

MuC and demonstrator facility

D. Lucchesi for MuC Padova

Riunione per la EPPS Padova

Why MuC? Higgs physics

Why MuC? Zillions of other physics searches

MuC facility

MuC facility

October 25, 2024

Demonstrator facility motivation

Demonstrate 6D reduction of muon beam emittance by a factor 2 by using ionization cooling

- Study and test high power target materials
- Test solenoid magnets for target
- Identify new strategy for beam dump
- High temperature superconducting magnets (10-20K)
- Construct and test cooling cells:
 - reliable RF in magnetic fields
 - absorber materials (LiH to start)
- Develop new beam dump detectors, Si based?

Depending on the resources available the muon beam could be re-accelerated and used for muon and neutrino physics.

Muon ionization cooling principle -> Ionisation cooling only option

B. Stecher

High-field, superconducting solenoid to Approve: reduction of longitudinal and transverse momentum. scattering effect

reduced transversal but increased longitudinal e

Scattering: beam blow-up —> need for strong solenoids and low Z absor IMCC new activities:

Electric field

- systematified exige Ratithe i.differente of only longitudinal momentum.

Net effect: reduction of transverse momentum and thus beam cooling. Improvement on expected simulated emittance: absorber from 55 μ Code development: RFIRACK Integrating multiple scattering and collecti Goal of the final emittance: 25 μ m

Simulation of transverse emittance well reproduced by MICE data

Demonstrator possibilities

Both use maximum intensity per pulse $\sim 10^{13}$ ppp (or more) in pulses of few ns at 20+ GeV.

Different repetition rate:

- 1 pulse/few second
- 1÷2 pulse/per minute

High power O(80kW) on target easily achievable No showstopper for 4 MW with beam at a depth of 40 m

10 kW option

80 kW/4 MW

option

Low power: Reuse line of BEBC-PS180 Collaboration, decommissioned, extending it towards B181 (now magnet factory) Photos aériennes

Low power option: use PS and TT7 line

October 25, 2024

TT7 line

Lukasz Krzempek

Lukasz Krzempek

INFN e la strategia Europea per la Fisica delle Particelle

High power option

- TT10 is the transfer line from the CERN PS (≤26 GeV) to the CERN SPS.
 - O(80kW) on target can easily be achieved.
 - >10¹³ protons can be sent on a target at 20GeV+ in pulses of few nsec (n_TOF beam).
 - 4 MW does not appear to be a showstopper in this layout with beam at a depth of 40 m (detailed studies will have to be performed).
 - Future upgrades towards a collider and HP-SPL are in principle compatible with this layout.

High power option

Roberto Losito INFN e la strategia Europea per la Fisica delle Particelle

MUC Demonstrator VERY Conceptual layout

- The Facility is flexible enough to accommodate other experiments.
- nuSTORM and potentially ENUBET could be branched from the MUC Demonstrator Facility.
- The same target complex would be used profiting from its shielding and general target systems infrastructure, utilities, and accesses.
- The double deflection of the beamline could reduce radiation streaming towards the nuSTORM ring.
- Synergies between experiments would reduce costs on both sides.
- 26 GeV/c beam from the PS is appropriate for nuSTORM

It is super important to have support for these activities

Tentative Timeline (Fast-track for \sqrt{S} =10 TeV)

IMCC Internal means "it is only a basis to start the discussion, it will be reviewed soon"

MInternational VON Collider Collaboration

Possible implementations

Energy staging: Start at lower center-of-mass energy, e.g. $\sqrt{S}=3$ TeV or more suited energy, move later at higher energy

Luminosity staging: Start \sqrt{S} =10 TeV with low luminosity, upgrade later to high luminosity as in HL-LHC

Expected integrated luminosity in

5 years one experiment

 $\sqrt{s} = 3 \text{ TeV 1 ab}^{-1}$

 $\sqrt{s} = 10 \text{ TeV } 10 \text{ ab}^{-1}$

Study on how to use LHC tunnel and/or other infrastructures

Parameter	Symbol	unit	Scenario 1		Scenario 2	
			Stage 1	Stage 2	Stage 1	Stage 2
Centre-of-mass energy	$E_{\rm cm}$	TeV	3	10	10	10
Target integrated luminosity	$\int \mathcal{L}_{ ext{target}}$	ab^{-1}	1	10	10	
Estimated luminosity	$\mathcal{L}_{ ext{estimated}}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	2.1	21	tbc	14
Collider circumference	C_{coll}	km	4.5	10	15	15
Collider arc peak field	$B_{ m arc}$	Т	11	16	11	11
Luminosity lifetime	$N_{ m turn}$	turns	1039	1558	1040	1040
Muons/bunch	N	10^{12}	2.2	1.8	1.8	1.8
Repetition rate	$f_{ m r}$	$_{\rm Hz}$	5	5	5	5
Beam power	$P_{\rm coll}$	MW	5.3	14.4	14.4	14.4
RMS longitudinal emittance	ε_{\parallel}	eVs	0.025	0.025	0.025	0.025
Norm. RMS transverse emittance	$arepsilon_{\perp}$	μm	25	25	25	25
IP bunch length	σ_z	mm	5	1.5	tbc	1.5
IP betafunction	eta	mm	5	1.5	tbc	1.5
IP beam size	σ	μm	3	0.9	tbc	0.9