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Outline

* Particle Accelerators and their Perspectives: present, near- and long-term
projects

* Accelerators in the world today and Main Applications
* Brief history of RF accelerators

* Main Accelerator types and techniques

* RF linear accelerators: Normal, Super-Conducting and Dielectrics
 Circular accelerators
* Laser, Dielectric and Plasma Wakefield Acceleration—> EuPRAXIA@SPARC_LAB

 State-of-the-art and Challenge
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The Livingston Plot (near future) 100 TeV ——— JFecn
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(likely FLAT) Major R&D development efforts in:

“* HOW to avoid this? RF accelerator technology (NC and SC) and Magnets
Short answer, we know what to do. ~ EE—) Dielectric and PLASMA = from «incremental» to

«disruptive» innovation!!!

s* WHY do we (really) need it?

Short answer, Yes. Most accelerators in the ‘Crucial
world work at relatively low energies.... But SUSTAINABLE TECHNOLOGY (Higher
many planned high-energy machines worldwide. power efficiency, Reduction of the
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TYPES of particle Accelerators

2- Circular Accelerators: Particles move in a circular path
1- Linear Accelerators (Linacs): Particles travel in a straight using magnetic fields, gaining energy with each pass (e.g.,
line through a series of accelerating cavities. Linacs are used cyclotrons, synchrotrons).
as injectors to larger accelerators and as stand-alone when
large beam intensities are required.

The Lawrence and Livingston cyclotron (13 cm
diameter and accelerated a proton beam to ¢
keV)

3- Laser/Dielectric/Plasma Wakefield Accelerators: Utilize
waves in plasma or dielectrics to achieve compact, high-
energy acceleration.
Laser driver

e-beam
Plasma wave A

E300- o

e-beam

Transv. coordinate, x [um]
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LORENTZ FORCE: ACCELERATION AND FOCUSING

The basic equation that describes the acceleration/bending/focusing processes is the Lorentz Force. —

) R L pP = momentum
Particles are accelerated through electric fields and are bended and focused through magnetic fields.
nm — mass

@)_q (E+5X§) Vv = velocity

I I q = charge

BENDING AND FOCUSING

2"d term always perpendicular to motion => no energy gain

ACCELERATION

To accelerate, we need a force in the direction of motion

Accelerating Gradient

Energy Gain
Length

Eyec(V/m) =

i

Main challenge

Higher E . for
shorter machines

Longitudinal Transverse
Dynamics
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Brief history: from DC to RF Linear Accelerators

DC voltage as large as ~10 MV can be obtained (E~10 MeV). The
main limit in the achievable voltage is the breakdown due to
insulation problems.

TW Linac

high-woltage
terminal

pressure
tank

positive
| ion saurce

charge
remover
points

charge

controllable
spray voltage

i
—
£ C1 "'F ll:z I3 C3 "E- IC&

the particles are accelerated by the electric field in the gap between
electrodes connected alternatively to the poles of an AC generator.
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Metallic LINEAR RF ACCELERATORS TECHNOLOGY: NORMAL vs SUPER-CONDUCTING

—=The cavities (and the related LINAC technology) can

be of different material:

copper for normal conducting (NC) RF cavities;
Niobium for superconducting (SC) RF cavities.

Dissipated power into the cavity walls
is related to the surface resistance R,

and currents

Pyiss =

copper

R [mQ]=7.8 f% [GHZz] R,[nQ]

Between
copper and
Niobium
thereis a
factor 10°-10°
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HOW to choose? NC SC
Accelerating Gradient | 100 MV/m @ CLIC 30MV/m @ ILC

60 MV/m @ EuPRAXIA@SPARC_LAB
RF Pulse Length 100’s ns —few us Up to ms

Power Dissipation

~ kKW/m (R, = 1073Q)

<1W/m (R, = 107°Q)

Duty cycle

< 0.1% (rep. rates 10-100 Hz)

> 1% up to 100% (CW)

RF-to-beam power

30% - 60% (SLAC Linac, Compact

60% - 80% (European XFEL, LCLS-II)

Efficiency industrial linacs) = 90% (medium-energy linacs)
20 - 40% (X-band high-gradient, e.g.
CLIC)

Complexity Lower capital cost Higher capital cost

Operation Costs

Higher

Lower
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Normal conducting RF structures

State-of-the-art
Warm Cavities Accelerating Repetition
Gradient Rate S-ban
S-Band (3 GHz) 15-30 MV/m 50-300 Hz
C-Band (5-6 GHz) >50 MV/m <100 Hz
X-Band (1112 GHz)  >100 MV/m <100 Hz
Need to be affordable: cost-effective production/manufacturing Cell length~2.5cm C-band
R&D on NC LINACS @INFN-LFN
* EuPRAXIA@SPARC_LAB
*  ASTERIX experiment. Funded by INFN CSN5.
*  MICRON experiment. Funded by INFN CSN5.
- Previously funded experiment by INFN CSN5: DiElectric and METallic
Radiofrequency Accelerator (DEMETRA) 2015-2018 Xtband
Applications
» Research on RF Breakdown Rate and RF Breakdown Physics;

» Electron beam longitudinal phase-space manipulation in FELs (EuPRAXIA@INFN-LNF,
CompactLight FEL, UC-XEL@UCLA)

» Multi-frequency accelerators (S. Tantawi, SLAC)

» Development of single and multi-frequency high-power RF klystrons
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Start-to-end fabrication flow-chart: EUPRAXIA@SPARC_LAB structure

RF and thermo- High-precision :
mechanical design Quality control
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Main Operational Limitation: RF Breakdown phenomenon

High accelerating gradient is needed for future accelerators: higher energies in smaller footprint!
* Vacuum activity

» ¢ Visible light
* X-rays

The main limitation for a high-gradient structure is RF breakdown phenomenon

RF breakdown arcs take place in the vacuum volume of the accelerating structures with a certain statistical probability that
reduces the performance of the accelerator

’5100;""""|""|' L L
3] =
S 107 Hard Cu ]
» disturb the trajectory of the beam and its emittance = j02) r ]
 luminosity loss 2 0] ]
* possibly beam loss. S 104} ]
g 10'5é~ Hard Cu-Ag 4
. . . . . S 106L ]
Breakdowns in high-gradient linacs can interrupt ke 1°7f f
. . . E 10— L e e e e e e e e b
accelerator operation, leading to downtime. @ 750 100 150 200 250 300 350
Gradient (MV/m)
R oo e et P | Hard Cu and hard CuAg have better performance then soft

heat-treated copper.
- Hard CuAg had record performance for room
temperature structures.

<« New joining techniques: welding.

Dolgashev VA, Faillace L, Spataro B, Tantawi S, Bonifazi R. High-gradient rf tests of welded X-
band accelerating cavities. Physical Review Accelerators and Beams. 2021 Aug
10;24(8):081002. 12
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SRF Resonators Families: < 0.50 & > 0.50

B=0.5
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Quarter- it vave resonator (700-
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B, = 0.29 B, =0.53
Half-Wave Resonators
322 MHz

)]
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Courtesy of L. Monaco, D. Sertore, C. Pagani
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Towards future large and sustainable machines

For future accelerators, it is important to: (E o L)?
Pgiss =
* Increase E__: (5) Qo
* Target energy reached with less cavity Q

e Reduce machine length

. Q, vs E,.. @ T=2K
* Increase Q,: Quality factor

TOE+1 T _ ESS Medium Beta Cavities qualification power rise at 2K, the
. nominal workinglrempemture. ERP corresponds to the cryogenic
° Reduce power consump“on power consumption at the ESS goal of 5x10° at 16.7 MV/m.
 Minimize cryogenic power ") sustainability cryogenic power reduced by factor > 2 with high measured Q,
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ol N Bulk Niobium performance increase

| ]
10D i fie o o Effect of 120°C bake | .
Pl e : 4 To go beyond the standard power rise, a carefull
1ot -'I ) h'_ processing of the inner surface of the cavity is
ool . ] mandatory.
i - Specific processes are necessary to cure Q slope at
"0 20 a0 60 s 10 1 10 1e0 10 different accelerating field:
(a) Bpeak (mT)

* Low T baking. 120 °C

* Two-step baking (75 °C + 120 °C)
* Ninfusion at 120 °C

* Mid T baking: 300 °C

* Ndoping

4
| 210ML pp, 05 = e wWlET . OXCIE - =
= NAN = ER Ly
1. s3hL ! o g s B0y maipg <" RYs FAtled
B 75120°C Mode Baks
| % MN-Doped
® LTE-120Cx48hr J. Halbritter, Proc. SRF’01,
A M-Infused
m EP Tsukuba, Japan, p. 292
109 4 : . : . T s
0 10 20 30 Ho 50 EXTEMDS
(k) Eqoe (MVim) Mses G

RRR 2100 coL)
WoRksf
Figure 2.6 (a) Low field, medium field, and high field Q-slopes cbserved after standard
treatment of EP. 120 C bake removes the HFQS, leaving an extended region of MFQS [42]
Courtesy of A Grassellino, Fermilab. (b) Q, versus E,,. at 2 K of 1.3GHz Nb SRF cavities
treated at FNAL with state-of-the-art surface treatments, such as nitregen-doping, two-step NbO, (x ~ 0.02)
baking, and nitregen infusion, compared to standard treatments of EP or EP followed by ' '

120 C baking [12] Court f 0. Bafia, F ilab. .
Fng R ety e, B, e Courtesy of L. Monaco, D. Sertore, C. Pagani
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Nb3Sn for operation at higher temperature

* Vapor diffusion of Nb;Sn (T. ~ 18 K hence small R,) on Nb substrate
* Small R, opens the possibility of using cryocooler, recently demonstrated

* Similarities with Nb;Sn in magnet wire but

 Strict control of impurities

e Can achieve very clean grain boundaries
* Relative smooth surface finishing to avoid

field enhancement

9-cell coated cavities

10"

o
O
10%}
OO 1010 |
- TBYACCO14 Coating 1 108’
A TB9ACCO014 Coating 2 0
0 TB9AES005 Coating 1 T=4.4 K
109 77 { I |
0 5 10 15 20

E__ [MV/m]
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Single Cell Evolution over the years
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Courtesy of L. Monaco, D. Sertore, C. Pagalréi
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Dielectric LINEAR RF ACCELERATORS TECHNOLOGY

<R

Istituto Nazionale di Fisica Nucleare

DLA Motivations

High accelerating gradients enable compact/miniaturized particle accelerators

TARGET

Accelerating Gradient: ~ 500 MV/m - 2 GV/m

Main advantages of DLA:
larger damage threshold of dielectrics in near
infrared with respect to metals;

¥

Dielectric Laser Accelerator (DLA) structures

operating at optical wavelengths (~ 1- 5 um)

[1]1R.Joel England et al., Rev. Mod. Phys. 86, 1337-2014
[2] E. Nanni, et al., Nat Commun 6, 8486 (2015).
[B] F. Lemery, et al.” Commun Phys 3, 150 (2020).

L. Faillace

schematic overview of the accelerating gradient for different types of accelerators
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From Radio Frequencies to Infrared Light

Simple idea: Use scale-invariance
equations and shrink down size
accelerators by 4 orders of magnitude.

INFN

Istituto Nazionale di Fisica Nucleare

Maxwell
particle

Replace RF power (cm-wavelength) with laser (um-

wavelength)

Material properties are frequency dependent ->

dielectrics

Beam dynamics challenges

[Rasmus Ischebeck, Structure-based accelerators (e.g. ACHIP) and advanced Power Source
radiation generation schemes, talk @the 2022 EuroNNAc Italy 18- 24 DLA tvpi
ical
September 2022] [https://agenda.infn.it/event/28376/contributions/178676/ ypt Wavelength
deser parameters Bunch Length
X
I—PZ ¢ Bunch Charge
DLA Operating Principle ¥ ky Norm.
: l E, e~ 1Y eilkzz-wt) Emittance
_ '
e - Rep Rate
T £y ox elvelltrmed Material
— — Ry Unlo?ded
ccelerating mode: w = fck, —T=k,/y Gradient
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Klystron
2-10cm
1-5ps
0.1-4nC

0.1-1 pmrad

1-1000 Hz
Metal
10-50 MV/m

Courtesy of G. Torrisi

laser

1-10 pm
10-100 as

1-10fC

1-10 nm rad

100 MHz

|
Dielectric |

1-10 GV/m
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<R

DLA leverages advances in two major areas:
solid state lasers + semiconductor fabrication
Not high peak power lasers! Fabricated using techniques of the

int L [ iti try.

DLA Value integrated circuit industry

Wavelength 2 um

Pulse Duration 100 fs

Pulse Energy pJ-m)

Laser Power 100 W [Pietro Musumeci, Accelerator on a chip program

overview invited talk @ EuroNNAc La Biodola Bay,
_ Isola d'Elba, Italy 18- 24 September 2022]

Rep Rate 100 MHz - KHz hstcépa}s://ag:ndz.iynfn.it/eveerft/EZIg3§r6/contributions/

Laser Efficiency  30% 179636/

Cost/laser $200k SEM images of DLA prototypes

Available now .

Soud_state la‘Ser “Off the Shelf” fused silica silicon
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Experiments with relativistic beams have demonstrated

record gradients and energy gain
SLAC/UCLA: 0.85 GeV/m* SLAC/UCLA: 0.3 MeV energy gain**

pulse front
tilted laser 0

0 \kO

0.0 0.2 04 06 08 10 T EI ||
1 PR 800 nm 1: > e-
9 Gggr =850 MV/m mlininininls
15 =
%
4 < >
L: 10 =
<
5 Interaction length > 500 um
electron energy spectrum
o ; ; ; - 1000um 800nm
0 /.2 4 6 8 10 T 2
Kerr Eq incident (GV/m) Q ) l
saturation =
= o
* D. Cesar et al, Communications Physics 1(4), 1-7 (2018) A 100 200 300 400
** D, Cesar et al, Optics Express 26 (22), 29216 (2018) AE (keV)

L. Faillace TECH-FPA PhD Retreat 2025 Courtesy of G. Torrisi

20



Principle of plasma acceleration

— 16 -3 —
ny = 107 cm Ap =300 Hum = Laser-driven plasma Wakefield

Accelerator (LWFA):
Drive beam is a laser pulse

plasma cavities [FenGr—"

wakefield accelerator (PWFA):
Drive beam is high energy
electron or proton beam

withness beam

Wave-breaking field

drive beam

E,,[V/m]= 100 Jno |cm=3]
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<R EUPRAXIA SPARC LAB i

Istituto Naziol

EuPRAXIA@SPARC_LAB (1 -5 GeV)

I N F N LNF-18/03
- May 7, 2018

° DiStribUtEd RI Particle-driven Istituto Nazionale i Fisica Nucleare
e 2 FEL Construction wakefield acceleration
Sites
 Several Excellence EUPRAXIA at
LNF-INFN (Site 1)
Centers EuPRAXIA@SPARC_LAB

Conceptual Design Report

Plasma module
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(NN IR RTREhnG gy valldatsaliniiah Plasma accelerating module

Istituto Nazionale di Fisica Nucleare

TABLE 1. EUPRAXIA SPARC_LAB parameters extracted from Ref> Nominal values
and last update? Goal parameters
Device  Ppr——"p— Value  |Unit 1.1 GeV (1 GV/m 60cm capillary - density 10 cm-3)
Plasma Energy Gain 0.5 GeV Tob-200 H
Accelera- Length o] | cm 0- Z . . .
{5s g DEfiE 015 1017 : * Fabrication by machining
Repetition Rate C_jm_lgo Hz » 10 increasing diameter
Active Strength 15 |kT = Density range 10'6 -10"7 cm3
s Leneth 24 P = 13 kV with 500 A
cns — o .
Repetiion Rate | CT0150°S | s = 100 Hz rep Rate (nominal value)
>0 1r?117easurement
Holder 1500
: i = IHHHL b 1 2500 22
ﬁﬁ ol i e l—l—[— 2"
Gas distribution ‘; 2,0
@
c
S 154
- " ©
- g 1,0 -
S
o
0,5

10 20 30 40 50 60 70
Longitudinal position (mm)
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CONCLUSIONS AND FUTURE WORK

» Review of main Technologies for Particle Accelerators:
* RF acceleration (normal-, super-conducting and dielectrics)
* Wakefield acceleration.

» Main Challenges for all accelerators: Higher Accelerating Gradient and Higher
Quality Factor 2 more compact and sustainable machines. | O

» Future developments: New materials, new geometries, new manufacturing 6/§ze/Footprint
processes, etc. f

Cost/Budget

What is the acceleator of the future? Application

* |tall depends on the required application, available budget and footprint.
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