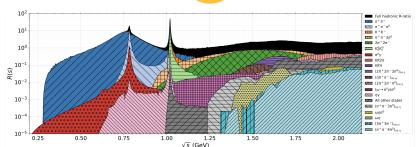
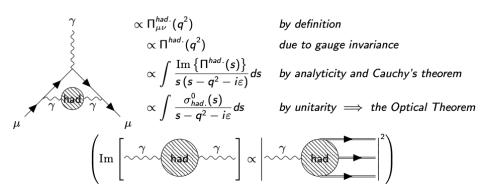
Dispersive Determination of the HVP Contributions to the Muon g-2

Aidan Wright



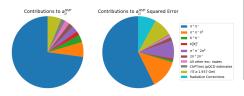
Science and **Technology Facilities Council**

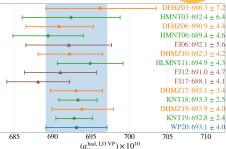
LEVERHULME TRUST _____

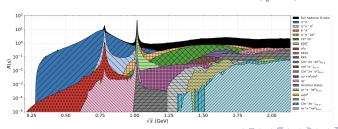

3 U 2 3 D2 2 3 E 2 3 E 2

Dispersive Method

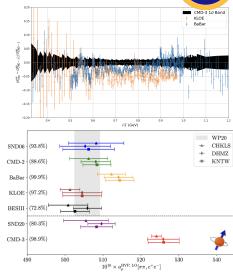
- Problem: QCD is non-perturbative at low \sqrt{s} .
- Implication: HVP of photon cannot be calculated in loop integrals etc.
- Solution: dispersion integral over the $e^+e^- \rightarrow hadrons$ cross section.




• For > 50 years, low energy $e^+e^- \rightarrow hadrons$ data have been collected

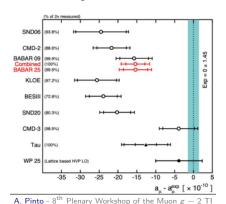

Hadronic Data

- $ho \sim 250$ measurements in > 50 hadronic channels.
- Dominated (> 70%) by $e^+e^- \rightarrow \pi^+\pi^-$.



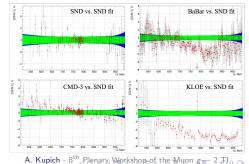
Tensions in $\pi^+\pi^-$

- Historic problem: $\sim 2.5\sigma$ KLOE/BaBar tension^a.
- Historic Solution: local error inflation; additional 'ad-hoc' systematic.
- Current problem: $> 5\sigma$ KLOE/CMD-3 tension, $\sim 2.5\sigma$ BaBar/CMD-3 tension!
 - CMD-3 'corroborated' by new SND preliminary.
 - BaBar confirm their earlier result.
- Current Solution: None as yet...
 - Nothing suggests earlier data is defective.
 - Dispersive method is robust.



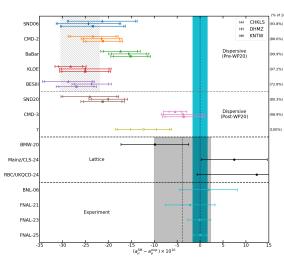
^aSee penultimate slide...

New $\pi^+\pi^-$ Data


BaBar

- Independent new method applied to all data.
- Reduced systematics in 0.5 \rightarrow 1.4 GeV.
- Excellent agreement with 2009 data.

SND


- Values considerably increased compared to SND20.
- Unaccounted systematic $\implies 2 \rightarrow 3\%$ higher value.
- Now $2\sigma > \text{BaBar}$ and comparable to CMD-3.

Implications...

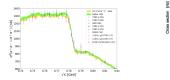
- Analysis groups must manage tensions to estimate HVP.
- Tensions ⇒ WP25 quoted only lattice - but TI is not finished yet!
- Unclear dispersive \implies unclear g-2 interpretation.
- Goal: representative and accurate $a_{\mu}^{\rm HVP}$ dispersive prediction to fully understand experiment implications.

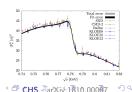
Dispersive g - 2 Update

Analysis Groups

CHKLS

KNTW


- Data dynamically clustered to prevent over-fitting.
- Utilises full given covariance matrices/ assumes full systematic correlation.
- Fit to avoid incurred d'Agostini bias.
- Full covariance matrices propagated to final result.

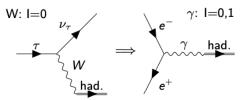

KNT - arXiv:1911.00367v2

DHMZ

- Measurements quadratic spline interpolated and averaged on a fixed binning.
- Central value derived using uncertainties and local correlations.
- Uncertainties on channels generated from 'pseudoexperiments'.

- Select channels' spectra constrained by analyticity and unitarity.
- ⇒ Fit functions.
- Measurements fit and combined
- Consistent w. DHMZ. KNTW despite method differing significantly.

Proposed Solutions - au Data


The $e^+e^- o \pi^+\pi^-$ data are in tension.

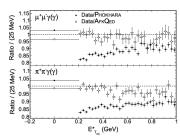
The $au o
u_{ au} \pi^0 \pi$ data are not.

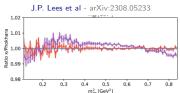
⇒ Supplement the former with the latter to get a more consistent average?

- Requires calculation of isospin breaking corrections.
- Not included in WP20 average due to potentially large unknown uncertainties.
- Some progress with model-independent and lattice evaluations
- Concern: interference between hadronic channels may not be negligible ⇒ large previously unaccounted terms.
- Full, assuredly accurate calculation not yet complete.

Conclusion: significant further study needed.

		Refs. [166, 194]	Ref. [209]	Refs. [237, 247]	Our estimate
Phase space		-7.88	-7.52	-	-7.7(2)
S_{EW}		-12.21(15)	-12.16(15)	-	-12.2(1.3)
G_{EM}		-1.92(90)	$(-1.67)^{+0.60}_{-1.39}$	-	-2.0(1.4)
FSR		4.67(47)	4.62(46)	4.42(4)	4.5(3)
ρ–ω mixing		4.0(4)	2.87(8)	3.79(19)	3.9(3)
$\frac{F_{\tau}^{V}}{f_{\tau}}$ (w/o ρ - ω)	ΔM_{ρ}	0.20(+27)(9)	1.95+1.56	_	
	$\Delta\Gamma_{\rho}(\Delta M_{\pi})$	4.09(0)(7)	3.37	-	
	$\Delta\Gamma_{\rho}(\pi\pi\gamma)$	-5.91(59)(48)	-6.66(73)	-	
	$\Delta\Gamma_{\rho}(g_{\rho\pi\pi})$	-	-	-	
	Total	-1.62(65)(63)	$(-1.34)^{+1.72}_{-1.71}$	-	-1.5(4.7)
Sum		-14.9(1.9)	$(-15.20)^{+2.26}_{-2.63}$	-	-15.0(5.1)


WP25, R. Aliberti et al - Phys. Rept. 1143 (2025),

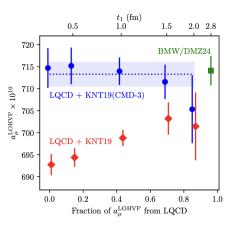

Proposed Solutions - Radiative Correction Explanation

Processes $e^+e^- \to \pi^+\pi^- + n\gamma$ occur alongside $e^+e^- \to \pi^+\pi^-$. Experiments often rely on Monte Carlo to handle additional photons. \Longrightarrow Issues with these Monte Carlos mean old data are defective?

- BaBar study of FSR in $\pi^+\pi^-$:
 - PHOKHARA generator potentially overestimates NLO.
 - Potentially significant NNLO contributions.
 - Inaccuracy of BESIII and KLOE?
- KLOE and BESIII studies find much better agreement.
- Any deviation is $\lesssim 1\%$ and likely captured in quoted systematics.
- Detector effects studies ongoing.

Conclusion: Not the answer, but we should look forward to NNLO PHOKHARA.

L. Cotrozzi - 8th Plenary Workshop of the Muon @- 24Th

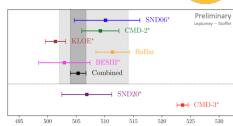

Proposed Solutions - Lattice Hybrids

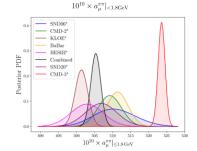
Data are \sim consistent at small \sqrt{s} . Lattice long distance windows have relatively large uncertainties. \implies Supplement long distance lattice with low energy dispersive?

- Largely good idea hybrid likely for next WP to maximise precision.
- Already exists: BMWc-DMZ hybrid with switch at 2.8 fm.
- However:
 - Does not touch root cause of tensions.
 - Value highly dependent on lattice/ dispersive switchover length.
- Latter see effects of varying data input right.

Conclusion: not yet viable.

CHKLS Recent Work

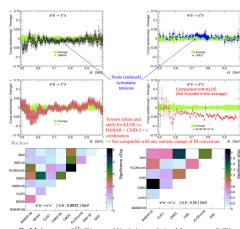

$$F_{\pi}^{V}(s) = \underbrace{\Omega_{1}^{1}(s)}_{2 \; ext{param.s}} imes \underbrace{G_{\omega(\phi)}(s)}_{3(6) \; ext{param.s}} imes G_{ ext{in}}(s)$$


• Improved inelastic function:

$$G_{\text{in}}(z) = rac{1}{\phi(z)} rac{P_N(z)}{\prod_i (z - z_i)(z - z_i^*)}$$

for OF $\phi(s)$, polynomial P_N and poles s_j .

- Bayesian parameter interference for improved fitting.
- Exacerbated CMD-3 tension.
- Strong correlation of lattice windows
 further issues with hybrid.



DHMZ Recent Work

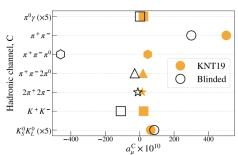
- Significant effort to better understand tensions
- Data from τ , BaBar and CMD-3:
 - Had proposed combinations based on these data.
 - Prior to interference concern, agreement was quite good.
- Local tensions assessment:
 - Measurements exhibit different levels of tension in different regions.
 - Most significant tensions are on and above ρ peak.
 - Datasets are compatible at low energies.

B. Malaescu - 8^{th} Plenary Workshop of the Muon g-2 TI

Dispersive g - 2 Update

KNTW - Blinding and New Analysis

- Choices during combination:
 - Radiative correction routines;
 - Re-binning procedure;
 - Fitting procedure correlations;
 - Additional constraints:
 - Error inflation:
 - Interpolation/integration;
 - Additional systematic uncertainties...
- KNTW-DHMZ difference these clearly influence the central value!

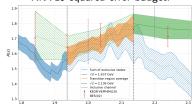

	DHMZ19	KNT19	Difference
π+π-	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^{+}\pi^{-}\pi^{0}$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
K+K-	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
$K_S K_L$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without cc)	33.45(71)	34.45(56)	-1.00
J/ψ , $\psi(2S)$	7.76(12)	7.84(19)	-0.08
[3.7, ∞) GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\mathrm{HVP,LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\phi}(0.7)_{\mathrm{DV+QCD}}$	692.8(2.4)	1.2

Theory Initiative White Paper 2020

- Need to mitigate and/or quantify these effects ⇒ KNTW new analysis.
- Want to avoid biases in updated procedure

 KNTW blinded analysis.

$$a_{\mu}^{\mathsf{blind}}[i] = rac{1}{4\pi^3} \int_{s_{i}}^{\infty} ds \Big\{ \sigma_i^0(s) \mathcal{K}_{\mu}(s) \, B_i(s) \Big\}$$

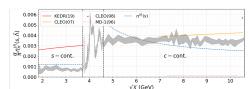


KNTW - arXiv;2409-02827, Phys. Rev. D 111, L031901

KNTW New Analysis Progress

"Re-Baselining"

- (Minor) Corrections of KNT19 analysis:
 - Checks of database against literature.
 - More detailed systematic covariance matrix construction.
- Completions of KNT19 analysis features:
 - Lagrange polynomial interpolation of all resonances.
 - Exclusive/inclusive transition region.
- Estimates of KNT19 method systematics:
 - Two unfixed aspects of procedure.
 - Systematics would be \sim 4.3% of KNT19 squared error budget.



FSR Studies

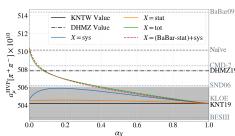
- Revisited $K\bar{K}$ confident in KNT19 conclusions for scan experiments.
- Looking at 3π with input of MH.
- Inclusive channel (grey band):
 - \bullet Improve 1% syst. with $q\bar{q}$ treatment.

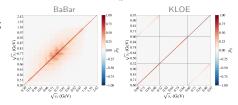
$$R_{(\gamma)} = \left(1 + \frac{\alpha}{\pi} \sum_{q = \mathsf{uds}(c)} Q_q^2 \eta^{(f)}(s, m_q^2)\right) R$$

- Datasets often FSR inclusive, hard correction needed for four datasets.
- Estimated 20% drop in $\Delta \alpha_{\rm had.}^{(5)}(M_Z^2)$ uncertainty!

KNTW Correlations Study

- Assess 'uncertainties on uncertainties' with decorrelation procedure for systematics:


$$\tilde{C}_{ij} = \alpha C_{ij} + (1 - \alpha) \operatorname{diag} \left[C_{ij} \right].$$


- Blue line does not replicate DHMZ etc.
- Use to estimate systematic uncertainty:

$$d^{
ho}a_{\mu}^{\pi^{+}\pi^{-}}=\pm 1.68 << d^{\mathsf{KLOE}/\mathsf{BaBar}}a_{\mu}^{\pi^{+}\pi^{-}};$$

extension to all channels $=\pm 1.95$.

- Implication (green line) need to vary stat. and syst. or 'KLOE favoured'.
- Difference driven by BaBar statistics.
- More advanced decorr.s possible but this provides an ~upper bound uncertainty.

arXiv2510.XXXXX

Conclusions

- Significant tensions remain within dispersive HVP evaluations.
- No (complete) explanation has yet been provided.
- The KNTW new analysis will attempt to accommodate these tensions but is blinded and ongoing - so no real results yet!
- Historic (but not current) tensions understood using new procedure.
- ullet The full implications of the result of the g-2 experiment cannot be known until the dispersive result is known.