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Present status of SM theory prediction Phys. Rep. 887, 1 (2020) Phys. Rep. 1143, 1 (2025)



SM prediction (the White Paper(s) in a nutshell)

Considering SM contributions only, one has, by order of importance

aℓ = aQED

ℓ + ahadℓ + aweakℓ

aQED

ℓ : loops with only photons and leptons ←− fully perturbative

ahadℓ : loops with photons and leptons and at least one quark loop dressed

with gluons ←− fully non-perturbative

aweakℓ : loops with also contributions from the weak sector

←− perturbative with (small) non-perturbative pieces



QED contribution :

−→ loops with only photons and leptons

−→ can be computed in perturbation theory (conceptually clear)
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−→ need to go to high orders ∆aexp
µ ∼ 14 · 10−11 [∆aexp

e ∼ 13 · 10−14]

(α/π)4 = 2.91 . . . · 10−11 (α/π)5 = 6.76 . . . · 10−14

−→ becomes technically challenging (1, 6, 72, 891, 12 672, . . .)

−→ mass effects are very crucial! [C
(10)
µ = 750.72(93) vs. C

(10)
e = 4.952(55)]

−→ requires an input for α



QED contribution :

aQED
µ (Cs) = 116 584 718.932(23)α(7)mass(17)α4(6)α5(100)α6 [104] · 10−11

aQED
µ (ae) = 116 584 718.833(13)α(7)mass(17)α4(6)α5(100)α6 [103] · 10−11

aQED
µ (Rb) = 116 584 718.795(8)α(7)mass(17)α4(6)α5(100)α6 [102] · 10−11

−→

aQED
µ = 116 584 718.8(2) · 10−11

aexpµ (WA) = 116 592 071.5(14.5) · 10−11

aexpµ (WA)− aQED
µ = 735.3(1.5) · 10−10
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- QED provides more than 99.99% of the total experimental value

- The missing part has to be provided by weak and strong interactions (or else, new

physics...)



Weak contribution:

−→ loops with Z0, H , νℓ,...

−→ can (almost) be computed in perturbation theory

aweakµ = 15.44(4) · 10−10

aexpµ − aQED
µ − aweak

µ = 719.86(1.50) · 10−10



HVP contribution:

−→ starts atO(α2)

−→ can be expressed as

aHVP-LO
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−→ the low-energy region dominates

−→ cannot be handled in perturbation theory

−→ non-perturbative approaches have been developed:

data-driven, lattice QCD



HVP contribution: σ(e+e− → had)

−→

−→ e+e− → had cross-section measurements

−→ more than 40 exclusive channels have been measured

−→ ππ channel dominates

−→ many experiments have contributed:

ISR: BaBar, KLOE, BESIII, Belle II,...

scan: CMD-2, SND, CMD-3 (VEPP 2000)



HVP contribution: e+e− → ππ

√
s ≤ 1.8 GeV



HVP contribution: e+e− → ππ



HVP contribution: τ± → π±π0ντ

−→ data from several experiments:

Belle, CLEO, ALEPH, OPAL

−→ need to control isospin rotation from π±π0 channel to π+π−!



HVP contribution: e+e− → had

Improvements in many channels (other than ππ) since WP20



HVP contribution: lattice QCD

−→ discretized and finite-volume space-time

−→ dispersive integral becomes integral over the Euclidian time axis

−→ independent ensembles of gauge-field configurations

−→ different fermion discretizations



HVP contribution: lattice QCD



HVP contribution: summary

clear tensions among data-driven determinations but also

between lattice and data-driven determinations (except CMD-3 and τ )!



HVP contribution: summary

lattice QCD: from 711.6(18.4) [2.6%] (WP20) to 713.2(6.1) [0.9%] (WP25)

aHVP;tot
µ [WP25] = 704.5(6.1) · 10−10



HLxL contribution:

−→ starts atO(α3)

−→ non-perturbative aspects important

−→ several approaches have been considered:

dispersion relations, lattice QCD

analytical approaches (holographic QCD, rational approximants, resonance
models, SDE,...)

−→ short-distance constraints have been established
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HLxL contribution: dispersion relations

−→ not described by a single experimental observable

? −→

−→ several contributions identified through pole and cut singularities

−→ require input for form factors (experiment, lattice,...)

−→ match to QCD short-distance constraints



HLxL contribution: lattice QCD

−→ several independent determinations

−→ with different fermionic actions

−→ quark-disconnected contributions, isospin-breaking effects



HLxL contribution: summary

aHLxL
µ [pheno] = 103.3(8.8) · 10−11 [aHLxL,NLO

µ [pheno] = 2.6(6) · 10−11]

aHLxL
µ [lattice] = 112.5(9.0) · 10−11 [(7.1)stat(5.6)syst]

aHLxL
µ [WP25] = 112.6(9.6) · 10−11 [was 90(17) · 10−11]
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Concluding remarks

FNAL-E989 result went well beyond expectations, congratulations to the g-2

collaboration for this long endeavour and strong commitment over almost

two decades (even more than two decades if including BNL-E821)

Strong implication on the theoretical side, coordinated within the g-2 Theory

Initiative (WP20 and WP25)

Collateral effect: breakthrough in the performances of lattice calculations,

unprecedented achievement in precision and control over the main

systematic effects (continuum and infinite-volume limits), diversity of

approaches (fermion types,...). The lattice community will undoubtedly

benefit from this impetus/momentum to deal with other challenges in the

future
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Concluding remarks

Quest to understand serious tensions between different hadronic

cross-section measurements will continue (e.g. radiative corrections, KLOE

re-analysis, new experimental data,...)

Room for improvement also on the theoretical side

Importance of alternative approaches, e.g. MUonE for HVP, E34 at J-PARC

There will be an after FNAL-E989+WP2025, this is not the end of a story, but

perhaps only just the beginning

The result on amu, combined with constraints coming from other

observables, will probably recompose somewhat the landscape of BSM

models -¿ we’ll see in the future
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to continue this series of meetings

that started 10 years ago!

Thanks for your attention!
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