

Neutrino and hidden sector physics at CERN:

ongoing v program and the SHiP experiment

Giovanni De Lellis CERN, Geneva

University "Federico II" and INFN, Naples, Italy

- SND@LHC: taking data and studying neutrinos at the LHC
- The Beam Dump Facility and the SHiP experiment at the SPS

Flavour changing and conserving processes, Anacapri, October 1st 2025

Neutrino physics at the LHC: motivation

- A. De Rujula and R. Ruckl, Neutrino and muon physics in the collider mode of future accelerators, CERN-TH-3892/84 [HC]
- Klaus Winter, 1990, observing tau neutrinos at the LHC
- F. Vannucci, 1993, neutrino physics at the LHC
- http://arxiv.org/abs/1804.04413 April 12th 2018, First paper on feasibility of studying neutrinos at LHC

OPEN ACCESS

IOP Publishing

Journal of Physics G: Nuclear and Particle Physics

J. Phys. G: Nucl. Part. Phys. 46 (2019) 115008 (19pp)

https://doi.org/10.1088/1361-6471/ab3f7c

Physics potential of an experiment using LHC neutrinos

```
N Beni<sup>1</sup>, M Brucoli<sup>2</sup>, S Buontempo<sup>5</sup>, V Cafaro<sup>4</sup>, G M Dallavalle<sup>4,8</sup>, S Danzeca<sup>2</sup>, G De Lellis<sup>2,3,5</sup>, A Di Crescenzo<sup>3,5</sup>, V Giordano<sup>4</sup>, C Guandalini<sup>4</sup>, D Lazic<sup>6</sup>, S Lo Meo<sup>7</sup>, F L Navarria<sup>4</sup> and Z Szillasi<sup>1,2</sup>
```

Eur. Phys. J. C (2020) 80:61 https://doi.org/10.1140/epjc/s10052-020-7631-5 THE EUROPEAN
PHYSICAL JOURNAL C

Regular Article - Experimental Physics

Detecting and studying high-energy collider neutrinos with FASER at the LHC

FASER Collaboration

CERN is unique in providing energetic \mathbf{v} (from LHC) and measure pp $\rightarrow \mathbf{v}X$ in an unexplored domain

Location at CERN

• 480 m away from the ATLAS IP

Charged particles deflected by LHC magnets

Shielding from the IP provided by 100 m rock

Former transfer tunnels connecting SPS to LEP

Injection tunnels used at LEP

Scattering and Neutrino Detect at the LHC

E.g. the TI18 tunnel in 2020

The LHC seen from the TI18 tunnel

Detector ready for the LHC Run 3 in March 2022

SND@LHC detector

HCal and muon system

Last 3 planes have finer

granularity to track muons.

Eight 20 cm Fe blocks

+ scintillator planes.

 $9.5 \lambda_{int}$

Two 1 cm thick scintillator planes.

Target, vertex detector and ECal

830 kg tungsten target.

Five walls x 59 emulsion layers

+ five scintillating fibre stations.

84 X_0 , 3 λ_{int}

Length: 2.6 m

100 m

rock

VETO SYSTEM

VERTEX DETECTOR AND ELECTROMAGNETIC

CALORIMETER

HADRONIC CALORIMETER AND MUON SYSTEM

Collision

JINST 19 (2024) 05, P05067

390

Off axis location

 $7.2 < \eta < 8.4$

Physics goals

- Study neutrino interactions (cross-section, LFU, ..) in a new energy domain
- Lepton flavour universality tests with ν interactions with $R_{e\mu}$ and $R_{e\tau}$
- Use ν s as probes of their parent, e.g. in some angular region ν_e production dominated by charm decays \rightarrow measuring charm production in pp collisions in the forward region
- Manyfold interest for the charm measurement in pp collision at high η
- Prediction of very high-energy neutrinos produced in cosmic-ray interactions → experiments also acting as a bridge between accelerator and astroparticle physics

IceCube Collaboration, six years data, Astrophysics J. 833 (2016) 3, https://iopscience.iop.org/article/10.3847/0004-637X/833/1/3/pdf

7+7 TeV *p-p* collisions correspond to 100 PeV proton interaction for a fixed target

prompt atmospheric neutrinos

 10^{-6}

+++ HESE unfolding: PoS(ICRC2015)1081

 $E_{\nu}/{\rm GeV}$

transition region

Observation of collider muon neutrinos with 2022 data

Distribution of SciFi hits for ν_{μ} candidates with the MC expectation for ν events and background (augmented to the 5-sigma level)

Editors' Suggestion

Observation of Collider Muon Neutrinos with the SND@LHC Experiment

R. Albanese et al. (SND@LHC Collaboration)

Phys. Rev. Lett. **131**, 031802 (2023) – Published 19 July 2023

8 observed events and an expected background of

$$(8.6 \pm 3.8) \times 10^{-2}$$

Background only hypothesis probability:

$$P = 7.15 \times 10^{-12}$$

 6.8σ observation

Observation of 0μ (ν_e CC and ν NC) events with 2022-23 data

Neutral hadron background

- Define background-dominated control region.
- Scale the background prediction to the number of observed events in the control region.
- Events **expected in signal region**: **0.01**

Neutrino background

- ν_{μ} CC interactions are the dominant background, with 0.30 expected events
- v_{τ} CC1 μ interactions expected: 0.002

0μ observation significance

- Total expected background: 0.32 ± 0.06 events
- Expected signal: 7.2 events
 - \circ 4.9 $\nu_{\rm e}$ CC, 2.2 NC, 0.1 ν_{τ} CC
- Expected significance: 5.5σ

PHYSICAL REVIEW LETTERS 134, 231802 (2025)

https://journals.aps.org/prl/abstract/10.1103/r2qy-9hft

Number of events observed: 9

Observation significance: 6.4 σ

Updated ν_{μ} results (2022-2023 data) with electronic detector

Perio	ч	Luminosity	Survival Rate		ciency	μ Background
reno	u	Lummosity	Sui vivai nate	Veto	SciFi	μ Dackground
	1	1.21 fb ⁻¹	4.13×10^{-3}	3.03×10^{-4}	2.50×10^{-4}	7.88×10^{-2}
	2	14.00 fb ⁻¹	5.57×10^{-3}	7.00×10^{-4}		1.18
2022	3	$7.12 \mathrm{fb}^{-1}$	6.21×10^{-3}	3.03×10^{-4}		2.75×10^{-1}
	4	1.58 fb ⁻¹	6.41×10^{-3}	1.04×10^{-5}	1.06×10^{-4}	2.08×10^{-3}
	5	$5.72 \mathrm{fb}^{-1}$	5.07×10^{-3}	3.98×10^{-7}		2.89×10^{-4}
	6	9.01 fb ⁻¹	5.50×10^{-3}	4.40×10^{-7}		5.28×10^{-4}
	1	11.60 fb ⁻¹	4.02×10^{-4}	4.40×10^{-5}		8.96×10^{-5}
2023	2	9.68 fb ⁻¹	4.30×10^{-3}	4.05×10^{-7}	1.18×10^{-4}	4.73×10^{-4}
	3	10.50 fb ⁻¹	2.81×10^{-3}	9.00×10^{-8}		1.18×10^{-4}
Tota	I	70.43 fb ⁻¹	-	-	-	1.53

Events expected in 68.6 fb⁻¹

- Signal: 19.1 ± 4.1
- Neutral hadrons: 0.25 ± 0.06
- Unidentified muons: 1.5±0.3

29 events observed

Expected ν_{μ} : 19.1 ± 4.1(production sys)+1.6 (selection sys)

Study of muon Deep Inelastic Scattering

Expected signal: 870

Observed events: 1741

gnal: 870 Observed events . 1741

Background: 1030 ± 360 **Expected events**: 1900 ± 360

Relative length of the track in the brick

Trident process in the surrounding rock

•
$$\mu^{\pm} + N \rightarrow \mu^{+}\mu^{-}\mu^{\pm} + N$$

- Studied in the 60's and 70's, Muon Tridents, J.D. Bjorken(SLAC), M.C. Chen, Observation of Muon Trident Production in Lead and the Statistics of the Muon
- Due to identical muons, sensitive to Fermi statistics
- With 10 GeV muon beam, measured 60 nb per lead nucleon
- "Background": bremsstrahlung followed by γ -conversion $\mu^{\pm} + N \rightarrow \mu^{\pm} + N + \gamma, \gamma + N \rightarrow N + \mu^{+}\mu^{-}$
- Process introduced in GEANT4 in 2022
- Rate inconsistent with coincidence muons (already with 2 muons)

Preliminary results on the muon trident

 $\sigma = 127 \pm 29 \text{ nb}$

(Much) more data coming...

Integrated luminosity above 250 fb⁻¹!

Upgraded veto system at the end of 2023

Recorded/delivered luminosity: 269/277 fb-1, 97% overall In 2025: 81/82 fb-1, 98.8% efficiency

Current analyses based on 60 fb⁻¹, large statistical improvement thanks to the good LHC run in 2024-25 and to the upgrade of the detector (increase the acceptance by a factor of ~2)

SND@LHC UPGRADE FOR HL-LHC

Scattering and Neutrino Detector at the LHC

Detector for the High Luminosity Runs

Station design and first prototype

Pitch of 15 mm

7 mm W, with 8 mm gap to host silicon modules

A block of 8-10 consecutive stations is controlled by a Digital OptoHybrid Module

Mechanical assembly verified in July

Magnetised tracking (silicon) calorimeter Volume: Magnetic flux density norm (T)

Segmentation to easy assembly T Spacers **Target** Upper rods Coil Front end-plate retainer Clamping bolts iron slab layer ▼ 3.7×10⁻⁴ Rear end-plate Active layer Front Back 0.35 0.3 0.25 0.15 0.1 = 3.1 mm 0.05 -0.05 -0.1 13.4 mm -0.15 93.7 mm -0.2 -0.25 = 3.1 mm 373.3 mm -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4

Physics case in the High-Luminosity era in a nutshell

 Left: event yield. Right: normalized to an arbitrarily chosen reference bin

Extending ν cross-section measurements to a few TeV

Technical Proposal for Run 4 https://cds.cern.ch/record/2926288

SND@HL-LH

ν tagging: triggering ATLAS with ν events

- Forward charm producing a neutrino
- Less-forward charm being detected in ATLAS
- In $\sim 10 \div 15\%$ of ν events, the partner charm is in the ATLAS acceptance (2 < η < 4)

 Number of events in 3 ab⁻¹: ~1000

Trigger signal

480 m

The SHiP (Search for Hidden Sector) experiment at CERN

http://cds.cern.ch/record/2007512/files/SPSC-P-350.pdf Technical Proposal in 2015

EPJC (2022) 82:486

SHiP

Motivation

◆ The **Standard Model** provides an explanation for most of subatomic processes

- ◆ It fails to explain many observed phenomena
 - Dark Matter
 - Neutrino Oscillation and masses
 - Matter/antimatter asymmetry in the Universe

Energy Frontier:

Heavy particles → high energy collisions

Energy Scale

◆ A Hidden Sector (HS) of weakly-interacting BSM particles as an explanation

Intensity Frontier:

Very weakly interacting particles

→ high intensity beam

SHiP detector in more detail

Jura side

BDF/SHiP experimental techniques

 \rightarrow Explore Light Dark Matter, and associated mediators - generically domain of FIPs - and ν mass generation through:

- Acceptance optimisation of both techniques described in <u>arXiv:2304.02511</u>, EPJC 83 (2023) 12
- Exhaustive search by aiming at model-independent detector setup
 - Full reconstruction and identification of both fully and partially reconstructible modes
 - → Sensitivity to partially reconstructed modes also proxy for the unknown
 - In case of discovery \rightarrow precise measurements to discriminate between models / test compatibility with hypothetical signal
- → FIP decay signature search in background-free environment and LDM scattering
- → Rich neutrino interaction physics with access to tau neutrino

SHiP strategy

- Full exploitation of physics potential of SPS available since CNGS (*Rep. Prog. Phys.* **79** (2016) 124201)
- Rich and relevant physics programme with the injectors at CERN going beyond LHC, bridging gap to next collider
 - →SPS suitability to explore Light Dark Matter and associated mediators, and v mass generation FIPs generically

Similar behaviour $au_{FIP} \propto \frac{1}{\epsilon_{FIP}^{\chi} m_{FIP}^{\gamma}}$ for all types of FIPs

- Region that can *only* be explored by optimised beam-dump experiment
 - → Production modes in limited forward cone large lifetime acceptance
 - →SPS energy and intensity provide huge production of charm, beauty and electromagnetic processes
 - → Unique direct discovery potential in the world in the heavy flavour region, capable of reaching "physical floor/background floor"

SHiP strategy

- Full exploitation of physics potential of SPS available since CNGS (<u>Rep. Prog. Phys. 79</u> (2016) 124201)
- Rich and relevant physics programme with the injectors at CERN going beyond LHC, bridging gap to next collider
 - →SPS suitability to explore Light Dark Matter and associated mediators, and v mass generation FIPs generically

Similar behaviour $au_{FIP} \propto \frac{1}{\epsilon_{FIP}^\chi m_{FIP}^\gamma}$ for all types of FIPs

- → Region that can *only* be explored by optimised beam-dump experiment
 - → Production modes in limited forward cone large lifetime acceptance
 - →SPS energy and intensity provide huge production of charm, beauty and electromagnetic processes
 - → Unique direct discovery potential in the world in the heavy flavour region, capable of reaching "physical floor/background floor"

SHiP strategy

- Full exploitation of physics potential of SPS available since CNGS (Rep. Prog. Phys. 79 (2016) 124201)
- Rich and relevant physics programme with the injectors at CERN going beyond LHC, bridging gap to next collider

→SPS suitability to explore Light Dark Matter and associated mediators, and v mass generation — FIPs generically

E.g. Heavy Neutral Leptons

Similar behaviour $au_{FIP} \propto \frac{1}{\epsilon_{FIP}^{\chi} m_{FIP}^{\gamma}}$ for all types of FIPs

- Region that can *only* be explored by optimised beam-dump experiment
 - → Production modes in limited forward cone large lifetime acceptance
 - →SPS energy and intensity provide huge production of charm, beauty and electromagnetic processes
 - → Unique direct discovery potential in the world in the heavy flavour region, capable of reaching "physical floor/background floor"

HSDS: FIP decay search background evaluation

Three categories of background from residual muons and neutrinos

- Backgrounds from μ and ν DIS dominated by random combinations of secondaries, not by V^0s
- → Very simple and common selection for both fully and partially reconstructed events model independence
- → Possibility to measure background with data, relaxing veto and selection cuts, muon shield, decay volume

Criterion Selection Track momentum (and track quality) Vertex quality (distance of closest approach)			Expected background is <1 event for 6×10^{20} pot (15 years of operation)	
Track pair vertex position in decay volume	> 5 cm from inner wall	Background sou	rce Expected even	ents
Impact parameter w.r.t. target (fully reconstructed) Impact parameter w.r.t. target (partially reconstructed)	$> 100 \mathrm{cm}$ from entrance (partially) $< 10 \mathrm{cm}$ $< 250 \mathrm{cm}$	Neutrino DIS Muon DIS (facto	(0) /	ally)
→ Time coincidence → UBT/SB*		Muon combinate	orial $(1.3 \pm 2.1) \times$] _

HSDS: FIP decay search performance, all benchmark models

Exploration of (2-5 \otimes 1-2) orders of magnitude (coupling² \otimes mass) beyond current experiments in all benchmark models

BDF/SHiP target complex

BDF will host the highest activation equipment CERN has ever had

Target design to be a **replaceable component** (5 y operation as target

compared with 15+ years of operation for the facility)

Beam Dilution

System

170m

New Target Complex

containing the Beam Dump Target

1.5m Tungsten Target

New **Service Building**

~ 1000 m²

Existing Access Shaft $4 \times 8 \text{ m}^2$ ECN3

Civil engineering scope

- Civil Engineering Procurement for HI-ECN3 starting soon
 - **Scope:** new surface building for BDF target complex (B754), underground excavation and renovation of B911, B912 and B918

Civil Engineering: B754

Ready to construct B754

BDF target R&D

- BDF He-cooled prototype target tests going ahead:
 - Static test (no active cooling) in 2025: installed in TCC2 last Wednesday 10th September 2025
 - Dynamic test (helium-cooled system) in 2026: He compressor under procurement, installation integrated in planning for YETS25/26 thanks to BE-EA and NA-CONS

SND detector embedded in the muon shield

SND requires a muon spectrometer (magnet) → embed it within the magnetised iron of the muon shield

SND@SHiP: neutrino detector concept a là SND@LHC

ECC	5	Tungsten	180
LOO	3	Emulsion	180
SciFi	5		

SILICON	TARGET
Tungsten	120
Silicon	120
Weight	1.2 ton

MAGNETIZED T	RACKING CAL
Iron	42
Scintillator	42
SciFi	42

42 slabs, 5 cm each $\sim 10 \lambda$

Two different options to embed the SND in the last magnet

Field inside the HCAL region (core AND wings)

Emulsion Target

Detector components: high-precision vertex

Exact position will depend on the muon rate

Similar implementation as in SND@LHC, ECC walls interleaved with SciFi stations Veto station in front with 3 scintillating bar planes

60 cm

1.5 m

Silicon/tungsten assembly as for SND@LHC (Run 4) Sampling frequency being optimised

10 cm

Scintillating pads: energy resolution and tests

Full-sized detector: expect 0.6/sqrt(E) for π and 0.31/sqrt(E) for electrons, dominated by statistical fluctuations

• π resolution limited by the constant term due to significant shower leakage (lateral and longitudinal)

• sufficient containment of EM showers over the full energy range

Test beam foreseen in Spring 2026 at PS and SPS

Test beam prototype: 10x10 cm², 6 layers, 120 channels

Decay vessel and the surrounding veto system

6 Interconnected liquid scintillator filled cells
Welded from large sheets of polished AW 5083 (AlMg4.5)

0.3-0.4 mm thick

Spectrometer magnet with HTS technology

Proof-of-Principle

Magnet based on MgB₂ cable (wire same as HL-LHC SC Link) Indirect cooling − Cryocooler+Cryofan − GHe ~20K

Magnet assembly

EESD1: coil pack concept validated

ESSD2: Validate cooling concept + operation with current leads

To Full-Scale Magnet

Straw tracker developments for the spectrometer

Test beam at DESY II
Four straw tubes
30 cm long, 2cm diameter
30 µm wire
80/20 Ar/CO2
at ambient pressure
Readout with SAMPIC

Timing detector

- Provide precise timing (<100 ps) of each track to reject combinatorial background
- Plastic scintillator characteristics
 - Three-column setup with EJ200 plastic bars of 140cm × 6cm × 1cm, providing 0.5cm overlap
 - Readout on both ends by array of eight 6×6 mm² SiPMs, 8 signals are summed
 - 330 bars and 660 channels

FASTIC with 25ps TDC embedded

Test beam in Sep 2025 at CERN T10

Trigger IN
Beam Counter

NIM A 979 (2020) 164398

Calorimeter and Particle ID system

- PID composed of sampling ECAL and HCAL based on scintillators readout by SiPMs 6.48m
- ECAL based on the SplitCal concept to reconstruct neutral $(\gamma \gamma)$ final states
- Thin scintillator bars
- GEMs (High Precision Layers)
- Detector built in 6 hexants for modularity
- Needs to reconstruct MIPs and large showers

Test beam in May 2025 at SPS

- ECAL prototype: 17 active layers, 20 X0, 112 cm total depth with central 20 cm split
- Prototype included thin and wide scintillator bars

The ν origin in the (Mo/W) target and neutrino samples

	Charmed hadron decay [%]	Pion/kaon/other decay [%]
$\overline{}_{ u_e+\overline{ u}_e}$		
Produced at SHiP target	47.3%	52.7%
In acceptance at SND position	71.5%	28.5
Interacting (CCDIS)	92.4%	7.6%
$N_{ u_{\mu}+\overline{ u}_{\mu}}$		
Produced at SHiP target	4.1%	95.9%
In acceptance at SND position	8.0%	92.0%
Interacting (CCDIS)	31.7%	68.3%

This is relevant for lepton flavour conservation studies with neutrino interactions! It will further improve with the new concept of full W target

ν_{τ} cross-section, ν -induced charm, structure functions, ...

Decay channel	$ u_{ au}$	$\overline{ u}_{ au}$
$ au o \mu$	4×10^{3}	3×10^{3}
au ightarrow h	$27 \times$	10^{3}
au o 3h	$11 \times$	$< 10^3$
$\tau \to e$	8 ×	10^{3}
total	53 ×	10^3

u_{τ} Mean 54.32 $\overline{\nu}_{\tau}$ Mean 74.14 u_{μ} Mean 40.17 $\overline{\nu}_{\mu}$ Mean 63.11 $\overline{\nu}_{e}$ Mean 49.44

Complementary energy region to the LHC measurements

	<e></e>	CC DIS
	$[\mathrm{GeV}]$	interactions
$N_{ u_e}$	63	2.8×10^{6}
$N_{ u_{\mu}}$	40	8.0×10^{6}
$N_{ u_{ au}}$	54	8.8×10^{4}
$N_{\overline{ u}_e}$	49	5.9×10^{5}
$N_{\overline{ u}_{\mu}}$	33	1.8×10^{6}
$N_{\overline{ u}_{ au}}$	74	6.1×10^{4}

F4, F5 structure functions

$$\begin{split} \frac{d^2\sigma^{\nu(\overline{\nu})}}{dxdy} &= \frac{G_F^2ME_{\nu}}{\pi(1+Q^2/M_W^2)^2} \bigg((y^2x + \frac{m_{\tau}^2y}{2E_{\nu}M})F_1 + \bigg[(1-\frac{m_{\tau}^2}{4E_{\nu}^2}) - (1+\frac{Mx}{2E_{\nu}}) \bigg] \ F_2 \\ &\pm \bigg[xy(1-\frac{y}{2}) - \frac{m_{\tau}^2y}{4E_{\nu}M} \bigg] \ F_3 + \frac{m_{\tau}^2(m_{\tau}^2+Q^2)}{4E_{\nu}M^2x} F_4 \ \bigg] \frac{m_{\tau}^2}{E_{\nu}M} F_5 \bigg), \end{split}$$

At LO F_4 = 0, $2xF_5$ = F_2 At NLO $F_4 \sim 1\%$ at 10 GeV

	(GeV)	with charm prod
$N_{ u_{\mu}}$	57	3.5×10^{5}
$N_{ u_e}$	71	1.7×10^{5}
$N_{\overline{ u}_{\mu}}$	50	$0.7{ imes}10^{5}$
$N_{\overline{ u}_e}$	60	0.3×10^{5}
total		6.2×10^{5}

BDF/SHiP schedule: 15 years of data taking

Construction / installation of facility and detector is decoupled from NA operation

Important to start data taking >1 year before LS4

Several upgrades/extensions of the BDF/SHiP in consideration over the operational life

SPS decoupled from injector role in 2042, fully dedicated to proton/ion FT physics

Operation till 2047

SPS decoupled from injector role in 2042, fully dedicated to proton/ion FT physics

ast update: April 202

Reach v physics program and most sensitive FIB searches at CERN

https://home.cern/news/news/physics/new-lhc-experiments-enter-uncharted-territory

NEUTRINOS | NEWS

Collider neutrinos on the horizon

2 June 2021

https://cerncourier.com/a/collider-neutrinos-on-the-horizon/

CERNCOURIER | Reporting on international high-energy physics

SEARCHES FOR NEW PHYSICS | NEWS

SHiP to chart hidden sector

New LHC experiments enter uncharted territory

Stay tuned!

https://cerncourier.com/a/ship-to-chart-hidden-sector/