fasci di neutrino monitorati al CERN A. Longhin Padova Univ. and INFN on behalf of the ENUBET Coll.

ENUBET

Inputs EU strategy update 2025 INFN-PD 25/10/2024

25 Ott 2025

Inputs per la EU strategy 2025

EU strategy document (19 June 2020):

"To extract the most physics from DUNE and Hyper-Kamiokande, a complementary programme of experimentation to determine neutrino cross sections and fluxes is required. Several experiments aimed at determining neutrino fluxes exist worldwide. The possible implementation and impact of a facility to measure neutrino cross-sections at the percent level should continue to be studied".

The rationale of ENUBET

The knowledge of neutrino cross-section is stuck at 10-30 % level and the needs of the neutrino community are at 1% level because:

- Leading systematics for long-baseline experiments → Neutrino Oscillation Physics
- Limited possibility to validate nuclear electroweak effects ("nucleus and nuclear correction") → Electroweak physics
- Neutrino generators based on different approaches still provide results with >50% discrepancies → Nuclear Physics

A. Longhin

25 Ott 2025 Inputs per la EU strategy 2025

NP06/ENUBET development

- **H**^e⁺**H**^e**K**⁺
- A dedicated short baseline neutrino beam with a 1% precision in v_e and v_μ fluxes aimed to a refined near detector
- Reduce the dominant systematics on flux → precise cross section measurements → consolidate the long-baseline program with high quality experimental inputs

A. Longhin, L. Ludovici, F. Terranova, EPJ C75 (2015) 155

https://www.pd.infn.it/eng/enubet/

🗙 @enubet

PI: A. Longhin, F. Terranova. Techn. Coord: V. Mascagna

- CERN Neutrino Platform: NP06/ENUBET
- Physics Beyond Colliders 🔶

ENUBET

A. Longhin

Inputs per la EU strategy 2025

ENUBET

... the first **"monitored neutrino beam":**

production of neutrino-associated leptons monitored at single particle level in an instrumented decay region

 $\begin{array}{l} \mathsf{K}^{\scriptscriptstyle +} \to \mathrm{e}^{\scriptscriptstyle +} \mathrm{v}_{\mathrm{e}} \, \pi^{\scriptscriptstyle 0} \to (\text{large angle}) \, \mathrm{e}^{\scriptscriptstyle +} \\ \mathsf{K}^{\scriptscriptstyle +} \to \mu^{\scriptscriptstyle +} \mathrm{v}_{_{\mu}} \, \pi^{\scriptscriptstyle 0} \, \text{or} \to \mu^{\scriptscriptstyle +} \mathrm{v}_{_{\mu}} \to (\text{large angle}) \, \mu^{\scriptscriptstyle +} \end{array}$

• v_e and v_μ flux prediction from e^{*}/μ^{*} rates

- Needs a collimated mom-selected hadron beam → only the decay products hit the tagger
 → manageable rates and irradiation in the detectors
- Needs a "short" decay region : ~all v_e from K, only ~1% v_e from μ (large flight length)

NB: it requires a **specialized beam**, not a "pluggable" technology for existing super-beams (unfortunately!)

The ENUBET beamline design

The name of the game: **collimation and reduction of backgrounds from stray beam particles** ("only decay products in the tagger")

p 400 GeV

- Focuses 8.5 GeV +/- 10% mesons (v spectrum ROI ~ DUNE)
 - Length: 26 m
 - Tagger length: 40 m
 - Neutrino detector (500 t) 50 m after the hadron dump
 - 14.8° bending angle
- documented in **EPJ-C 83, 964, 2023**

Design and performance of the ENUBET monitored neutrino beam

F. Acerbi¹, I. Angelis²¹, L. Bomben²⁻³, M. Bonesini³, F. Bramatl^{3,4}, A. Branca^{3,4}, C. Brizzolari^{3,4}, G. Brunetti^{5,4}, M. Calviani⁶, S. Capelli²⁻³, S. Carturan⁷, M.G. Catanesi⁸, S. Cecchin⁷, N. Charitonidis⁶, F. Cindolo⁹, G. Cogol¹, G. Collazuo^{6,10}, F. Dal Corso⁵, C. Delogu^{5,10}, G. De Rosa¹, A. Falcone^{3,4}, B. Goddard⁶, A. Golazuo^{6,10}, F. Dal Corso⁵, Y. Kudenko¹¹, C. Lamgoudis²¹, M. Kallitsopoulou²², B. Kliček²⁰, Y. Kudenko^{11,4}, Ch. Lamgoudis²¹, M. Kallitsopoulou²³, B. Kliček²⁰, Y. Kudenko^{11,5}, Ch. Lamgoudis²¹, M. Laveder^{5,10}, P. Legou²⁴, A. Longhin^{65,10}, L. Ludovici¹⁵, E. Lutsenko⁻³, L. Magaletti^{5,14}, G. Mandrioli⁹, S. Marangoni^{3,4}, A. Meregaglia¹⁶, M. Mezzetto³, M. Nessi⁶, A. Paoloni¹⁷, M. Pari^{5,10}, T. Papaevangelou²⁴, E. G. Parozzi⁴, L. Pasqualin^{19,18}, G. Paternoster¹, L. Patrizi¹⁹, M. Pozzato⁹, M. Prest⁻³, F. Pupilli⁵, E. Radicion⁸, A.C. Ruggeri¹¹, G. Saibene^{5,3}, D. Sampsonidis²¹, C. Scian¹⁰, G. Sirrt⁹, M. Stipčevi²⁰, M. Tenti⁹, F. Terranova^{3,4}, M. Torti^{1,4}, S.E. Tzamarias²¹, E. Vallazza³, F. Velotti⁶, L. Votano¹⁷

... 50 m ...

https://arxiv.org/pdf/2308.09402.pdf

https://link.springer.com/article/10.1140/epjc/s10052-023-12116-3

ENUBET

Irradiation levels

Dose is sustainable by magnets even in the hottest regions (<300 kGy/10²⁰ pot).

Neutrons simulations guided the design of the instrumentation \rightarrow 30 cm of Borated PE (5%) added to protect the Silicon Photomultipliers. Good lifetime (7e9 n/cm²/10²⁰ pot). Accessible eventually.

A. Longhin

Inputs per la EU strategy 2025

@INFN-Padova

ENUBET //arxiv.org/pdf/2308.09402.pdf

A. Longhin

Particle budget and rates

Entering the tagger: $4.6 \times 10^{-3} \pi^{+}/\text{pot}$ $0.4 \times 10^{-3} \text{K}^{+}/\text{pot}$

The hottest regions of the tagger see ~ 500 kHz/cm² with 2.5×10^{13} pot/2.4 s (slow extraction) Pile-up mostly non critical but has to be treated.

→ the detector has to be fast enough, radiation hard, costeffective (large area)

25 Ott 2025

Hit map for e⁺ in a few ns

Inputs per la EU strategy 2025

ENUBET

Lepton event by event reconstruction

GEANT4 simulation. Event building: clustering of cells in space and time (accounting for **pile-up**) → PID with a Multilayer Perceptron

$v_{\mu/e}$ CC spectra at detector

500t @ 50 m after the hadron dump @ 400 GeV \rightarrow **0.7** M v_{μ}^{cc} with 1e20 POT

 \rightarrow **10000** v_{e}^{cc} with ~1e20 POT

@INFN-Padova

The protoDUNE(s) could be such a detector (an evident asset for a possible siting at CERN)

EPJ-C 83, 964, (2023)

ENUBET

A. Longhin

1

e^tno Det

ν_μ fluxes decomposition: NBOA (~PRISM)

"Narrow-band off-axis technique" (NBOA): bins in the **radial distance from the center of the beam** \rightarrow **single-out well separated neutrino energy spectra** \rightarrow strong prior for **energy unfolding**, independent from the reconstruction of interaction products in the neutrino detector. "Easy" rec. variable. A kind of "off-axis" but without having to move the detector (thanks to the small distance of the detector)!

ENUBET

A. Longhin

25 Ott 2025 Inputs per la EU strategy 2025

Precision on the neutrino flux

• considered the dominant sys. (hadroproduction) extracted from hadroproduction experiments at the SPS (NA56/SPY), which gives a 6% uncertainty on flux

• added as an additional prior the rate, position and energy distributions of positrons from K decay reconstructed in the tagger v. CC rate relative error on v. CC rate : pre and post-fit

Flux uncertainty for ν_{μ} and ν_{e} drops from 6% to 1% using positrons only. Further improvements expected by adding the reco. muons

F. Bramati poster at Neutrino2024

In progress: add detector effects, magnet currents, beam component, material budget uncertainty, and exploit the additional constraints from reconstructed muons (paper in preparation)

t-tagging for interacting v

The goal of ENUBET (monitored beam): get a sample of associated leptons to constrain the flux. To do this an event-by-event information is needed. Timing has to be "just" good enough to limit the pileup (not too aggressive).

 \rightarrow Time correlation btw K_{e3} e⁺ and v_e candidates with the full simulation (reconstruction, backgrounds) \rightarrow

Difference in path between the e^+ and v_e (decay vertex position is unconstrained \rightarrow we assume e^+ and v_e to be collinear) \rightarrow "irreducible" time spread: $\sigma_{\Delta t} = 74 \text{ ps}(*)$

(*) already corrected for the position of the neutrino vertex (**) could improve decreasing the tagger radius

 $\Delta t = t(v_e) - [t(e^+) + \Delta'/c]$

ENUBE1

ENUBET & time-tagging

EPJ-C 83, 964, (2023)

By applying a cut on the Δt bewteen the v_e and e^+ candidates the SNR passes from ~2 (for the inclusive e^+ sample) up to ~8-10 for neutrino-associated e^+

Precise value depends on σ_t of tagger and neutrino detector and the slow extraction spill duration

The demonstrator

A. Longhin

Inputs per la EU strategy 2025

@INFN-Padova

ENUBET

The demonstrator detector technology

A. Longhin

Inputs per la EU strategy 2025

@INFN-Padova

Inclined and calibration runs

200 mrad tilt run

Efficiency map

25 Ott 2025

Inputs per la EU strategy 2025

@INFN-Padova

Event displays (mu, had 10 GeV)

ENUBE

run = 1656 event = 7

run = 1656 event = 7

Inputs per la EU strategy 2025

Electron E resolution

Publication in the pipeline with both 2022 and 2023 data

A. Longhin

25 Ott 2025

Inputs per la EU strategy 2025

@INFN-Padova

ENUBET

NuTAG: pushing on σ_t (tagger) and $\sigma(E_v)$

NuTAG: state-of-the-art silicon trackers with excellent timing ("4D") → tag the parent of the decay

Ideal for 2-body decays (π_{μ_2}, K_{μ_2}) to reconstruct E_{ν} $p_{\pi/K}$ (parent momentum): tracking before and after a dipole Θ_{ν} (with the interaction vertex in the detector)

Large BR statistics: low-intensity runs. Flux of v_e : inferred from knowledge of B.R.(K_{µ2})/B.R.(K_{e3}) If μ can also be tracked: predict the v position -> Relax time matching

Could provide E_{ν} resolutions at the % level. Studies progressing. Challenges: upgrade of NA62 GigaTracker, reconstruction.

	Available	Max. Radiation	Max. Flux
NA62-GTK	since 2015	1014 n _{eq} /cm2	2 MHz/mm ²
HL-LHC	before 2028	10 ¹⁶⁻¹⁷ n _{eq} /cm²	10-100 MHz/mm ²

$$E_{v} = \frac{(1 - m_{\mu}^{2}/m_{\pi}^{2}) p_{\pi}}{1 + \gamma^{2} \theta_{v}^{2}}$$

ENUBET

A. Baratto-Roldan et al. arXiv: 2401.17068

PBC-SBNCERN Physics Beyond Colliders
short baseline neutrino (PBC-SBN)

e n

<u>link</u> to talk @ PBC annual meeting link to Neutrino2024 poster

M. Jebramcik

4 directions:

- Improved design. Compatible with ENUBET & NuTAG
- **Compatible with the CERN fixed target programme** (more v with less p)
- with fluxes down to O(1) GeV → Hyper-Kamiokande
- Conceptual level feasibility study at CERN: siting constraints, costs

The new design uses moderately "bolder" assumptions on the quads apertures (very conservative for NP06/ENUBET) \rightarrow multi-objective optimization, CNGS-like target, shorter line \rightarrow

 1.4×10^{-3} K⁺/pot $\rightarrow 3.5 \times$ higher Large gain! \rightarrow physics performances of ENUBET with this beamline is in progress (~ similar S/B).

worked out worked out being studied being studied

ENUBET

PBC-SBN perspectives

These recent studies shows that ~ 10⁴ v_{a} ^{cc} and 5 × 10⁵ v_{μ}^{cc} , with a flux normalization at 1%, over ~ 5 years in a detector of similar size to the ProtoDUNEs are feasible.

~0.3e19 POT/year (SHiP asks 4.0e19/year)

Studies about possible siting at CERN are in progress.

Shooting on the **protoDUNEs** at the North-Area would be an ideal optimization of resources \rightarrow checking feasibility/costs in practice

Other areas capable of accommodating detectors of similar size are being considered (also a WCh. detector ~ "WCTE++" would be extremely interesting)

Forward monitoring with PICOSEC Micromegas

- Instrument also the forward region: observe μ from π decays \rightarrow constrain low-E ν_{μ} component
- Instrumented hadron dump PIMENT (PIcosecond MicromEgas for eNubeT), ANR2022-25
- Prototype tested with the ENUBET demonstrator, at T9 in Aug. 2024 → few 10s of ps resolutions achieved
- Athens, CNRS, INFN, Thessaloniki, Zagreb

https://doi.org/10.1016/j.nima.2018.04.033

CERN Aug. 2024

19 channel anode 🔿 1 cm

ENUBET

A. Longhin

25 Ott 2025

Inputs per la EU strategy 2025

etnu Pet

A low-E_v monitored beam at ESS ?

- MNB@ESS WP6 of the ESSnuSB
 - previous talk by Tamer Tolba
- E_p = 2 GeV. No K and π multiplicity very low.
 Mitigated by a very LARGE intensity.
- Must monitor muons. They are not as forward as for ENUBET due to lower boost → cyl. geom. still OK.
- Design based on (PICOSEC) MicroMegas
- The spill structure (2.86 ms) makes pileup more delicate than for ENUBET (→ finer granularity 1cm²)
- Use only a fraction of the extracted protons
- → Constrain on the flux **seems feasible**
- with a sufficient statistics of neutrinos
- End-to-end studies as for ENUBET being carried on

A. Branca <u>link</u>

	ENUBET@CERN	MINB@ESS	Notes
Proton driver	400 GeV/c	2 GeV	At ESS we exploit pion decays and muon decays in flight [no K]
Secondaries	8.5 GeV/c	About 1-2 GeV	
Proton extraction	2 s	2.86 ms	This is a key item WP6 has assessed in 2023
Decay in flight of muons	Negligible	It is the main source of ν_{e} at the ESS	7

ENUBET

Conclusions

CERN Aug. 2024

- Next two years will be crucial NP06/ENUBET
- Preparing for a dedicated workshop **Neutrinos@CERN** organized by PBC/Neutrino Platform at CERN in 23-24 January 2025
- and a contribution to the ESPPU process starting in spring 2025 ("European Strategy for Particle Physics Update").
- The importance of the inclusion of an **even larger community** does not need to be emphasized!

• Thanks!

@INFN-Padova

ENUBE

ν_μ fluxes decomposition: NBOA (~PRISM)

"Narrow-band off-axis technique" (NBOA): bins in the **radial distance from the center of the beam** \rightarrow **single-out well separated neutrino energy spectra** \rightarrow strong prior for **energy unfolding**, independent from the reconstruction of interaction products in the neutrino detector. "Easy" rec. variable. A kind of "off-axis" but without having to move the detector (thanks to the small distance of the detector)!

Error bands visualize the rms of the energy distributions

ENUBET

25 Ott 2025 Inputs per la EU strategy 2025

... a closer look

hadron-dump: ~ optimized to reduce back-scattering in the tunnel & fraction of not-monitored flux

Target: graphite L = 70 cm, r = 3 cm

Inermet absorber @ tagger entrance with conical channel

Simulation: optics optimization (TRANSPORT). Design: G4beamline. Irradiation (FLUKA). Systematics (GEANT4, fully parametric, access to particle history).

A. Longhin

Inputs per la EU strategy 2025

The PBC-SBN beamline optimization

- link to the talk at the PBC annual meeting by M. Jebramcik 26/03/24
- Analyzed 16 targets, 7 drift spaces, 18 guad. parameters (6 magnets with different length, aperture, gradient) \rightarrow 26 free parameters
- **Multiple (3) objectives**: K+ & π+ transmission as possible and the beam size has to be as small as possible in the momentum selection and the decay tunnel
- 1) Linear optimization with multi-objective genetic algorithm (MOGA)
- 2) Verification with a start-to-end BDSIM simulation
- Optimized beamline **7 m shorter** (from 30 to 23 m). Uses a CNGS-like target
- 1.2 cm lead foil in the middle of momentum selection to suppress e⁺
- 1.41x10⁻³ K⁺/pot \rightarrow 3.5x improvement. Huge gain! \rightarrow tuning of backgrounds with the full chain is in progress (\rightarrow iteration)

@INFN-Padova

25 Ott 2025

Inputs per la EU strategy 2025

v_{μ}^{cc} spectra at detector

With a SC second dipole

tlr6v6

25 Ott 2025

Inputs per la EU strategy 2025

v detector studies (ENUDET)

This R&D is being pursued by ENUBET together with the DUNE-SoLAR coll. and is instrumental in **exploiting liquid Argon in a tagged neutrino beam**. A dedicated task force is addressing:

- The achievable σ_t of ProtoDUNE overhauled for DUNE Phase II. It will be equipped with an enhanced photon detection system. The corresponding light yield will improve time resolution for GeV neutrinos below 1 ns.
- Simulation of neutrino interactions (GENIE) and reconstruction effects (i.e. role of cosmic rays background) to assess the physics reach on the cross section for specific channels

ENUBE1

A. Longhin

Inputs per la EU strategy 2025

Fiber bundling with "concentrators"

bundling of the WLS fibers with 3D printed "fiber concentrators"+ in situ polishing

A. Longhin

Inputs per la EU strategy 2025

@INFN-Padova

Readout scheme

A. Longhin

25 Ott 2025 Inputs

Inputs per la EU strategy 2025

@INFN-Padova

34

bet

Forward region muons reconstruction

Range-meter after the hadron dump. Extends the tagger acceptance in the forward region to constrain $\pi_{\mu 2}$ decays contributing to the low-E v_µ.

A. Longhin

25 Ott 2025 Inj

Inputs per la EU strategy 2025

@INFN-Padova

ENUBET

ENUBET: demonstrator

Assembly timelapse

https://twitter.com/i/status/1694308753514889350

Inputs per la EU strategy 2025

@INFN-Padova

The ENUBET demonstrator in numbers

ENUBE

- Scintillator tiles: **1360**
- WLS: ~ **1.5 km**
- Channels (SiPM): 400
 - Hamamatsu 50 um cell
 - 240 SiPM 4x4 mm² (calo)
 - 160 SiPM 3x3 mm² (t₀)
- Fiber concentrators, FE boards: 80
- Interface boards (hirose conn.): 8
- Readout 64 ch boards (CAEN A5202): 8
- Commercial digitizers: 45 ch
- hor. movement ~1m
- tilt >200 mrad

Demonstrator construction at LNL-INFN labs

25 Ott 2025

Inputs per la EU strategy 2025

An option?

Study the systematics introduced but a partial "instantaneous" coverage of the full decay region

UA1/NOMAD/T2K magnet rail system

25 Ott 2025

Inputs per la EU strategy 2025

3m

ik÷++

@INFN-Padova

ENUBET

Group pictures

A. Longhin

25 Ott 2025

Inputs per la EU strategy 2025

@INFN-Padova

Event pile-up analysis

The energy is now reconstructed as it will happen for real data i.e. considering the **amplitudes digitally-sampled signals at 500 MS/s**. **Pile-up** effects treated rigorously by "fitting" superimposing waveforms.

Proton extraction R&D for horn focusing

before LS2: burst mode slow extraction achieved at the SPS. Iterative feedback tuning allowed to reach ~10 ms pulses without introducing losses at septa

CERN-TE-ABT-BTP, BE-OP-SPS

Velotti, Pari, Kain, Goddard

BSM

Sterile neutrinos: some results already available

L.A. Delgadillo, P. Huber, PRD 103 (2021) 035018

Instrumented proton and hadron dump:

P. S. Bhupal Dev, Doojin Kim, K. Sinha, Yongchao Zhang, Phys. Rev. D 104, 035037 [ALP] J. Spitz, Phys. Rev. D 89 (2014) 073007 [KDAR] Work ongoing for studies of **Dark Sector** and **non-standard neutrino interactions** to assess potential of SBL versus Near detectors:

- **Pros**: energy control of the incoming flux. Outstanding precision on flux and flavor
- Cons: limited statistics

For the first time at nufact2023

e'nu Det

https://indico.cern.ch/event/1216905/contributions/5448754/attachments/2702123/4690877/NuFACT_NuTagging_DeMartino.pdf

Bianca De Martino (NA62)

S/B=5.5, 2 candidates

Muon from K decay + neutrino interaction in Xe calorimeter in an existing experiment!

ENUBET

Lepton reconstruction

GEANT4 simulation. Event building: clustering of cells in space and time (accounting for **pile-up**) → PID with a Multilayer Perceptron

Half of efficiency loss is geometrical

ENUBET

25 Ott 2025 Inputs per la EU strategy 2025

Constraint from lepton rates \rightarrow flux systematics reduction

- Build S+B model to fit lepton observables
 - 2D distributions in z(lepton) and reconstructed-energy
- include hadro-production (HP), transfer line (TL), detector systematics as nuisance parameters (α , β , ...)

$$L(N|N_{exp}) = P(N|N_{exp}) \cdot \prod_{bins} P(N_i | PDF_{Ext.}(N_{exp}, \vec{\alpha}, \vec{\beta})_i) \cdot pdf_{\alpha}(\vec{\alpha} | 0,1) \cdot pdf_{\beta}(\vec{\beta} | 0,1)$$

Each histogram component corresponds to a bin in $E_{\rm v}$

ENUBET

→ Extended Maximum Likelihood fit

Use a parametric model fitted to hadro-production data from NA56/SPY experiment:

- compute variations ("envelopes") using multi-universe method ("toy exp") for the lepton observables and the flux of neutrinos
- evaluate "post-fit" variance of the expected flux

Flux constraint results

rel. error pre-fit rel, error post-fit

Before constraint:

sys. budget from HP (NA56/SPY data): ~6%

After constraint (fit to lepton rates measured by the tagger): Down to ~1% !

Full simulation data (beamline, detector, reconstruction)

Works for both v_e and v_{μ}

Finalizing the analysis to include detector effects, publication in preparation

25 Ott 2025

Inputs per la EU strategy 2025

• NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)

NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products) Beamline design and performance

- NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)
 - Beamline design and performance
 - Lepton event-by-event reconstruction

- NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)
 - Beamline design and performance
 - Lepton event-by-event reconstruction
 - Achievable ν^{cc} event spectra/rates and systematics reduction

• NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)

- Beamline design and performance
- Lepton event-by-event reconstruction
- \bullet Achievable ν^{cc} event spectra/rates and systematics reduction
- Time tagging scenarios

• NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)

- Beamline design and performance
- Lepton event-by-event reconstruction
- \bullet Achievable ν^{cc} event spectra/rates and systematics reduction
- Time tagging scenarios
- The prototype demonstrator

- NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)
 - Beamline design and performance
 - Lepton event-by-event reconstruction
 - \bullet Achievable ν^{cc} event spectra/rates and systematics reduction
 - Time tagging scenarios
 - The prototype demonstrator

Going even beyond: NuTAG (tracking of neutrino parents)

- NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)
 - Beamline design and performance
 - Lepton event-by-event reconstruction
 - \bullet Achievable ν^{cc} event spectra/rates and systematics reduction
 - Time tagging scenarios
 - The prototype demonstrator
- Going even beyond: NuTAG (tracking of neutrino parents)
 Physics Beyond Colliders study

• NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)

- Beamline design and performance
- Lepton event-by-event reconstruction
- \bullet Achievable ν^{cc} event spectra/rates and systematics reduction
- Time tagging scenarios
- The prototype demonstrator
- Going even beyond: NuTAG (tracking of neutrino parents)
- Physics Beyond Colliders study
- Add forward monitoring for ENUBET

- NP06/ENUBET: a monitored beam at 400 GeV (meas. decay products)
 - Beamline design and performance
 - Lepton event-by-event reconstruction
 - Achievable v^{cc} event spectra/rates and systematics reduction
 - Time tagging scenarios
 - The prototype demonstrator
- Going even beyond: NuTAG (tracking of neutrino parents)
- Physics Beyond Colliders study
- Add forward monitoring for ENUBET
- MNB@ESS

Tagger particle budget at true level

