Workshop on Flavour Changing and Conserving Processes (FCCP2025) Anacapri, September 29, 2025

Status of R measurements at low-energy e^+e^- colliders

Achim Denig Institute for Nuclear Physics Johannes Gutenberg University Mainz

R Measurements and Hadronic Vacuum Polarization

Hadronic vacuum polarization

Marc Knecht

Anomalous magnetic moment of the muon (g-2),

$$a_{\mu}^{HVP} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, K(s) \, \boldsymbol{\sigma}_{\text{had}}(\boldsymbol{s})$$

Running electromagnetic fine structure constant

$$\alpha_{\rm em}(M_Z^2) = \frac{1}{1 - \Delta\alpha(M_Z^2)};$$

$$\Delta\alpha_{\rm had}^{(5)}(M_Z^2) \sim \int_{4\pi^2}^{\infty} ds \, \frac{R_{\rm had}(s)}{s(s - M_Z^2)}$$

$$\sigma_{had}(s) = \ \sigma_{tot}(e^+e^- o Hadrons)$$
 $R_{had} = rac{\sigma_{had}(s)}{\sigma_{ee o \mu\mu}(s)}$

R Measurements and Hadronic Vacuum Polarization

Hadronic vacuum polarization

Marc Knecht

Anomalous magnetic moment of the muon (g-2),

nomalous magnetic moment of the muon
$$(g-2)_{\mu}$$
 Running electromagnetic fine structure constant

$$a_{\mu}^{HVP} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \ K(s) \ \boldsymbol{\sigma}_{\text{had}}(\boldsymbol{s})$$

→ relevant mass range < 2...3 GeV leading channel: $e^+e^- \rightarrow \pi^+\pi^-$ >70% contribution to a_{μ}^{HVP}

$$\sigma_{had}(s) = \ \sigma_{tot}(e^+e^- o ext{Hadrons})$$
 $R_{had} = rac{\sigma_{had}(s)}{\sigma_{ee o \mu\mu}(s)}$

→ relevant mass range < 13 GeV

Whitepaper '25: Lattice QCD-based SM-Prediction for $(g-2)_{\mu}$

JG|U

Davide Giusti

After decades of SM g-2 calculations, for the first time dispersive determination not used any more

JG U

Whitepaper '25: Lattice QCD-based SM-Prediction for $(g-2)_{\mu}$

New result from CMD-3 collaboration @ VEPP-2000 collider in Novosbirsk

Energy scan (from threshold up to 1.2 GeV) method, no ISR!

$$|F_{\pi}|^2 = (rac{N_{\pi^+\pi^-}}{N_{e^+e^-}} - \Delta^{bg}) \cdot rac{\sigma_{e^+e^-}^0 \cdot (1 + \delta_{e^+e^-}) \cdot \varepsilon_{e^+e^-}}{\sigma_{\pi^+\pi^-}^0 \cdot (1 + \delta_{\pi^+\pi^-}) \cdot \varepsilon_{\pi^+\pi^-}}$$

- Form factor extraction via selection of $\pi\pi/ee$ ratio
- Highest statistics data sample of all experiments, systematic uncertainty 0.7% on ρ peak
- → Significant deviation from previous ISR and energy scan experiments (CMD-2)! Why?

New result from CMD-3 collaboration @ VEPP-2000 collider in Novosbirsk

PRL 132 (2024) 231903 PRD 109 (2024) 112002

- Energy scan (from threshold up to 1.2 GeV) method, no ISR!
- $|F_{\pi}|^2 = (rac{N_{\pi^+\pi^-}}{N_{e^+e^-}} \Delta^{bg}) \cdot rac{\sigma_{e^+e^-}^0 \cdot (1 + \delta_{e^+e^-}) \cdot \varepsilon_{e^+e^-}}{\sigma_{\pi^+\pi^-}^0 \cdot (1 + \delta_{\pi^+\pi^-}) \cdot \varepsilon_{\pi^+\pi^-}}$

- Form factor extraction via selection of $\pi\pi$ /ee ratio
- Highest statistics data sample of all experiments, systematic uncertainty 0.7% on ρ peak
- → Significant deviation from previous ISR <u>and</u> energy scan experiments (CMD-2)! Why?

Background from cosmic ray events as a possible explanation for CMD-2/CMD-3 difference?

2023 Shock: CMD-3 @ Novosibirsk $e^+e^- \rightarrow \pi^+\pi^-$

Scrutiny of CMD-3 result within the Theory Initiative

- Very open replies by F. Ignatov → no major showstopper observed
- Very powerful analysis with many and impressive internal cross checks
- Monte-Carlo generator for energy scan cannot be independently varified

The alternative Method: Initial State Radiation (ISR)

- High statistics thanks to high luminosity
- Radiative corrections (H_{rad})

PHOKHARA event generator

Radiative corrections (H_{rad})

PHOKHARA event generator

JG U

Initial State Radiation – tagged vs. untagged

Tagged analysis:

ISR photon measured in Calorimeter

Untagged analysis:

No ISR detection; cut on missing momentum

- + exclusive reconstruction
- increased background
- reduced statistics
- + mass range $\sqrt{s'} < E_{CM}$

- + reduced background
- + very high statistics (x5)
- mass range $E_{th} < \sqrt{s'} < E_{CM}$

KLOE: E_{th} = ~0.6 GeV

BESIII: E_{th} = ~1 GeV

BABAR: E_{th} = ~3 GeV

Initial State Radiation - Normalization

Two independent normalization methods:

1) normalization to L_{int} (obtained from Bhabha events) and H_{rad} ; subtraction of background ($\mu+\mu-\gamma$, ...)

$$\sigma_{bare}(e^+e^- \to \pi^+\pi^-) = \underbrace{\frac{N_{\pi\pi\gamma}/\epsilon_{exp}}{L_{int} \cdot H_{rad}} \delta_{vac} \cdot (1 + \delta_{FSR})}_{N_{\pi\pi\gamma}/\epsilon_{exp}}$$

Initial State Radiation - Normalization

Two independent normalization methods:

1) normalization to L_{int} (obtained from Bhabha events) and H_{rad} ; subtraction of background ($\mu+\mu-\gamma$, ...)

$$\sigma_{bare}(e^+e^- \to \pi^+\pi^-) = \underbrace{\frac{N_{\pi\pi\gamma}/\epsilon_{exp}}{L_{int} \cdot H_{rad}} \delta_{vac} \cdot (1 + \delta_{FSR})}_{N_{\pi\pi\gamma}/\epsilon_{exp}}$$

- 2) normalization to $\mu+\mu-\gamma$ events, i.e. R ratio $(\pi\pi\gamma/\mu\mu\gamma)$
 - \rightarrow L_{int}, H_{rad}, δ_{vac} cancel in ratio!
 - \rightarrow requires high statistics of $\mu+\mu-\gamma$

$$R = rac{ extstyle N_{\pi^+\pi^-}}{ extstyle N_{\mu^+\mu^-}} \cdot rac{arepsilon_{\mu^+\mu^-} \cdot \left(1 + \delta^{ extstyle FSR}_{\mu^+\mu^-}
ight)}{arepsilon_{\pi^+\pi^-} \cdot \left(1 + \delta^{ extstyle FSR}_{\pi^+\pi^-}
ight)} \quad \stackrel{ extstyle extst$$

17

Overview Experiments

Experiment	Published Method	Normalization	Separation π - μ
KLOE √s~1 GeV	ISR untagged ISR tagged ISR untagged	Luminosity + H_{rad} Luminosity + H_{rad} μ + μ - γ	Kinematics Track Kinematics Track Kinematics Track
BABAR √s~10 GeV	ISR tagged	μ+μ-γ	Particle ID
BESIII √s~4 GeV	ISR tagged	Luminosity + H _{rad}	Particle ID (ML)
BELLE-II √s~10 GeV			
CMD-2/CMD-3	Scan < ~1 GeV	e+e-	Kinematics Track Kinematics EMC
SND	Scan < ~1 GeV	e+e-	Kinematics EMC

Overview Experiments

Experiment	Published Method	Normalization	Separation π - μ	Trackmass x+x-γ ≥ 0.08 - 0.54 < Q ² _{ππ} < 0.56 ππγ - ππγ
KLOE √s~1 GeV	ISR untagged ISR tagged ISR untagged	Luminosity + H_{rad} Luminosity + H_{rad} μ + μ - γ	Kinematics Track Kinematics Track Kinematics Track	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
BABAR √s~10 GeV	ISR tagged	μ+μ-γ	Particle ID	0.02 0.00 100 120 140 160 180
BESIII √s~4 GeV	ISR tagged	Luminosity + H _{rad}	Particle ID (ML)	M _{trk} [MeV]
BELLE-II √s~10 GeV				Signal (test sample) Background (test sample) Background (training sample)
CMD-2/CMD-3	Scan < ~1 GeV	e+e-	Kinematics Track Kinematics EMC	Artificial Neural Network
SND	Scan < ~1 GeV	e+e-	Kinematics EMC	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 CFMIPANN response

Overview Experiments

JG

BABAR Radiative Correction Studies (2023)

Detailed study of NLO and NNLO radiative corrections

- Kinematic fits for $\pi^+\pi^- \gamma_{ISR,LA} \gamma (\gamma)$, $\mu^+\mu^- \gamma_{ISR,LA} \gamma (\gamma)$
- Comparison with PHOKHARA (NLO full correction) and AfkQED (collinear approximation beyond LO) generators
- → NNLO radiation observed at 3.5% level (missing in PHOKHARA)
- → Phokhara prediction for small angle ISR photons at NLO too high by ~25% (AfkQED fits better to data)

JG

Possible Consequences from BABAR Findings (?)

Eur. Phys. J. C 84, 721 (2024)

- **BABAR**:
- rather inclusive selection and therefore weak dependence from PHOKHARA
 - → small effect on published BABAR result due to PHOKHARA NLO limitations
 - however: in original BABAR 2π paper 2% correction applied to AfkQED due to statement that PHOKHARA provides better NLO correction \rightarrow only valid for acceptance (?)

KLOE/BESIII: - less inclusive selection regarding NLO

→ claim: large effects due PHOKHARA NLO limitations of up to 3.2% in the case of BESIII

However, scenarios need to be taken into account:

- 1: NNLO interference terms (1) dominate → large effects
- 2: NNLO interference terms (2) dominate
- → significantly reduced effects on experimental analyses
 So far no explicit calculation of these NNLO interference effects

KLOE / BESIII Response to PHOKHARA Shortcomings

Investigation of kinematic cuts, which are sensitive to NLO corrections: Trackmass (KLOE), χ^2 (BESIII)

Radio-MonteCarlow Initaitive with detailed comparisons

- KLOE has presented a good agreement between various MC generators for realistic acceptance cuts and also in the case of the kinematic trackmass cut for KLOE-10
- BESIII has carried out a full detector simulations for various MC generators and a data-PHOKHARA comparison for $e^+e^- \rightarrow \mu^+\mu^-\gamma$ in the χ^2 distribution; furthermore it has been demonstrated that the published analysis is largely inclusive in higher order corrections

→ scenario 2 from DHLMZ23 paper strongly preferred

Data-Phokhara comparison for χ^2 distribution

KLOE / BESIII Response to PHOKHARA Shortcomings

The need for improved radiative corrections

Andrea Gurgone
Fulvio Piccini

<u>ISR</u>: for hadronic channels (especially two-pion channel) no independent cross check to Phokhara! <u>Energy scan</u>: no independent cross check to MCGPJ generator!

- \rightarrow Development of new MC generators of utmost importance for the field PHOKHARA@NNLO, McMule, Sherpa, BABAYAGA@NLO (including $\pi^+\pi^-\gamma$)
- → Controlled treatment of Final State Radiation effects
- → Efforts coordinated within the RadioMontecarlow initiative
- → Strong interplay between Theory and Experiment

The need for improved radiative corrections

Andrea Gurgone

<u>ISR</u>: for hadronic channels (especially two-pion channel) no independent cross check to Phokhara! <u>Energy scan</u>: no independent cross check to MCGPJ generator!

- ightharpoonup Development of new MC generators of utmost importance for the field PHOKHARA@NNLO, McMule, Sherpa, BABAYAGA@NLO (including $\pi^+\pi^-\gamma$)
- → Controlled treatment of Final State Radiation effects
- → Efforts coordinated within the RadioMontecarlow initiative
- → Strong interplay between Theory and Experiment

Fulvio Piccini @ Orsay

→ seems to confirm findings of BABAR regarding PHOKHARA liminations

Breaking News from 2025 Orsay Workshop and Outlook

27

New BABAR ISR Measurement of $e^+e^- \rightarrow \pi^+\pi^-$

Andreas Pinto @ Orsay

- New **blind BaBar analysis** (460 fb⁻¹) confirms the $\pi^+\pi^-$ contribution to a_{μ} .
- Independent method (angular fits, no PID) removes dominant 2009 systematic.
- Unblinded $\mu\mu\gamma$ spectrum agrees with QED, validating the approach.
- $\pi\pi$ cross section consistent with 2009, with **reduced systematics** in 0.5–1.4 GeV.
- · Results:
 - Below 0.5 GeV: $a_{\mu}^{\pi\pi} = (58.0 \pm 5.5 \text{ (stat.)} \pm 1.7 \text{ (syst.)}) \times 10^{-10}$
 - 0.5–1.4 GeV: $a_{\mu}^{\pi\pi} = (456.2 \pm 2.2 \text{ (stat.)} \pm 1.7 \text{ (syst.)}) \times 10^{-10}$
- Robustness shown by excellent agreement with 2009.
- Central region: systematic error 0.37%, statistical error (from fit) similar to 2009 analysis
- Statistical error dominates in threshold region

New analyses:
Factor x2 more statistics
Independent π - μ separation

Andrés Pinto

New BABAR ISR Measurement of $e^+e^- \rightarrow \pi^+\pi^-$

28

Andrés Pinto @ Orsay

 $e^+e^- \rightarrow \mu^+\mu^-\gamma$ BABAR(2025)/MC Phokhara

New BABAR ISR Measurement of $e^+e^- \rightarrow \pi^+\pi^-$

 $e^+e^- \rightarrow \mu^+\mu^-\gamma$ BABAR(2025)/MC Phokhara

Andreas Pinto @ Orsay

New SND Measurement of $e^+e^- \rightarrow \pi^+\pi^-$ (energy scan)

30

- New SND analysis based on 90/pb of data collected in 2018 (factor x20 compared to SND20)
- New selection algorithm, systematic uncertainty of 0.7%
 - → higher cross section compared to previous analysis (SND20)
 - \rightarrow ", application of the current analysis techniques to (previous) data results in better agreement"
- Cross check on 2% level with 2019 data
- In dispersion integral
 -0.6σ wrt. CMD-3
 +1.8σ wrt. BABAR(09)

Overview Experiments – Past and Future

Experiment	Published Method	Normalization	Separation π - μ - e	Future
KLOE	ISR untagged ISR tagged ISR untagged	Luminosity Luminosity μ+μ-γ	Kinematics Track Kinematics Track Kinematics Track	ISR untagged μ+μ-γ statistics x 7
BABAR	ISR tagged	μ+μ-γ	Particle ID	ISR tagged, separation by polar angle, statistics x 2
BESIII	ISR tagged	Luminosity	Particle ID (ML)	ISR tagged, μ+μ-γ, statistics x 7, 1C kin. fit
BELLE-II				ISR tagged, μ+μ-γ, Particle ID
CMD-3	Energy scan	e+e-	Kinematics Track Kinematics EMC	overall improvements
SND	Energy scan	e+e-	Kinematics EMC	overall improvements ML for π – e separation

Overview Experiments – Past and Future

Experiment	Published Method	Normalization	Separation π - μ - e	Future	
KLOE	ISR untagged ISR tagged ISR untagged	Luminosity Luminosity μ+μ-γ	Kinematics Track Kinematics Track Kinematics Track	ISR untagged μ+μ-γ statistics x 7	0.4%
BABAR	ISR tagged	μ+μ-γ	Particle ID	ISR tagged, separation by polar angle, statistics x 2	0.5%
BESIII	ISR tagged	inosity	Particle ID (ML)	ISR tagged, μ+μ-γ, statistics x 7, 1C kin. fit	0.5%
BELLE-II	or in preparation	on: niques,		ISR tagged, μ+μ-γ, Particle ID	0.5%
New analys	ators, new tech	25,	Kinematics Track Kinematics EMC	overall improvements	0.3%
ew Nic Bor awareness	es in preparation ators, new technology to (N)NLO issue to (N)	e+e-	Kinematics EMC	overall improvements ML for π – e separation	0.7%

Status of R measurements

Upcoming new ISR BESIII Measurement of $e^+e^- \rightarrow \pi^+\pi^-$

JG U

Existing BESIII tagged ISR result based on 2.9/fb of data at \sqrt{s} =3.77 GeV - 4C kinematic fit 0.9% systematic uncertainty

sources	Uncertainty (%)
Photon efficiency	0.2
Tracking efficiency	0.3
Pion ANN efficiency	0.2
Pion e-PID efficiency	0.2
Angular acceptance	0.1
Background subtraction	0.1
Unfolding	0.2
FSR correction $\delta_{ t FSR}$	0.2
Vacuum polarization correction $\delta_{ m vac}$	0.2
Radiator function	0.5
Luminosity $\mathcal{L}_{ ext{int}}$	0.5
Sum	0.9

Upcoming new ISR BESIII Measurement of $e^+e^- \rightarrow \pi^+\pi^-$

Existing BESIII tagged ISR result based on 2.9/fb of data at \sqrt{s} =3.77 GeV - 4C kinematic fit 0.9% systematic uncertainty

First half next year: expect new result! adding 3.1/fb of data at \sqrt{s} =4.18 GeV; 1C kinematic fit \rightarrow much less sensitive towards MC limitations of rad. corrections, some minor additional improvements (0.7%))

•	•
sources	Uncertainty (%)
Photon efficiency	$0.2 \rightarrow 0.0$
Tracking efficiency	$0.3 \rightarrow 0.2$
Pion ANN efficiency	0.2
Pion e-PID efficiency	$0.2 \rightarrow 0.0$
Angular acceptance	0.1
Background subtraction	0.1
Unfolding	0.2
FSR correction $\delta_{ t FSR}$	0.2
Vacuum polarization correction $\delta_{ m vac}$	0.2
Radiator function	0.5
Luminosity \mathcal{L}_{int}	$0.5 \rightarrow 0.3$
Sum	$0.9 \rightarrow 0.7$

Upcoming new ISR BESIII Measurement of $e^+e^- \rightarrow \pi^+\pi^-$

Existing BESIII tagged ISR result based on 2.9/fb of data at \sqrt{s} =3.77 GeV - 4C kinematic fit 0.9% systematic uncertainty

First half next year: expect new result! adding 3.1/fb of data at \sqrt{s} =4.18 GeV; 1C kinematic fit \rightarrow much less sensitive towards MC limitations of rad. corrections, some minor additional improvements (0.7%))

Next years: final result based on existing data set of 20/fb of data at \sqrt{s} =3.77 GeV; 1C kinem. fit and normal. to $\mu\mu\gamma$ (<0.5%)

sources	Uncertainty (%)
Photon efficiency	$0.2 \rightarrow 0.0$
Tracking efficiency	$0.3 \rightarrow 0.2$
Pion ANN efficiency	0.2
Pion e-PID efficiency	$0.2 \rightarrow 0.0$
Angular acceptance	0.1
Background subtraction	0.1
Unfolding	0.2
FSR correction $\delta_{ extsf{FSR}}$	0.2
Vacuum polarization correction $\delta_{ m vac}$	0.2
Radiator function	0.5
Luminosity $\mathcal{L}_{ ext{int}}$	$0.5 \rightarrow 0.3$
Sum	$0.9 \rightarrow 0.7$

JG

Upcoming new ISR BESIII Measurement of $e^+e^- \rightarrow \pi^+\pi^-$

1C kinematic fit with much (x4) improved efficiency for NLO ISR photons

→ more inclusive for (N)NLO photons

4C kinematic fit (published result)

crystal Zero Degree Detector

2 half detectors with 12 LYSO crystals each (SiPM) (on both sides), retractable

→ can also be used as luminosity detector

crystal Zero Degree Detector

2 half detectors with 12 LYSO crystals each (SiPM) (on both sides), retractable

→ can also be used as luminosity detector

crystal Zero Degree Detector

2 half detectors with 12 LYSO crystals each (SiPM) (on both sides), retractable

- → PANDA sampling ADC for SiPM readout
- → can also be used as luminosity detector

Good energy resolution (MAMI beam tests) 15 10 10 10 100 200 300 400 500 600 700 800 900 1000 Energy [MeV]

Installed in BESIII on Sept. 10th

→ cZDD detector will improve our capabilities for ISR physics (tagging of ISR photon, background subtraction, ...)

Conclusions

Conclusions

- New Lattice as well as CMD-3 results challenging previous e^+e^- data
 - difference in $\pi^+\pi^-$ between CMD-3 and other expts. to be understood
 - brand new BABAR data confirms previous result (in conflict with FNAL g-2)
 - will be exciting to see next upcoming new results (BESIII)
- Radiative corrections are a key issue → RadioMonteCarlow initiative! Comparison of existing MC codes should be possible shortly (finally!) New analysis algorithms designed to be resilient against MC limitations
- Have not covered other hadronic channels beyond $\pi^+\pi^-$ puzzles there as well
- Have not covered new inclusive ISR analysis at BESIII (with great potential for BELLE-II!)

Thank you!

New BELLE-II Analysis of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

44

- First BELLE-II ISR analysis of hadronic process: $\pi^+\pi^-\pi^0$ channel, (0.62 < $\forall s < 1.8$) GeV
 - → systematic uncertainty: >2.2%
 - → integral value higher by 2.5 sigma than BABAR
- Main limitation (~1.2% uncertainty): NLO radiative correction
 - → confirmation of BABAR findings, however with limited consequences

5% ... 10% higher cross section than BABAR in ω region

NEW \subset CMD-3: $e^+e^- \rightarrow K_SK_L$

- Measurement 1.004 1.070 GeV
- 1.8% systematic uncertainty (BABAR 2.9%)
- Reconstruction of $K_S \to \pi^+\pi^-$
- Fit to cross section:

$$\sigma_{e^{+}e^{-} \to K_{S}^{0}K_{L}^{0}}(s) = \frac{8\pi\alpha}{3s^{5/2}} p_{K^{0}}^{3} \left| \frac{g_{\rho\gamma}g_{\rho KK}}{D_{\rho}(s)} + \frac{g_{\omega\gamma}g_{\omega KK}}{D_{\omega}(s)} \right|_{\frac{1}{2}}^{\frac{1}{2}} + \frac{g_{\omega\gamma}g_{\omega KK}}{D_{\omega}(s)} + \frac{g_{\omega\gamma}g_{\omega KK}}{D_{\omega}(s)} + A_{\rho',\omega',\phi'} \right|_{\frac{1}{2}}^{2} + \frac{g_{\omega\gamma}g_{\omega KK}}{D_{\omega}(s)} + A_{\rho',\omega',\phi'} \right|_{\frac{1}{2}}^{2} + \frac{g_{\omega\gamma}g_{\omega KK}}{D_{\omega}(s)} + A_{\rho',\omega',\phi'} \right|_{\frac{1}{2}}^{2} + \frac{g_{\omega\gamma}g_{\omega KK}}{Q_{\omega}(s)} + A_{\rho',\omega',\phi'} \right|_{\frac{1}{2}}^{2} + \frac{g_{\omega\gamma}g_{\omega KK}}{Q_{\omega}(s)} + \frac{g_{\omega\gamma}g_{\omega KK}}{$$

Overall good agreement

CMD-3: $e^+e^- \to K^+K^-$

- Measurement 1.010 1.060 GeV
- 2.0% systematic uncertainty
 (BABAR 0.72 1.41 % in that range)
- Similar fit to cross section as for K_SK_L Parameters:
- New CMD-3 data above CMD-2 / BABAR ???

R_{incl} Measurement BESIII (2022)

Phys. Rev. Lett. 128 (2022) 062004

$$R_{\mathsf{had}}(s) = rac{1}{\sigma_{\mu^+\mu^-}} \cdot rac{\mathcal{N}_{\mathsf{had}} - \mathcal{N}_{\mathsf{bkg}}}{\mathcal{L} \cdot oldsymbol{arepsilon}_{\mathsf{had}} \cdot (1 + \delta)}$$

Analysis strategy: select all events with ≥ 2 tracks

- Reject back-to-back 2-prong events (Bhabha, μ+μ-)
- Remaining background from ISR and QED events subtracted from MC

- Energy range covered: $2.2 < \sqrt{s} < 3.7 \text{ GeV}$
- Statistical uncertainty <0.5%
 Systematic uncertainty <2.6% below 3.1 GeV
 ~3.0% above
- Above 3.4 GeV deviation observed with:
 - KEDR/Novosibirsk on the level of 1.9σ
 - pQCD theory on the level of 2.7σ

World's most precise R_{incl} measurement! Some deviations from pQCD seen?! Much more data will be published shortly!

Messages learnt from Inclusive R Measurement

- Selection requires ≥ 2 tracks, which are not back-to-back
- Detector acceptance starts above 21°
- \rightarrow For low-multiplicity final hadronic states ($\pi^+\pi^-$, $\pi^+\pi^-\pi^0$, $\pi^+\pi^-\pi^0\pi^0$, ...), the probability to be not selected large relatively large
- → Total event efficiency at 60% 70% level

For the determination of the event efficiency, a precise MC generator for $e^+e^- \to Hadrons$ is needed (possible model dependence difficult to estimate)

Inclusive ISR with detection of ISR photon only

$$s' = m_{\text{had}}^2 = s - 2 E_{\gamma} \sqrt{s}$$

New Inclusive Approach using ISR

Event selection:

- Select 1 high-energetic photon > 1.2 GeV \equiv ISR photon at large polar angle $|cos\Theta_{ISR}| < 0.8$
 - → Restricts hadronic mass spectrum < 2.7 GeV
- Require (for time being) \geq 1 charged track in the event
 - \rightarrow Does currently not include fully neutral states (e.g. $e^+e^- \rightarrow \pi^0 \gamma$)
- ISR boost confines particles into narrow cone
 - → Very high detection efficiency
- Less reliant on description of hadronic MC
 - → ISR description in MC under control
- Single measurement down to threshold (does not need scan)
- Measurement fully inclusive for Final State Radiation (FSR) and higher order corrections of ISR
- In principle able to measure fully neutral channels

JG|U

New Inclusive Approach using ISR: Efficiency

Event selection:

- Select 1 high-energetic photon > 1.2 GeV \equiv ISR photon at large polar angle $\lfloor cos\Theta_{ISR} \rfloor < 0.8$
 - → Restricts hadronic mass spectrum < 2.7 GeV
- Require (for time being) ≥ 1 charged track in the event
 - ightarrow Does currently not include fully neutral states (e.g. $e^+e^-
 ightarrow \pi^0 \gamma$)
- ISR boost confines particles into narrow cone
 - → Very high detection efficiency
- Less reliant on description of hadronic MC
 - → ISR description in MC under control
- Single measurement down to threshold (does not need scan)
- Measurement fully inclusive for Final State Radiation (FSR) and higher order corrections of ISR
- In principle able to measure fully neutral channels

JG|U

Unfolding from Detector Mass Resolution

- Large smearing introduced by limited detector resolution
- Application of unfolding algorithms to recover the true spectrum
- Requires Monte-Carlo program to construct unfolding matrix Response Matrix (RM)
- Systematically testing the bias in the unfolding procedure due to wrong input Monte-Carlo Pseudo Data (PD)

JG

Unfolding from Detector Mass Resolution

- More than 50 cross section variations in input MC tested (e.g. up to $\pm 5\%$ variation of 2π cross section)
 - → Very stable result for unfolded spectrum → variation well within percent level (=precision goal)

With larger data sets also conversion events might be used to significantly improve mass resolution

Deviation between data sets (in statistical significance)

→ Significant deviation from previous ISR <u>and</u> energy scan experiments (CMD-2)! Why?

Most relevant Channel: $e^+e^- \rightarrow \pi^+\pi^-$ (until 2023)

Systematic Uncertainties on $\rho(770)$ peak

- ISR BABAR 0.5%
- ISR KLOE 0.6%
- ISR BESIII 0.9%
- Energy Scan CMD-2 0.8%*
 - * limited in addition by statistics

Most recent evaluations of HVP:

- Davier, Höcker, Malaescu, Zhang (DHMZ)
 - averaging via 2nd ord. polynomial interpolation
 - systematic correlat. propagated via pseudo-data (MC)
- Keshavarzi, Nomura, Teubner (KNT)
 - data subjected to a clustering procedure
 - fit over all data sets taking into account correlations

JG|U

2020 Whitepaper Estimate of HVP

leaving out KLOE or BABAR, respectively

Hadronic Vacuum Polarization Contribution to $(g-2)_{\mu}$

Anomalous magnetic moment of the muon (g-2)_u

$$a_{\mu}^{HVP} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \ K(s) \ \boldsymbol{\sigma}_{\text{had}}(s)$$

Overview Experiments – Past and Future

Experiment	Published Method	Normalization	Separation π - μ - e	Future	
KLOE	ISR untagged ISR tagged ISR untagged	Luminosity Luminosity μ+μ-γ	Kinematics Track Kinematics Track Kinematics Track	ISR untagged μ+μ-γ statistics x 7	0.4%
BABAR	ISR tagged	μ+μ-γ	Particle ID	ISR tagged, separation by polar angle, statistics x 2	<0.5%
BESIII	ISR tagged	inosity	Particle ID (ML)	ISR tagged, μ+μ-γ, statistics x 7, 1C kin. fit	0.5%
BELLE-II	or in preparation	on: niques,		ISR tagged, μ+μ-γ, Particle ID	0.5%
New analys	es in preparation ators, new technology to (N)NLO issue to (N)	25,	Kinematics Track Kinematics EMC	overall improvements	0.3%
ew MC gov awareness	to (N) rgy scan	e+e-	Kinematics EMC	overall improvements ML for π – e separation	0.6%

Status of R measurements

Hadronic Cross Section Data after 2020 Whitepaper

58

- BESIII $\pi^+\pi^-$ (600 < $\forall s$ < 900) MeV, update of covariance matrix \rightarrow central value unchanged
- Energy scan measurements above 2 GeV of multi-hadronic channels (spectroscopy)
- Total hadronic cross section measurement above 2 GeV

- New SND scans of $\pi^+\pi^-4\pi^0$ above 1 GeV (> 3% uncertainty)
- New SND scan of $\pi^+\pi^-$ channel, (525 < \sqrt{s} < 883) MeV → systematic uncertainty > 600 MeV: 0.8%; after publications issues found
- New BABAR ISR data on $\pi^+\pi^-4\pi^0$, $2(\pi^+\pi^-)3\pi^0$, $KK\pi\pi\pi$
- New BABAR ISR analysis of $\pi^+\pi^-\pi^0$ channel, (0.62 < \sqrt{s} < 3.5) GeV
 - → systematic uncertainty: > 1.3%
 - \rightarrow fit to $M_{3\pi}$ including $\omega(782)$, $\omega(1420)$, $\omega(1680)$, $\phi(1020)$, $\rho(770)$

- First BELLE-II ISR analysis of hadronic process: $\pi^+\pi^-\pi^0$ channel, (0.62 < $\forall s < 1.8$) GeV
 - → systematic uncertainty: >2.2%
 - → integral value higher by 2.5 sigma than BABAR
- Main limitation (\sim 1.2% error): NLO rad. correction \rightarrow confirmation of BABAR findings

Inclusive R Measurement

59

Above cms energies of ~ 2 GeV inclusive measurement of R_{had}

(large QED background below, low multiplicities)

Master formula:

$$R_{\mathsf{had}}(s) = rac{1}{\sigma_{\mu^+\mu^-}} \cdot rac{\mathcal{N}_{\mathsf{had}} - \mathcal{N}_{\mathsf{bkg}}}{\mathcal{L} \cdot oldsymbol{arepsilon}_{\mathsf{had}} \cdot (1 + \delta)}$$

CMS Energy

- 14 points
- 2.2 GeV to 3.7 GeV
- $> 10^5$ had. events

Luminosity

Determined with large angle Bhabha scattering

Efficiency

Ratio of generated and reconstructed events from Monte-Carlo

Background Contributions

- Evaluated with MC:
 - BabaYaga@NLO, Phokhara, KKMC $e^+e^- \rightarrow e^+e^-, \mu^+\mu^-, \gamma\gamma, \tau^+\tau^-$
 - BdkRC, Diag36, Galuga, Ekhara $e^+e^-
 ightarrow e^+e^- X$
- Beam related background

Radiative Corrections

- Two schemes tested
 - Feynman diagram
 - · Structure functions
- Agreement within 1.2 %

Analysis strategy: select all events with ≥ 2 tracks

- Reject back-to-back 2-prong events (Bhabha, Di-Muons)
- Remaining background from ISR and QED events $(e^+e^- \rightarrow e^+e^-/\mu^+\mu^-)$ subtracted from MC

Hadronic Mass Spectrum

Mass spectrum after application of PID and meson veto

- Plots for $\sqrt{s} = 4.180 \text{ GeV}$ (3.1 / fb)
- No additional cuts using Muon Detector or other selection cuts

- Significant yield of hadronic events over QED background; hadronic non-ISR event yield small < 1.5 GeV
- However ... due to limited energy resolution of ISR photon, huge smearing effects (no ρ , ω , ϕ visible)

Improve Mass Resolution by using Photon Conversion Events

 Utilize conversion of ISR photon in detector material, especially the beam pipe

Reduction of statistics

- Tracks of produced e^+e^- pair to be reconstructed in the MDC
- Improvement of mass resolution by large factors
 - → Narrow resonances now separately visible
- High potential for the new high-statistics data sets at BESIII, especially the 20/fb data sample being currently collected
 - → allows for cross checks between different analysis approaches

JG|U

Challenge 1: Subtraction of QED Background

- Apply dedicated PID cuts, e.g. $E_{EMC}/|\vec{p}|$
- Subtract remaining QED events using MC simulation → High precision QED MC
 - $\sqrt{\text{needed}}$ needed aga@NLO ~0.1%: $e^+e^- \rightarrow e^+e^-(\gamma)$, $\gamma\gamma(\gamma)$
 - ✓ Phokhara ~0.5%: $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$
 - ✓ KKMC: $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$

Dramatic reduction of Bhabha background

Challenge 2: Subtraction of Hadronic Non-ISR Events

- Very asymmetric two-photon decays of π^0 mesons, $\pi^0 \to \gamma \gamma$, can produce high-energetic photons
- Veto events, in which $\gamma\gamma$ invariant masses peaks around the π^0 , η , η' mass

JG|U

Two independent inclusive Monte-Carlo Generators

Fully theoretical MC production

- Development based on Jetset for low-energy experiments (LundAreaLaw)
- Simulation of resonances and continuum
- ISR and vacuum polarization implemented
- Kinematics of final hadrons tuned by experimental distributions (N_{trk}, N_ν, cosΘ, ...)

MC generator almost entirelybased on exptl. data

- PHOKHARA event generator (10 low-multiplicity channels 2π , 3π , 4π , $N\overline{N}$, ...) fitted to exptl. data
- CONEXC based purly on exptl. data (phase space),
 47 channels

Remaining channels simulated by LUARLW

After years of developments, tuning, and cross checks a deviation of better than 2.3% (including ISR) between the hybrid generator and LUARLW is found (major achievement)

Lattice QCD Windows Estimates

Serious deviation between data-driven evaluation of a_{μ}^{HVP} and intermediate-distance Lattice-QCD window

- weight function allows to relate Lattice-QCD window to total hadronic cross section
- weight function peaked at ~1.5 GeV
- ca. 1/3 of total a_{μ}^{HVP} , of which 60% given by $\pi^+\pi^-$
- selects ~28% of absolute $\pi^+\pi^-$ contribution
- need to explain deviation of $7 ... 8 \times 10^{-10}$

Explanation 1: Upscale $\pi+\pi$ - data by >5% (flat), however this causes some conflict with BMW result for full a_{μ}^{HVP}

Explanation 2: Underestimated contributions > 1 GeV (higher multipl.), however would need to be large effect; hadronic particle not being observed by experiment, e.g. Sexaquark? arxiv:2206.13460

Explanation 3: Common systematic effect in Lattice-QCD and/or underestimated BMW21 result for full a_{μ}^{HVP}

New BELLE-II Analysis of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

Belle II Preliminary

This exp.

BABAR (21)

SND (02,03,20) CMD-2 (04,07)

 $\int L dt = 191 \text{ fb}^{-1}$

66

- First BELLE-II ISR analysis of hadronic process: $\pi^+\pi^-\pi^0$ channel, (0.62 < \sqrt{s} < 1.8) GeV
 - → systematic uncertainty: >2.2%
 - → integral value higher by 2.5 sigma than BABAR
- Main limitation (~1.2% uncertainty): NLO radiative correction
 - → confirmation of BABAR findings, however with limited consequences

Achim Denig

Measurements on R-Exclusive *vs. Inclusive*

Exclusive measurements (<2 GeV)

- Individually highly precise
- Energy scan or initial state radiation
- Large number of channels at higher energies
- Sum over multiple channels

Inclusive measurements (>2 GeV)

- Covers all possible channels
- Reliant on good Monte Carlo generator
- Only energy scan measurements
- Subtract QED background

Some tension with KEDR data in the transition region around 2 GeV

Inclusive Monte-Carlo Production LUARLW

Fully theoretical MC production

- Development based on Jetset for low-energy experiments (LundAreaLaw)
- Simulation of resonances and continuum
- ISR and vacuum polarization implemented
- Kinematics of final hadrons tuned by experimental distributions

MC generator based on experimental data (as much as possible)

- PHOKHARA event generator (10 low-multiplicity channels 2π , 3π , 4π , $N\overline{N}$, ...) fitted to exptl. data
- CONEXC based purly on exptl. data (phase space), 47 channels
- Remaining channels simulated by LUARLW

After years of developments, tuning, and cross checks a deviation of better than 2.3% (including ISR) between the hybrid generator and LUARLW is found (major achievement)

Whitepaper Estimate of HVP

- Merging of KNT, DHMZ estimates + input from ChPT/dispersive fits: CHHKS for 2π , 3π channels; determinations from FJ17 and BDJ10 (assuming hadronic models in global fit) not considered
- Observation that averaging procdures in KNT and DHMZ lead to large differences for individual channels (especially 2π) although total average in good agreement, which is accidental!

$$\rightarrow a_{\mu}^{HVP,LO} = 693.1(2.8)_{\text{exp}}(2.8)_{\text{syst}}(0.7)_{\text{pQCD}} = 693.1(4.0) \times 10^{-10}$$
 Whitepaper estimate

- exp: experimental uncertainties: 2.8×10^{-10} 2.8×10^{-10} domitated by 2π channel uncertainty
- syst: KLOE/BABR tension taken into account by estimating HVP leaving out KLOE or leaving out BABAR in evaluation:

 2.8×10^{-10}

- pQCD: difference in energy region [1.8;3.7] GeV btw. KNT and DHMZ; usage of pQCD by DHMZ, while KNT follows data-driven approach: $.7 \times 10^{-10}$

	DHMZ19	KNT19	Difference	
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62	
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42	
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31	
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12	
K^+K^-	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08	
$K_S K_L$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22	
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17	
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46	
[1.8, 3.7] GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00	
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08	
[3.7, ∞) GeV	17.15(31)	16.95(19)	0.20	
Total $a_{\mu}^{\text{HVP, LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\text{DV+QCD}}$	692.8(2.4)	1.2	

Achim Denig

[G|U

HVP and Electroweak Precision Physics

Artificially increasing e^+e^- cross sections (over full energy range) to mach $a_{\mu}^{\rm exp}$

- \rightarrow Impact on running of fine structure constant $\Delta\alpha_{had}(M_Z^2)$
- \rightarrow increasing deviation btw. EW fit and EW measurements (e.g. M_H, M_W, ...) ?!

ISR: $e^+e^- \to \pi^+\pi^-\pi^0$, $e^+e^- \to \pi^+\pi^-2\pi^0$

Cross section $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

	fb ⁻¹	$a_{\mu}^{4\pi} [10^{-10}]$
Before		$16.76 \pm 1.31 \pm 0.20_{rad}$
BABAR	450	$17.9 \pm 0.1 \pm 0.06$
BESIII (prel.)	2.9	$18.63 \pm 0.27 \pm 0.57$

Cross section $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

	$a_{\mu}^{3\pi} [10^{-10}]$	
Before _{KNT18} (<2 GeV)	47.79 ± 0.89	
BESIII (prel.)	49.15 ± 0.56 ± 0.58	

Meson2021: Bastian Kubis

ESII Experiment at the tau-charm Factory BEPC-II

World's by far largest τ -charm dataset in e^+e^- annihilation:

- Symmetric e⁺e⁻ collider
- Located at the BEPCII collider (Beijing, China)
- CMS energy:2 GeV to 5 GeV
- Maximum luminosity: $1 \times 10^{33} \, \text{cm}^{-2} \, \text{s}^{-1}$
- 93% coverage of the solid angle

JG

Standard Model Prediction of $(g-2)_{\mu}$

360

This work

Original work
BESIII

BESIII aims for new two pion analysis with precision goal of 0.5% (tagged analysis)

45

40 35

- 20/fb of data at 3.77 **GeV** available soon
- Normalization to $\mu^+\mu^-\gamma$ events
- Improved pion-paton separation

Source

BESIII 2016

Whitepaper 2025: KLOE LA-Analysis

