Dipartimento Interuniversitario di Fisica University and INFN-Bari

Radiation Detectors for Medical Physics

Raffaella Radogna

University and INFN Bari

18 February 2025 TECH-FPA PhD retreat 2025

References

Dr Barbara Camanzi Oxford "Imaging and detectors for medical physics" series of lectures The Cockcroft Institute

Edited by M A Flower Webb's Physics of Medical Imaging CRC Press

A Del Guerra Ionizing Radiation Detectors for Medical Imaging World Scientific

https://cds.cern.ch/record/2737317/files/ Lecoq2020_Chapter_DetectorsInMedicineAndBiology.pdf

From particle physics to medicine

- There is a long history of successful applications of particle physics technologies to medicine.
- CERN develops cutting-edge technologies in a wide range of domains and has significant experience in applying this know-how to medical applications:
 - Over 50 years of experience in development of PET technologies.
 - Design and characterization of high spatial resolution, fast timing detectors, uses in hadron therapy and medical imaging.
 - Hybrid pixel detector technology was developed for particle tracking at CERN and has enabled high resolution, color X-ray CT imaging

Positron Emission Tomography

First PET image of a mouse taken in 1977 at CERN using high-density avalanche chambers

https://cerncourier.com/a/pet-and-ct-a-perfect-fit/

Multi modality imaging PET + CT

© MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

https://www.mayoclinic.org/tests-procedures/pet-scan/ about/pac-20385078

Radiation Detectors in Medicine

CMS ECAL module

R. Radogna

PET scanner module

Which detectors ?

- Solid state detectors (Si, diamond) (Beam location and abort, vertex reconstruction, tracking)
 Gas detectors (Tracking, calorimetry, muon detectors)
 Scintillating materials + photon detectors (Calorimetry)
- Detectors for particle physics and medicine have different requirements:
 - Developments in radiation detectors won't be driven by advances in technology alone, but a medical reason is needed!
 - Detector for medical application needs custom design → it's not a technology looking for an application, but a problem looking for a solution

Medical physics

Specific requirements

Detection range	 Low energies: 18 keV for mammograms for ex. 	
Read-out	 No trigger (no bunch crossing) → self-triggering electronics or free running High acquisition rates > GHz Manageable number of read-out channels 	
Event size	 Can be small 1 bit ÷ 10 bytes 	
Geometry	 Large area often required Almost no dead space 	
Patient's requirements	Meet stringent ethical requirements and regulation Ensure patient's comfort	
Market	 Can be large: 10³÷10⁶ units 	

Which applications?

The patient journey

- Diagnosis
- Treatment
- Post-treatment

Diagnostics

Imaging:

- Planar X-ray imaging
- Computed Tomography
- Positron Emission Tomography
- Single Photon Emission CT
- MRI
- Ultrasound

Endoscopy

Tests on samples:

- Tissue (biopsy)
- Blood
- Body fluids

X-ray imaging

Planar radiography

Computed Tomography

- X-ray source and detector fixed
- 2D projection of all tissues between Xray source and detector
- Xray source and detector rotate at high speed around patient + patient moved in third direction
- 3D image of body region
- much higher dose wrt to planar radiography

Scintillators and photon detectors

Nuclear medicine imaging

Imaging of radioactive decay products of a radiopharmaceutical (radiotracer) introduced into the body \rightarrow emission imaging (as opposed to X-ray imaging = transmission imaging) Spatial distribution depends on how radiopharmaceutical interacts with tissues in the body

Choice of radionuclides for imaging

- 1. Produces γ rays with high photon yield (good counting statistics) and suitable $E\gamma$
 - High enough so that Photon is able to efficiently escape the body
 - Photopeak is easily separated from scattered radiation
- Low enough so that Detection efficiency is still good Photons are not too difficult to shield and to handle
 Absence of particulate emission (α or β particles) → no unnecessary dose to patients

Single Photon Emission CT

Detects γ -rays and for each γ -ray records x-y position, energy and time

- ⁹⁹Tc $^{\rm m}$ injected into body \rightarrow one 141 keV gamma
- two or three rotating detector head
- each detector head made of gamma camera:
 - capable of withstanding γ -ray detection rates up to tens to thousands events per second
 - reject γ -rays scattered in the body \rightarrow no useful spatial information
 - as high sensitivity as possible \rightarrow high quality images

Diagnostics 2024, 14(13), 1431; https://doi.org/10.3390/diagnostics14131431

Positron Emission Tomography

Basic principle:

1. Radiotracers used undergo β + decay \rightarrow emit e+

- 2. e+ travels on average 0.1÷3 mm in tissue depending on radiotracer → scatters → loses energy → comes to rest
 3. e+ at rest combines with atomic e- to form positronium
- 4. Positronium decays emitting two back-to-back 511 keV γ

PET detection unit is made of a full ring of scintillating detectors surrounding the patient to detect photons in coincidence

PET block detector

- PET module is has 'block detector' design
- Ideal geometry would be one crystal coupled to one PMT → better spatial resolution but too expensive
- usually arrays of crystals shares same PMT
- Ideal scintillation material for use in PET has:
 - High detection efficiency for 511 keV γ -rays
 - Short decay time to allow for short coincidence resolving time
 - High light yield and optical transparency at emission wavelength to minimise reabsorption

PET scanner module

Scintillators for PET

	Decay time (ns)	Relative light yield ¹	Efficiency	Emission wavelength (nm)	Refractive index
BGO	300	0.15	0.72	480	2.15
LSO(Ce)	40	0.75	0.69	420	1.82
BaF ₂	0.8 prim 600 sec	0.12	0.34	220, 310	1.49
GSO(Ce)	60 prim 600 sec	0.3	0.57	430	1.85
Nal(Tl)	230 prim 10 ⁴ sec	1.0	0.24	410	1.85

¹Relative to NaI(Tl)

- Scintillator must be 2 cm or more in thickness for high sensitivity
- NaI(Tl) =low efficiency for 511 keV γ -rays \rightarrow not used in PET
- LSO/LYSO crystal (Lutetium (yttrium) Oxyorthosilicate) is the best option

Hybrid PET/CT

Stand-alone PET scanner almost entirely replaced by **hybrid PET/CT scanner**s:

- Two separate systems one next to the other
- Bed that slides between two systems
- Improved attenuation correction
- Ability to fuse anatomical (morphological) and functional information

R. Radogna

Time of Flight PET

Accurate measurement of arrival time of γ -ray allow localizing the annihilation point along the line of response (LOR)

- Fast scintillating materials needed for TOF-PET
- Fast photon detectors

Heterostructures

Hybrid structures in which high-Z inorganic scintillator is layered with fast scintillators (organic/nano-crystals) for time tagging

ONGOING R&D

- ultra-fast scintillators for medical applications and HEP (Crystal Clear Collaboration)
- doped plastic scintillators (AidaInnova)

P. Lecoq et al 2020 Phys. Med. Biol. 65 21RM01

Other examples

- Gas detectors have limited application in medical imaging because of the higher energy threshold for producing ionisation than other detectors → less ionisation produced for same incident energy → lower energy resolution and lower stopping power
- Semiconductors detectors need only few eV to create e-h pair → for given energy greater ionisation produced than in gas → higher energy resolution
 - Small sensitive area limited by engineering
 - ChargeCoupled device (CCDs) have low detection efficiency for photons with E > 30 keV and charged particles → used coupled with scintillators
 - flat panel are used as imaging systems for X-ray radiotherapy

Treatment

Treating cancer with radiation

External beam radiotherapy:

- X-ray beam
- Electron beam
- Proton/light ion beam

Internal radiotherapy:

- Sealed sources (brachytherapy)
- Radiopharmaceuticals

Binary radiotherapy:

- Boron Neutron Capture Therapy (BNCT)
- Photon Capture Therapy (PCT)

Killing Cancer via DNA Damage

External beam radiotherapy

Unlike X-rays, charged particles stop!

Electrons, being lighter, scatter and spread out.

Protons deposit most dose at the end of their path: the Bragg Peak.

Protons stop, but you need to know where...

Medulloblastoma Comparison

R. Radogna

https://www.itnonline.com/content/pediatric-brain-tumor-patient-uk-undergoes-first-treatment-proton-therapy

Radiation detectors for radiotherapy

Beam commissioning

- Before facility startup

Beam monitoring

- Online to guide and control the beam delivery

Quality Assurance

- daily/weekly/monthly
- Dosimetry
 - daily
- Microdosimetry
- Radiobiology

Radiotherapy with external beams

Cyclotron for protons and Synchrotron for protons&light ions

LINAC for radiotherapy

- Protons (60-250 MeV/u)
- Carbon ions (115-400 MeV/u)

- Photons (6 18 MV)
- Electrons (6 18 MeV)

<u>https://agenda.infn.it/event/39042</u> /contributions/222751/attachments/116477/167889/ SiliconDetectorsForMedicalPhysics-Last-spare.pdf

Beam monitors in the nozzle

Nozzle equipped with particle detectors integrated with the accelerator control system to **guide and control** the beam in real time.

Phys. Med. Biol. 68 (2023) 105013

CNAO horizontal beam line

Nucl. Instr. Met. A 698 (2013) 202

<u>https://agenda.infn.it/event/39042</u> /contributions/222751/attachments/116477/167889/ SiliconDetectorsForMedicalPhysics-Last-spare.pdf

Beam monitor state of the art

ADVANTAGES

- ✓ Reliability & long term (years) stability
- ✓ Large (up to 40x40 cm²) sensitive area
- ✓ Simple to use
- Deeply studied manufacture
- ✓ A few mm water equivalent thickness
- Radiation resistant

Roadmap: proton therapy physics and biology Paganetti et al. Phys. Med. Biol. 66 (2021) 05RM01

"Currently ionization chambers(IC) are predominately used (in fact they **are legally required in most countries).** " Sequence of Parallel Plate ICs:

- → single large electrode for FLUENCE
- → electrodes segmented in strips for BEAM POSITION and SHAPE

https://agenda.infn.it/event/39042 /contributions/222751/attachments/116477/167889/ SiliconDetectorsForMedicalPhysics-Last-spare.pdf

Beam monitor state of the art

LIMITATIONS

✓ Long collection times ~ 100 µs
 ✓ Low Sensitivity ~ 10⁴ protons
 ✓ Poor time resolution ~ no/poor
 ✓ Deviation from linearity @ high dose rates

Not suitable for

- fast scanning modalities
- timing applications
- high dose rates (FLASH)

Ισγαπου πι πισει σσαπιποε.

<u>https://agenda.infn.it/event/39042</u> /contributions/222751/attachments/116477/167889/ SiliconDetectorsForMedicalPhysics-Last-spare.pdf

Sequence of Parallel Plate ICs:

- → single large electrode for FLUENCE
- → electrodes segmented in strips for BEAM POSITION and SHAPE

- Air
 - N_{2,} Ar-CO₂

E = 1 kV/cm

30

Proton Beam Quality Assurance

- Accelerators used for proton therapy typically produce protons with energies of 70 to 250 MeV.
- Accurate Quality Assurance is needed to check the beam parameters (dose, position, shape, range) before treatment.

Daily QA checks				
Dosimetry	Tolerance			
Beam constancy	±3%			
Depth verification	±1mm			
SOBP width	2mm			
Spot position	±1mm			
Spot size (monthly checked)	±10%			

doi.org/10.1002/mp.13622

Daily Range QA @PSI: MLIC

Multilayer ionization chambers (MLICs)

- Reconstruct the Bragg peak using gas detectors
- Ionization chambers (filled with air) in a stack configuration

Scintillator-based detector for clinical proton beam QA

Integrated system for range, spot position and size reconstructed with single beam delivery

RANGE MODULE

- stack of plastic scintillator sheets
- reconstruction of the depth-dose beam profile

BEAM TRACKER

- 2D scintillating fibre arrays
- Reconstruction of the transverse beam profiles at the entrance of the detector

Key benefits:

- Plastic scintillator water-equivalent.
- Easy detector setup and no optical artefacts.
- Light output dose-rate independent.

Online treatment monitoring

- Treatment sensitive to any source of deviation from the treatment planning.
- During treatments, high energy prompt γ-rays are naturally emitted as a result of protonnuclear reactions with the patient's tissue.
- Online/Offline treatment monitoring is possible by detecting the secondary radiation emitted along the beam path.

R. Radogna

https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2024.1356572/full

hydrotherapy treatment monitoring

- In-beam (open) PET system
- Proton range radiography (PRR)
- Interaction vertex imaging and nuclear scattering tomography (IVI and NST)

- In-beam PET needs high sensitivity because of the low induced activity when compared to nuclear imaging
- open geometry to avoid interactions with the beam
- Multi-gap Resistive Plate Chambers and multi-layered GEMs considered for superior localization properties and lower cost as alternative to scintillators.
 - low intrinsic efficiency in detecting high-energy photons as to be increased i.e. using high-Z converters (passive or as electrodes)

Proton range radiography

- Proton range telescope measures protons trajectory and residual energy (range)
- could provide a 3D-map of the relative stopping power.

An alternative to scintillators could be the usage of a high-granularity digital tracking calorimeter based on silicon/absorber sandwich

R. Radogna

TERA foundation: https://project-aqua.web.cern.ch/ Ref NIM A 732, 564–567, 2013

Compton Chamber

Two position- and energy-sensitive sub-detectors: scatterer and absorber A γ undergoes a Compton scattering in the first detector and is then absorbed in the second detector

- Direction of the γ is not univocally determined (cone)
- Many γ from the same source point are needed to reconstruct the source position

For online treatment plan verification, it is needed an high-resolution imaging of gamma sources within few seconds:

• conventional Compton chamber do not yet allow an on-line monitoring

Electron Tracking Compton Chamber

Pixel Chamber as the scatterer

- The Pixel Chamber is a stack of thin pixel detectors capable of tracking the emitted electron
- This can constrain the original direction using a single photon reducing the background, the number of gamma required for performing precise source imaging and acquisition time.
- A first prototype of Pixel Chamber is proposed considering state-of-the-art monolithic active pixel sensors, the <u>ALPIDE sensor</u> developed for the ITS of the ALICE experiment at the CERN LHC

Conclusions

"The significant advances achieved during the last decades in material properties, detector characteristics and high-quality electronic system played an ever-expanding role in different areas of science, such as high energy, nuclear physics and astrophysics. And had a reflective impact on the development and rapid progress of radiation detector technologies used in medical imaging."

[D. G. Darambara, "State-of-the-art radiation detectors for medical imaging: demands and trends", Nucl. Inst. And Meth. A 569 (2006) 153-158]