Future of heavy-ion physics at CERN Perspective of the Padova and INFN groups

Andrea Dainese (INFN Padova)

Executive summary

Medium-term priorities:

- Heavy ions at HL-LHC: new detector ALICE 3 for Runs 5-6
 - Strong programme, with participation of upgraded ATLAS, CMS, LHCb
 - First priority of NuPECC LRP 2024
- Heavy ions at SPS: interest for new experiment NA60+
- Long-term interest:
 - Heavy ions at FCC-hh: keep possibility to run ions in addition to pp
 - Very far future in baseline scenario, but alternative scenarios may include a HE-LHC or lowerenergy FCC-hh
- The field is a driver of strong and novel R&D:
 - Ultra-light pixel sensors, Silicon time-of-flight, …

Quark-gluon plasma: future research directions

High energy collisions (LHC, FCC-hh):

- Quantify properties of QGP and relate them to its constituents
- How are collectivity and thermalisation developed in QCD?
- Can they be developed also in small systems (pp, pA)?

High (B)density collisions (SPS, FAIR, ...):

- Search for onset of deconfinement via energy scans
- Search for the Critical Endpoint (IQCD: $\mu_B > 300$, T < 140)
- ♦ QGP constituents at high $\mu_B \rightarrow$ Neutron Star EoS

Major (expected) open questions after LHC Run 4

- Nature of interactions with the QGP of highly energetic quarks and gluons
- To what extent do quarks of different mass reach thermal equilibrium ?
- What are the mechanisms of hadron formation in QCD?
- → Systematic measurement of (multi-)charm hadrons
- QGP temperature throughout its temporal evolution
- What are the mechanisms of chiral symmetry restoration in the QGP?
- → Precision measurements of dileptons
- QCD chiral phase structure → fluctuations of conserved charges
- Nature of exotic charm hadrons → charm hadron-hadron correlations

ALICE 3: D-Dbar azimuthal correlations

Heavy-flavour correlations (e.g. $\Delta \eta - \Delta \phi$)

 \Rightarrow Elastic scatterings of charm quarks \rightarrow diffusion regime

⇒ Direct constraints on heavy-quark "equilibration"

ALICE 3: R&D at PD and other INFN units

- PD group involved in Inner Tracker:
 Vertex Detector + Middle Layers
- Study of "ultra-light" Middle Layers:
 - Material budget target ~0.2% per layer, compared to ~1% for traditional layout
 - Reduced number of modules and sensors, exploiting large, flexible, MAPS sensors
- Study of sensor, as evolution of ITS3 R&D
- In general, strong involvement of INFN also in R&D for:
 - Silicon timing layers (CMOS LGADs)
 - RICH with SiPM sensors
 - Superconducting magnet design

ER1

ALICE R&D paves the way for future HEP experiments

ECFA Detector R&D Roadmap:

→ R&D for ALICE & LHCb phase II upgrades covers a significant part of the long-term strategic R&D lines defined by ECFA

			Particle CBM 202 Ma 027 Ma 027	4LCE 381) LHCE 3 1HCS & LSR1) ATAS & LSR1) EC & CMS & LCL	1 K C 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CCCh FC Ch Mron College
		DRDT	< 2030	2030-2035	2035- 2040-2045	>2045
Vertex detector ²⁾	Position precision Low X/X _o High rates Large area wafers ³⁾ Ultrafast timing ⁴⁾ Radiation tolerance NIEL Radiation tolerance TID	3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.2 3.3 3.3			2040	
Tracker ⁵⁾	Position precision Low X/X ₀ Low power High rates Large area wafers ³⁾ Ultrafast timing ⁴⁾ Radiation tolerance NIEL Radiation tolerance TID	3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.2 3.3 3.3				.// CU3. CE
Calorimeter ⁶⁾	Position precision Low X/X ₀ Low power High rates Large area wafers ³⁾ Ultrafast timing ⁴⁾ Radiation tolerance NIEL Radiation tolerance TID	3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.2 3.3 3.3	:	•		
Time of flight ⁷⁾	Position precision Low X/X _o Low power High rates Large area wafers ³⁾ Ultrafast timing ⁴⁾ Radiation tolerance NIEL Radiation tolerance TID	3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.2 3.2 3.3 3.3	÷	•		21 04033

🕽 Must happen or main physics goals cannot be met 🔴 Important to meet several physics goals 😑 Desirable to enhance physics reach 🌘 R&D needs being met

NA60+ at the CERN SPS

- Fixed-target setup: dimuon spectrometer after a silicon pixel tracker (ALICE MAPS)
- Caloric curve of QCD matter via thermal radiation, search for onset of colour deconfinement
- Lol approved by SPSC in 2023; Technical Proposal planned for 2025
- Data taking ~ 2029-2036

(Very) Far future: heavy ions at FCC-hh

- FCC-hh HI performance: Pb-Pb $\sqrt{s_{NN}}$ = 39 TeV ~ 7 x LHC $\sqrt{s_{NN}}$
- >100 nb⁻¹/month in "ultimate" luminosity scenario: ~ 20-30 x LHC L_{int}
- QGP from LHC to FCC: volume x2, energy density x3, initial temperature ~1 GeV

Ko, Liu, JPG43 (2016) 12, 125108 Zhou et al., PLB758 (2016) 434 New hard probes of QGP

Apolinario et al., PRL120 (2018) 23, 232301

Input to European Strategy Update

Europe and CERN should support the continuation of heavy-ion programmes to pursue the exploration of the emergent properties of hot QCD matter and the measurement of its fundamental physics parameters

New detectors at LHC (ALICE 3, + upgraded other exps) and SPS (NA60+) can address the open fundamental questions, while ensuring a full exploitation of these accelerators, and a rich and diverse scientific environment

They also pave the way, with full-scale frontier detectors, for the sensors to be used in future HEP experiments

ADDITIONAL MATERIAL

Performance: high-precision measurement of thermal dileptons

Andrea Dainese - NuPECC TWG8, 17.04.2023

Performance: multi heavy-quark physics: hadron formation

<u>S</u>

Multi-charm baryons: unique probe of hadron formation

- requires recombination of multiple charm quarks
- negligible same-scattering production (unlike e.g. J/ψ) .

16

Multi heavy-quark physics: $D^0 - \overline{D^0}$ correlations with ALICE 3

Heavy-flavour correlations (e.g. $\Delta\eta - \Delta\phi$)

- ⇒ Transverse properties of in-medium interactions
- ⇒ Direct constraints on heavy-quark "equilibration"

ALICE 3 Timeline

- 2022: Letter of Intent reviewed by LHCC \rightarrow very strong support
- 2023 2025: detector scoping, resource planning, sensors selection, small-scale prototypes
- 2026 2027: large-scale engineered prototypes ⇒ Technical Design Reports
- 2028 2031: construction and assembly
- 2032 2033: contingency and pre-commissioning
- 2034 2035: Long Shutdown 4 installation and commissioning
- 2036 2041: physics campaign, Runs 5 and 6, Pb-Pb ~35 nb⁻¹, pp ~ 18 fb⁻¹

Particle Identification

e, π , K, p separation with TOF + RICH detectors, with specifications σ_t = 20 ps, σ_{θ} = 1.5 mrad

+ endcap TOF and RICH

Inner Tracker and Vertex Detector

Pointing resolution ~ few µm at ~1 GeV/c

\rightarrow critical for heavy-flavour and dielectron measurements

\rightarrow Requires pushing the frontiers in many respects:

- spatial resolution: $\sigma_{\text{pos}}\approx$ 2.5 μm
 - \rightarrow pixel size ~ 10x10 μ m²
- material budget $\approx 0.1\%$ of X₀ per layer
- 5 mm radial distance from interaction point
 - ightarrow has to be inside beampipe
 - \rightarrow ~1.5 10¹⁵ 1 MeV n_{eq} / cm² per operational

year

Considered in reach with ongoing R&D on CMOS Monolithic Active Pixel Sensors (MAPS): curved, thin, large-area, low power

 \rightarrow build on experience with ITS2 and ITS3

ALICE

25 mm

5 mm

stable beams

Vertex Detector concept

Retractable vertex detector concept inside beampipe (Iris):

- closed to $R_{inner} = 5 \text{ mm}$ during stable beams
- opened to *R*_{inner} = 16 mm for beam injection/adjustments

injection

35 mm

6 mm

Component	Material	Thickness	Radiation length	
		(µm)	(cm)	$(\% X_0)$
Sensor	Si	30	9.37	0.032
Support	Be	250	35.28	0.071
Glue		50	35	0.014
Total				0.117

Table 9: Material for the first layer of the vertex detector.

