%,  needed to check EFT convergence

• Non-logarithmic terms of O(α2Z) in the Fermi function (finite parts of two-loop diagrams) 
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SU(3)-breaking effects and induced second-class form factors in hyperon beta decays Shoichi Sasaki

1. Introduction

The experimental rate of the hyperon beta decays, B → blν̄ , is given by

Γ =
G2

F
60π3 (MB −Mb)5(1−3δ )|Vus|2| f B→b

1 (0)|2(1+∆RC)

[
1+3

∣∣∣∣
gB→b

1 (0)
f B→b
1 (0)

∣∣∣∣
2

+ · · ·
]

, (1.1)

where GF is the Fermi constant measured from the muon lifetime, which already includes some
electroweak radiative corrections [1]. The remaining radiative corrections to the decay rate are
approximately represented by ∆RC. Here MB (Mb) denotes the rest mass of the initial (final) octet
baryon state. The ellipsis can be expressed in terms of a power series in the small parameter
δ = (MB −Mb)/(MB + Mb), which is regarded as a size of flavor SU(3) breaking. The first linear
term in δ , which should be given by −4δ [g2(0)g1(0)/ f1(0)2]B→b

1 is safely ignored as small
as O(δ 2) since the nonzero value of the second-class form factor g2 [5] should be induced at
first order of the δ expansion [2]. The absolute value of [g1(0)/ f1(0)]B→b can be determined
by measured asymmetries such as electron-neutrino correlation. A theoretical attempt to evaluate
SU(3)-breaking corrections on the vector coupling f1(0) 2 is primarily required for the precise
determination of |Vus|.

According to the Ademollo-Gatto theorem (AGT) [6], the value of f1(0) can start to deviate
from the SU(3) Clebsch-Gordan coefficients (hereafter denoted as f SU(3)

1 (0)) at the second-order in
SU(3) breaking. As the mass splittings among octet baryons are typically of the order of 10-15%,
an expected size of the second-order corrections is a few percent level. Although either the size or
the sign of their corrections was somewhat controversial among various theoretical studies [7], it is
found that the second-order corrections of SU(3) breaking on the hyperon vector couplings f1(0)
are negative and its sizes are estimated as about 3% for both Σ → N and Ξ → Σ decays 3 in our
previous work using fully-dynamical lattice QCD simulations [8].

2. Numerical Results

We use 2+1 flavor domain-wall fermions (DWF) lattice QCD ensembles generated by the
RBC and UKQCD collaborations at two lattice spacings, a = 0.114 fm (coarse) [9] and a = 0.086
fm (fine) [10]. Their lattice sizes, L3 × T = 243 × 64 and 323 × 64, correspond to almost the
same physical volumes (La ≈ 2.7 fm). The dynamical light and strange quarks are described by
DWF actions with fifth dimensional extent L5 = 16 and the domain-wall height of M5 = 1.8 for
all ensembles. A brief summary of our simulation parameters with 2+1 flavor DWF ensembles
appears in Table. 1.

In this study, all three-point correlation functions are calculated with a source-sink separation
of 12(15) in lattice units for 243(323) ensembles, which is large enough to suppress the excited state

1Conventionally, (MB −Mb)/MB is adopted in Eq. (1.1) to be the small parameter [1, 2] However, our definition of
the SU(3)-breaking parameter, δ = (MB −Mb)/(MB + Mb) is theoretically preferable for considering the time-reversal
symmetry on the matrix elements of hyperon beta-decays in lattice QCD calculations [3, 4]. Accordingly, a factor of
(MB +Mb)/MB is different in definitions of g2, g3, f2 and f3 form factors in comparison to those adopted in experiments.

2The vector coupling f1(0) is given by SU(3) Clebsch-Gordan coefficients in the exact SU(3) limit.
3In the iso-spin limit (mu = md), all hyperon beta-decays can be classified in four types of decays as Λ → N, Σ → N,

Ξ → Λ and Ξ → Σ.

2

• Use SU(3) limit for vector form factor f1(0)

• Extract g1/f1 from data
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Figure 3: The Σ+ → p π0 mass peak, after all selection criteria have been applied.

The background to the left of the peak is due to Ξ0 → Λπ0 decays ( followed by

Λ → p π−or Λ → pe−νe ). Since Ξ0 → Σ+ e− νe is the only source of Σ+ in the

beam (Ξ0 → Σ+ π− is kinematically forbidden), signal events are identified by

having a p-π0 mass within 15 MeV of the nominal Σ+ mass.

Table 5: Results from Vus analysis using measured g1/f1 values

Decay Rate g1/f1 Vus

Process (µsec−1)

Λ → pe−ν 3.161(58) 0.718(15) 0.2224 ± 0.0034

Σ− → ne−ν 6.88(24) −0.340(17) 0.2282 ± 0.0049

Ξ− → Λe−ν 3.44(19) 0.25(5) 0.2367 ± 0.0099

Ξ0 → Σ+e−ν 0.876(71) 1.32(+.22/ − .18) 0.209 ± 0.027

Combined — — 0.2250 ± 0.0027

Vus @ %-level in best channels.
No theoretical uncertainty included 

Guadagnoli et al.,   
heo-ph/0606181. 
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FIG. 10: Chiral and continuum extrapolation of f̃1(0) for Σ → N (left panel) and Ξ → Σ (right panel) beta decays. As
opposed to Fig. 10, the data plotted in each panel has been corrected to the continuum limit at the physical strange-quark
mass using the corresponding corrections obtained by the combined continuum-chiral fit with Eq. (24) (Type 3 fit).

TABLE X: Results for R∆f in units of (GeV)−4. The data tabulated in the third and fifth columns are the uncorrected
data, while the data tabulated in the fourth and sixth columns have been corrected to the continuum limit at the physical
strange-quark mass using the corresponding corrections obtained by the combined continuum-chiral fit with Eq. (24) (Type 3
fit). The first error is the statistical uncertainty, while the second error is due to the uncertainty on mphys

s .

Σ → N Ξ → Σ

β mud No corrections Continuum (mphys
s ) No corrections Continuum (mphys

s )

2.13 0.005 −0.581(187) −0.809(276)(7) −0.522(120) −0.475(181)(63)

0.01 −0.409(136) −0.659(223)(24) −0.521(89) −0.446(148)(46)

0.02 −0.255(107) −1.008(141)(6) −0.660(81) −0.564(93)(46)

2.25 0.004 −0.688(295) −0.818(377)(4) −0.488(143) −0.459(184)(33)

0.006 −0.839(169) −1.040(221)(10) −0.562(94) −0.546(125)(42)

0.008 −0.747(144) −0.954(191)(3) −0.549(83) −0.523(115)(70)

physical point N/A −0.829(116) N/A −0.474(75)

which is based on the baryon ChPT [49]. In each panel of
Fig. 11, the dashed curve is obtained by the fit result from
the combined continuum-chiral extrapolation of the data
f̃1(0) with Eq. (24) (Type 3 fit) and the filled diamond
symbol corresponds to the value of R∆f at the physical
point. We then quote these values for both Σ → N and
Ξ → Σ beta decays:

R∆f(M
phys
K ,Mphys

π ) =

{

−0.829(116) for Σ → N

−0.474(75) for Ξ → Σ,

(35)
which are given in units of (GeV)−4.

IV. SUMMARY

We have studied the SU(3)-breaking effects on the hy-
peron vector couplings f1(0) for the Σ → N and Ξ → Σ
beta decays with (2+1)-flavors of dynamical quarks and
calculated f1(0), for the first time, in the continuum
limit. Our simulations are carried out with gauge con-
figurations generated by the RBC and UKQCD Col-
laborations with (2+1)-flavors of dynamical domain-wall
fermions and the Iwasaki gauge action. Our earlier cal-
culation of f1(0) was performed on an ensemble set at
a single coarse lattice spacing (a ≈ 0.114 fm) [9]. In
this paper we repeat the calculation at a second value of
the finer lattice spacing (a ≈ 0.086 fm), allowing for a
continuum extrapolation.

We first confirm our finding, first presented in Ref. [9],

• SU(3) in f1(0):  quark model, 1/Nc, ChPT  → LQCD

• Negative shift of few percent with uncertainty ~1%

2+1,  DWF, 2 lattice spacings 
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1. Introduction

The experimental rate of the hyperon beta decays, B → blν̄ , is given by

Γ =
G2

F
60π3 (MB −Mb)5(1−3δ )|Vus|2| f B→b

1 (0)|2(1+∆RC)

[
1+3

∣∣∣∣
gB→b

1 (0)
f B→b
1 (0)

∣∣∣∣
2

+ · · ·
]

, (1.1)

where GF is the Fermi constant measured from the muon lifetime, which already includes some
electroweak radiative corrections [1]. The remaining radiative corrections to the decay rate are
approximately represented by ∆RC. Here MB (Mb) denotes the rest mass of the initial (final) octet
baryon state. The ellipsis can be expressed in terms of a power series in the small parameter
δ = (MB −Mb)/(MB + Mb), which is regarded as a size of flavor SU(3) breaking. The first linear
term in δ , which should be given by −4δ [g2(0)g1(0)/ f1(0)2]B→b

1 is safely ignored as small
as O(δ 2) since the nonzero value of the second-class form factor g2 [5] should be induced at
first order of the δ expansion [2]. The absolute value of [g1(0)/ f1(0)]B→b can be determined
by measured asymmetries such as electron-neutrino correlation. A theoretical attempt to evaluate
SU(3)-breaking corrections on the vector coupling f1(0) 2 is primarily required for the precise
determination of |Vus|.

According to the Ademollo-Gatto theorem (AGT) [6], the value of f1(0) can start to deviate
from the SU(3) Clebsch-Gordan coefficients (hereafter denoted as f SU(3)

1 (0)) at the second-order in
SU(3) breaking. As the mass splittings among octet baryons are typically of the order of 10-15%,
an expected size of the second-order corrections is a few percent level. Although either the size or
the sign of their corrections was somewhat controversial among various theoretical studies [7], it is
found that the second-order corrections of SU(3) breaking on the hyperon vector couplings f1(0)
are negative and its sizes are estimated as about 3% for both Σ → N and Ξ → Σ decays 3 in our
previous work using fully-dynamical lattice QCD simulations [8].

2. Numerical Results

We use 2+1 flavor domain-wall fermions (DWF) lattice QCD ensembles generated by the
RBC and UKQCD collaborations at two lattice spacings, a = 0.114 fm (coarse) [9] and a = 0.086
fm (fine) [10]. Their lattice sizes, L3 × T = 243 × 64 and 323 × 64, correspond to almost the
same physical volumes (La ≈ 2.7 fm). The dynamical light and strange quarks are described by
DWF actions with fifth dimensional extent L5 = 16 and the domain-wall height of M5 = 1.8 for
all ensembles. A brief summary of our simulation parameters with 2+1 flavor DWF ensembles
appears in Table. 1.

In this study, all three-point correlation functions are calculated with a source-sink separation
of 12(15) in lattice units for 243(323) ensembles, which is large enough to suppress the excited state

1Conventionally, (MB −Mb)/MB is adopted in Eq. (1.1) to be the small parameter [1, 2] However, our definition of
the SU(3)-breaking parameter, δ = (MB −Mb)/(MB + Mb) is theoretically preferable for considering the time-reversal
symmetry on the matrix elements of hyperon beta-decays in lattice QCD calculations [3, 4]. Accordingly, a factor of
(MB +Mb)/MB is different in definitions of g2, g3, f2 and f3 form factors in comparison to those adopted in experiments.

2The vector coupling f1(0) is given by SU(3) Clebsch-Gordan coefficients in the exact SU(3) limit.
3In the iso-spin limit (mu = md), all hyperon beta-decays can be classified in four types of decays as Λ → N, Σ → N,

Ξ → Λ and Ξ → Σ.

2

• Use SU(3) limit for vector form factor f1(0)

• Extract g1/f1 from data
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Figure 3: The Σ+ → p π0 mass peak, after all selection criteria have been applied.

The background to the left of the peak is due to Ξ0 → Λπ0 decays ( followed by

Λ → p π−or Λ → pe−νe ). Since Ξ0 → Σ+ e− νe is the only source of Σ+ in the

beam (Ξ0 → Σ+ π− is kinematically forbidden), signal events are identified by

having a p-π0 mass within 15 MeV of the nominal Σ+ mass.

Table 5: Results from Vus analysis using measured g1/f1 values

Decay Rate g1/f1 Vus

Process (µsec−1)

Λ → pe−ν 3.161(58) 0.718(15) 0.2224 ± 0.0034

Σ− → ne−ν 6.88(24) −0.340(17) 0.2282 ± 0.0049

Ξ− → Λe−ν 3.44(19) 0.25(5) 0.2367 ± 0.0099

Ξ0 → Σ+e−ν 0.876(71) 1.32(+.22/ − .18) 0.209 ± 0.027

Combined — — 0.2250 ± 0.0027

Vus @ %-level in best channels.
No theoretical uncertainty included 

Guadagnoli et al.,   
heo-ph/0606181. 
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FIG. 10: Chiral and continuum extrapolation of f̃1(0) for Σ → N (left panel) and Ξ → Σ (right panel) beta decays. As
opposed to Fig. 10, the data plotted in each panel has been corrected to the continuum limit at the physical strange-quark
mass using the corresponding corrections obtained by the combined continuum-chiral fit with Eq. (24) (Type 3 fit).

TABLE X: Results for R∆f in units of (GeV)−4. The data tabulated in the third and fifth columns are the uncorrected
data, while the data tabulated in the fourth and sixth columns have been corrected to the continuum limit at the physical
strange-quark mass using the corresponding corrections obtained by the combined continuum-chiral fit with Eq. (24) (Type 3
fit). The first error is the statistical uncertainty, while the second error is due to the uncertainty on mphys

s .

Σ → N Ξ → Σ

β mud No corrections Continuum (mphys
s ) No corrections Continuum (mphys

s )

2.13 0.005 −0.581(187) −0.809(276)(7) −0.522(120) −0.475(181)(63)

0.01 −0.409(136) −0.659(223)(24) −0.521(89) −0.446(148)(46)

0.02 −0.255(107) −1.008(141)(6) −0.660(81) −0.564(93)(46)

2.25 0.004 −0.688(295) −0.818(377)(4) −0.488(143) −0.459(184)(33)

0.006 −0.839(169) −1.040(221)(10) −0.562(94) −0.546(125)(42)

0.008 −0.747(144) −0.954(191)(3) −0.549(83) −0.523(115)(70)

physical point N/A −0.829(116) N/A −0.474(75)

which is based on the baryon ChPT [49]. In each panel of
Fig. 11, the dashed curve is obtained by the fit result from
the combined continuum-chiral extrapolation of the data
f̃1(0) with Eq. (24) (Type 3 fit) and the filled diamond
symbol corresponds to the value of R∆f at the physical
point. We then quote these values for both Σ → N and
Ξ → Σ beta decays:

R∆f(M
phys
K ,Mphys

π ) =

{

−0.829(116) for Σ → N

−0.474(75) for Ξ → Σ,

(35)
which are given in units of (GeV)−4.

IV. SUMMARY

We have studied the SU(3)-breaking effects on the hy-
peron vector couplings f1(0) for the Σ → N and Ξ → Σ
beta decays with (2+1)-flavors of dynamical quarks and
calculated f1(0), for the first time, in the continuum
limit. Our simulations are carried out with gauge con-
figurations generated by the RBC and UKQCD Col-
laborations with (2+1)-flavors of dynamical domain-wall
fermions and the Iwasaki gauge action. Our earlier cal-
culation of f1(0) was performed on an ensemble set at
a single coarse lattice spacing (a ≈ 0.114 fm) [9]. In
this paper we repeat the calculation at a second value of
the finer lattice spacing (a ≈ 0.086 fm), allowing for a
continuum extrapolation.

We first confirm our finding, first presented in Ref. [9],

• SU(3) in f1(0):  quark model, 1/Nc, ChPT  → LQCD

• Negative shift of few percent with uncertainty ~1%

2+1,  DWF, 2 lattice spacings 
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Competitive extraction of  Vus will require improved theory input (LQCD) and experimental progress (LHCb?) 


