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‣ SND@LHC: taking data and studying neutrinos at the LHC

‣ The Beam Dump Facility and the SHiP experiment at the SPS



Neutrino physics at the LHC: motivation

PRL 122 (2019) 041101 

CERN is unique in providing energetic 𝛎 (from LHC) 
and measure pp → 𝛎X in an unexplored domain 
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• A. De Rujula and R. Ruckl, Neutrino and muon physics in the collider mode of future accelerators, CERN-TH-3892/84

• Klaus Winter, 1990, observing tau neutrinos at the LHC

• F. Vannucci, 1993, neutrino physics at the LHC

• http://arxiv.org/abs/1804.04413 April 12th 2018, First paper on feasibility of studying neutrinos at LHC 

http://arxiv.org/abs/1804.04413%20April%2012th%202018
http://arxiv.org/abs/1804.04413%20April%2012th%202018


Location at CERN

SND@LHC

Former transfer tunnels connecting SPS to LEP

• 480 m away from the ATLAS IP

• Charged particles deflected by LHC magnets

• Shielding from the IP provided by 100 m rock 
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Injection tunnels used at LEP

E.g. the TI18 tunnel in 2020 The LHC seen from the TI18 tunnel 
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Detector ready for the LHC Run 3 in March 2022

SND@LHC in TI18
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SND@LHC detector
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Off axis location

JINST 19 (2024) 05, P05067p p

𝜈𝜇
𝜈e
𝜈𝜏

Target, vertex detector and ECal
830 kg tungsten target.
Five walls x 59 emulsion layers
+ five scintillating fibre stations.
84 X0, 3 λint

Veto system
Two 1 cm thick scintillator planes.

HCal and muon system
Eight 20 cm Fe blocks
+ scintillator planes.
Last 3 planes have finer 
granularity to track muons.
9.5 λint

Length: 2.6 m

7.2 < η < 8.4



Physics goals
• Study neutrino interactions (cross-section, LFU, ..) in a new energy 

domain 

• Lepton flavour universality tests with 𝜈 interactions with Reμ and Re𝜏

• Use 𝜈s as probes of their parent, e.g. in some angular region νe

production dominated by charm decays → measuring charm production 
in pp collisions in the forward region

• Manyfold interest for the charm measurement in pp collision at high 𝜂

• Prediction of very high-energy neutrinos produced in cosmic-ray 
interactions → experiments also acting as a bridge between accelerator 
and astroparticle physics

prompt atmospheric neutrinos

IceCube Collaboration, six years data, Astrophysics J. 833 (2016) 3, 

https://iopscience.iop.org/article/10.3847/0004-637X/833/1/3/pdf

7+7 TeV 𝑝-𝑝 collisions correspond to 100 PeV

proton interaction for a fixed target 

7

https://iopscience.iop.org/article/10.3847/0004-637X/833/1/3/pdf
https://iopscience.iop.org/article/10.3847/0004-637X/833/1/3/pdf
https://iopscience.iop.org/article/10.3847/0004-637X/833/1/3/pdf


Observation of collider muon neutrinos with 2022 data
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Distribution of SciFi hits for 𝜈𝜇 candidates

with the MC expectation for 𝜈 events and 

background (augmented to the 5-sigma level)

Aug 11th 2022 Oct 27th 2022

8 observed events and an 

expected background of

Background only hypothesis probability: 

6.8 𝜎 observationhttps://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.031802

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.031802


Observation of 0𝜇 (𝜈e CC and 𝜈 NC) events with 2022-23 data
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Number of events observed: 9

Observation significance: 6.4 𝝈

Signal 
region

Neutral hadron background

● Define background-dominated control region.

● Scale the background prediction to the number of 

observed events in the control region.

● Events expected in signal region: 0.01

Neutrino background

● 𝜈μ CC interactions are the dominant background, with 

0.30 expected events

● 𝜈𝜏 CC1𝜇 interactions expected: 0.002

0𝜇 observation significance

● Total expected background: 0.32 ± 0.06 events

● Expected signal: 7.2 events

○ 4.9 𝜈eCC, 2.2 NC, 0.1 𝜈𝝉CC

● Expected significance: 5.5 𝝈

𝜈e–like candidate

https://journals.aps.org/prl/abstract/10.1103/r2qy-9hft

https://journals.aps.org/prl/abstract/10.1103/r2qy-9hft
https://journals.aps.org/prl/abstract/10.1103/r2qy-9hft
https://journals.aps.org/prl/abstract/10.1103/r2qy-9hft


Updated 𝜈μ results (2022-2023 data) with electronic detector 

Events expected in 68.6 fb-1

● Signal: 19.1± 4.1

● Neutral hadrons: 0.25 ± 0.06

● Unidentified muons: 1.5±0.3 

29 events observed
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Expected 𝜈𝜇: 19.1 ± 4.1(production sys)+1.6 (selection sys) 



Study of muon Deep Inelastic Scattering
SIDE VIEW

Observed events : 1741
Expected events : 1900 ± 360

Expected signal: 870

Background: 1030±360

In emulsion

IP (μm)

With electronic 

detectors

VTX prob Relative length of the track in the brick
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Trident process in the surrounding rock

Muon Tridents J.D. Bjorken(SLAC), M.C. Chen

Observation of Muon Trident Production in Lead and the Statistics of the Muon

• 𝜇± + 𝑁 → 𝜇+𝜇−𝜇± + 𝑁
• Studied in the 60's and 70's, Muon Tridents, J.D. Bjorken(SLAC), M.C. Chen, 

Observation of Muon Trident Production in Lead and the Statistics of the Muon

• Due to identical muons, sensitive to Fermi statistics

• With 10 GeV muon beam, measured 60 nb per lead nucleon

• "Background": bremsstrahlung followed by 𝛾-conversion
𝜇± + 𝑁 → 𝜇± +𝑁 + 𝛾, 𝛾 + 𝑁 → 𝑁 + 𝜇+𝜇−

• Process introduced in GEANT4 in 2022

• Rate inconsistent with coincidence muons (already with 2 
muons)

12

https://journals.aps.org/pr/pdf/10.1103/PhysRev.167.1308
https://inspirehep.net/files/fb44020446f7d441ff969515ce6a6123
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.26.46


Preliminary results on the muon trident

σ = 127 ±29 nb
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(Much) more data coming… 
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Recorded/delivered luminosity: 269/277 fb-1, 97% overall

In 2025: 81/82 fb-1, 98.8% efficiency 

Integrated luminosity above 250 fb-1! 

Upgraded veto system at the end of 2023

Current analyses based on 60 fb-1, large statistical improvement thanks to the good LHC run in 2024-25 and to the 

upgrade of the detector (increase the acceptance by a factor of ~2)



SND@LHC UPGRADE FOR HL-LHC
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Detector for the High Luminosity Runs
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Technical Proposal for Run 4

https://cds.cern.ch/record/2926288

Approved in June 2025



Pitch of 15 mm 
7 mm W, with 8 mm gap to host silicon modules

A block of 8-10 consecutive stations is controlled 

by a Digital OptoHybrid Module

Mechanical assembly verified in July

Station design and first prototype 
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Magnetised tracking (silicon) calorimeter
18

Segmentation to easy assembly

iron slab layer

Front                         Back                Active layer



Physics case in the High-Luminosity era in a nutshell 
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• Energy and η distribution of (charm-induced) 𝜈e CC interactions

• Left: event yield. Right: normalized to an arbitrarily chosen 

reference bin Extending 𝜈 cross-section 

measurements to a few TeV 

Technical Proposal for Run 4

https://cds.cern.ch/record/2926288

Run3

HL 



• Forward charm producing a neutrino 

• Less-forward charm being detected in ATLAS

• In ∼ 10÷15% of 𝜈 events, the partner charm is in the ATLAS 

acceptance (2 < η < 4) 
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𝜈 tagging: triggering ATLAS with 𝜈 events

● Number of events in 
3 ab-1: ∼1000
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EPJC (2022) 82:486 

http://cds.cern.ch/record/2007512/files/SPSC-P-350.pdf Technical Proposal in 2015

The SHiP (Search for Hidden Sector) experiment at CERN

Collaboration of 38 Institutes from 15 Countries and CERN

Collaboration meeting in April 2024

http://cds.cern.ch/record/2007512/files/SPSC-P-350.pdf
http://cds.cern.ch/record/2007512/files/SPSC-P-350.pdf
http://cds.cern.ch/record/2007512/files/SPSC-P-350.pdf
http://cds.cern.ch/record/2007512/files/SPSC-P-350.pdf
http://cds.cern.ch/record/2007512/files/SPSC-P-350.pdf
http://cds.cern.ch/record/2007512/files/SPSC-P-350.pdf


Motivation

Energy Frontier:

Heavy particles → high energy 

collisions

Intensity Frontier: 

Very weakly interacting particles 

→ high intensity beam

◆ It fails to explain many observed phenomena
• Dark Matter
• Neutrino Oscillation and masses
• Matter/antimatter asymmetry in the Universe

◆ The Standard Model provides an explanation for most of subatomic processes
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◆ A Hidden Sector (HS) of weakly-interacting 
BSM particles as an explanation
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Jura side

SHiP detector in more detail



BDF/SHiP experimental techniques

2
4

➔ Explore Light Dark Matter, and associated mediators - generically domain of FIPs - and 𝜈 mass generation 
through:

• Acceptance optimisation of both techniques described in arXiv:2304.02511, EPJC 83 (2023) 12

• Exhaustive search by aiming at model-independent detector setup
• Full reconstruction and identification of both fully and partially reconstructible modes

➔ Sensitivity to partially reconstructed modes also proxy for the unknown

• In case of discovery ➔ precise measurements to discriminate between models / test compatibility with hypothetical signal

➔FIP decay signature search in background-free environment and LDM scattering

➔Rich neutrino interaction physics with access to tau neutrino

Protons

Decay volume SM

SM

Sp
ectro

m
e

te
r

Absorber/sweeper

HP

Protons

Heavy target + detectorAbsorber/sweeper

Long 
high-Z/A target

Decay signatures Scattering signatures

Neutrino interaction physics with all flavours
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https://arxiv.org/abs/2304.02511


SHiP strategy
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• Full exploitation of physics potential of SPS available since CNGS (Rep. Prog. Phys. 79 (2016) 124201)

• Rich and relevant physics programme with the injectors at CERN going beyond LHC, bridging gap to next 
collider
➔SPS suitability to explore Light Dark Matter and associated mediators, and  mass generation – FIPs generically

➔Region that can only be explored by optimised beam-dump experiment 
➔Production modes in limited forward cone – large lifetime acceptance
➔SPS energy and intensity provide huge production of charm, beauty and electromagnetic processes
➔Unique direct discovery potential in the world in the heavy flavour region, capable of reaching “physical 

floor/background floor”

E.g. Heavy Neutral Leptons

Similar behaviour 𝜏𝐹𝐼𝑃 ∝
1

𝜖𝐹𝐼𝑃
𝑥 𝑚𝐹𝐼𝑃

𝑦

for all types of FIPs 



SHiP strategy
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E.g. Heavy Neutral Leptons

SHiP strategy
• Full exploitation of physics potential of SPS available since CNGS (Rep. Prog. Phys. 79 (2016) 124201)

• Rich and relevant physics programme with the injectors at CERN going beyond LHC, bridging gap to next 
collider
➔SPS suitability to explore Light Dark Matter and associated mediators, and  mass generation – FIPs 

generically

➔Region that can only be explored by optimised beam-dump experiment 
➔Production modes in limited forward cone – large lifetime acceptance
➔SPS energy and intensity provide huge production of charm, beauty and electromagnetic processes
➔Unique direct discovery potential in the world in the heavy flavour region, capable of reaching “physical 

floor/background floor”

Similar behaviour 𝜏𝐹𝐼𝑃 ∝
1

𝜖𝐹𝐼𝑃
𝑥 𝑚𝐹𝐼𝑃

𝑦

for all types of FIPs 

Heavy boson region
Heavy flavour region
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HSDS: FIP decay search background evaluation
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Three categories of background from residual muons and neutrinos

• Backgrounds from 𝜇 and 𝜈 DIS dominated by random combinations of secondaries, not by 
V0s

➔Very simple and common selection for both fully and partially reconstructed events – model independence

➔Possibility to measure background with data, relaxing veto and selection cuts, muon shield, decay volume

Muon combinatorial Muon DIS

Time coincidence UBT/SBT

Expected background is <1 event 
for 6×1020 pot (15 years of operation)

Selection
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+ also SUSY-related benchmarks

Exploration of (2-5 ⊗ 1-2) orders of magnitude (coupling2 ⊗ mass) beyond current experiments in all benchmark models

SHiP sensitivity not limited by backgrounds in 6 x 1020 PoT

HSDS: FIP decay search performance, all benchmark models



BDF/SHiP target complex

New 
Service Building

~ 1000 m2

Beam Dilution 
System

Existing 
Access Shaft

4×8 m2

1.5m Tungsten Target

▪ BDF will host the highest activation equipment CERN has ever had 

▪ Target design to be a replaceable component (5 y operation as target 

compared with 15+ years of operation for the facility)

New Target Complex
containing the Beam Dump Target
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Civil engineering scope

3
1

• Civil Engineering Procurement for HI-ECN3 starting soon

• Scope: new surface building for BDF target complex (B754), 

underground excavation and renovation of B911, B912 and B918 
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Civil Engineering: B754
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Ready to construct B754 

3
3

Trench 

New B911 doors 
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BDF target R&D

• BDF He-cooled prototype target tests going ahead:

• Static test (no active cooling) in 2025: installed in TCC2 last 
Wednesday 10th September 2025

• Dynamic test (helium-cooled system) in 2026: He compressor 
under procurement, installation integrated in planning for 
YETS25/26 thanks to BE-EA and NA-CONS
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SND detector embedded in the muon shield   
35

Decay vessel

Decay vessel

SC magnet

SND

Fully warm magnet version 

SND requires a muon spectrometer (magnet) → embed it within the 

magnetised iron of the muon shield  

Fully warm version 

Ongoing R&D on SC 

magnet with HTS 

technology for a 

hybrid version 

SC magnet

Very compact detector



SND@SHiP: neutrino detector concept a là SND@LHC

quoted dimensions 

refer to sensitive 

volumes

Electronic bords ∼10cm 

around 
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High-precision VTX detector

𝜈𝜏, charm and LDM Magnetised tracking calorimeter (MTC)

42 slabs, 5 cm each

∼ 10 𝛌



Two different options to embed the SND in the last magnet

Field inside the HCAL region
(core AND wings) 
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detectorbrass slabs



Similar implementation 

as in SND@LHC, ECC 

walls interleaved with 

SciFi stations

40 cm

60 cm

Silicon/tungsten 

assembly as for 

SND@LHC (Run 4)

Sampling frequency 

being optimised

Detector components: high-precision vertex 

Exact position will 

depend on the 

muon rate

𝜈

10 cm

Veto station in front 

with 3 scintillating bar 

planes

1.5 m
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Scintillating pads: energy resolution and tests 

Full-sized detector: expect 0.6/sqrt(E) for 𝜋 and 0.31/sqrt(E) for 

electrons, dominated by statistical fluctuations 

• 𝜋 resolution limited by the constant term due to significant shower 

leakage (lateral and longitudinal) 

• sufficient containment of EM showers over the full energy range

Testing components in the lab 
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Test beam prototype: 10x10 cm2, 6 layers, 120 channels

Test beam foreseen in Spring 2026 at PS and SPS

• Wrap the whole 

scintillator plane in 

reflective material (Mylar) 

• Improve light 

transmission from one tile 

to another using optical 

grease (EJ-552)



Decay vessel and the surrounding veto system 
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0.60m
 –

1
.6

0
m

6 Interconnected liquid scintillator filled cells

Welded from large sheets of polished AW 5083 (AlMg4.5)

20cm LS layer thickness

~130 Containers

Empty weight:
max. 395kg

LS volume:
max. 1.41m3

0.3-0.4 mm thick
Waveforms by 2 photons, for one channel



Spectrometer magnet with HTS technology
Proof-of-Principle

Magnet based on MgB2 cable (wire same as HL-LHC SC Link)
Indirect cooling – Cryocooler+Cryofan – GHe ~20K

EESD1: coil pack concept validated
ESSD2: Validate cooling concept + operation with current leads

From Proof-of-Principle
Energy-Efficient Superferric

Dipole
~ 1m

EESD2

To Full-Scale Magnet

~ 5m (Z) x ~ 7.5m (Y)

Cold mass assembly

Vacuum vesselThermal shield
Magnet assembly

Connection module
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Straw tracker developments for the spectrometer
Four identical stations, aperture of 4m x 6m

300 tubes on top, 8 layers per station

2400 straws per station → almost 10000 channels

Modules of 2 x16 straws (32 cm high)
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Test beam at DESY II

Four straw tubes

30 cm long, 2cm diameter

30 μm wire

80/20 Ar/CO2

at ambient pressure

Readout with SAMPIC



Timing detector
• Provide precise timing (<100 ps) of each track to reject combinatorial background

• Plastic scintillator characteristics

• Three-column setup with EJ200 plastic bars of 140cm × 6cm × 1cm, providing 0.5cm overlap

• Readout on both ends by array of eight 6×6 mm2 SiPMs, 8 signals are summed

• 330 bars and 660 channels

Trigger IN 

Beam Counter

Test beam in Sep 2025 at CERN T10

FASTIC with 25ps TDC embedded

Trigger IN 

FASTIC- Fast OR
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NIM A 979 (2020) 164398 



Calorimeter and Particle ID system
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• PID composed of sampling ECAL and HCAL based on scintillators readout by SiPMs
• ECAL based on the SplitCal concept to reconstruct neutral (𝛾𝛾) final states
• Thin scintillator bars
• GEMs (High Precision Layers)
• Detector built in 6 hexants for modularity
• Needs to reconstruct MIPs and large showers

Test beam in May 2025 at SPS

• ECAL prototype: 17 active layers, 20 X0,

112 cm total depth with central   20 cm split

• Prototype included thin and wide scintillator 

bars



The 𝜈 origin in the (Mo/W) target and neutrino samples  

This is relevant for lepton flavour conservation studies with neutrino interactions!

It will further improve with the new concept of full W target
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𝜈𝜏 with 𝜏 →𝜇 in 6 x 1020 pot



𝜈𝜏 cross-section, 𝜈-induced charm, structure functions, …

At LO F4= 0, 2xF5=F2

At NLO F4 ~ 1% at 10 GeV

Rep. Prog. Phys. 79 (2016) 124201

Strange quark distribution

F4, F5 structure functions

𝜈-induced charm
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Complementary energy 

region to the LHC 

measurements



BDF/SHiP schedule: 15 years of data taking

4
7

Construction / installation of facility and detector is decoupled from NA operation

Important to start data taking >1 year before LS4

Several upgrades/extensions of the BDF/SHiP in consideration over the operational life

SPS decoupled from injector role in 2042, fully dedicated to proton/ion FT physics

Operation till 2047

D J F M D J F MD J F M D J F M D J F MD J F M

2042 2043 2044 2045 2046 2047
D

End of LHC Opportunity…

SPS decoupled from injector role in 2042, fully dedicated to proton/ion FT physics

LSx



Reach 𝜈 physics program and most sensitive FIB searches at CERN  

Stay tuned! 

https://home.cern/news/news/physics/new-lhc-experiments-enter-uncharted-territory

48

https://cerncourier.com/a/collider-neutrinos-on-the-horizon/

https://cerncourier.com/a/ship-to-chart-hidden-sector/

https://home.cern/news/news/physics/new-lhc-experiments-enter-uncharted-territory
https://home.cern/news/news/physics/new-lhc-experiments-enter-uncharted-territory
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