The SM lifetime is slightly
shorter

or “Revising the full one-loop gauge prefactor in electroweak

vacuum stability”, soon to appear on PRL
[arXiv: 2406.05180] with M. Nemevsek, Y. Shoji, K. Trailovi¢c & L. Ubaldi

P. Baratella



Quantum vacuum

* Quantum fields ® oscillate wildly

. In the vacuum state they typically average to zero, i.e. (®)yrc =0 (scalars
can have <¢>VAC — V)

. However (@), =



Quantum fluctuations

 Summing field modes randomly, it is possible to reach configurations that are
very far from the average configuration

 Extremely unlikely

 Similar to thermal fluctuations

10 ordered; C(15,6) = 5005 total



Vacuum decay

 Usually they last for a little time
* Are there conditions for them to be amplified macroscopically?

 Focus on the real world (as we know it)




Vacuum decay

Conditions

* ook for constant field configurations whose energy density is smaller than
zero (the energy density of the vacuum)

* |f they exist, the vacuum is not the true vacuum

|t can decay by spontaneous formation of true vacuum  bubbles

 Quantified by the rate of formation per unit volume ¥}, 1h1e



Thermal analogy

material with 1st order phase transition

* Analogy with a thermal system in the wrong phase

Solid (unstable) ¢ FOF T<TC the I|qU|d phase |S
auid (unstable) thermodynamically disfavoured, but
' can be achieved by slow cooling

Liquid (stable) |t decays by induced or
spontaneous formation of ice
crystals

Solid (stable)  °




SM vacuum

Stable or not?

* The structure of our vacuum is governed by the Standard Model
» It has nonzero chiral (strong sector) and Higgs (#) = v condensates
. The condition (h) = v is obtained by minimising V, (hcl)

e Are there other local minima?



Higgs (effective) potential

o At the electroweak scale V = /l(h2 — 02)2

» For h > v the EW v.e.v. can be neglected and V = A(h) h*

» A(h) can be understood as the coupling that governs 2 — 2 scattering at
COM energy ~ h

 If A crosses zero at 1™, V becomes negative for h > h*



Higgs (effective) potential

Running of quartic A

» A(h) is governed by [,
» Unlike all other couplings, /, does not need to be o A

» Therefore A can change sign in the SM

top Yukawa contribution at 1 loop



Higgs (effective) potential

Running of quartic A

30 bands in
M, =173.3 £ 0.8 GeV (gray)
a3z(Mz) = 0.1184 + 0.0007(red)
M, =125.1 £0.2 GeV (blue)
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S(MZ) =0.1163 We use the NNLO formulae for SM parameters at

1 = M, from Buttazzo et al (2013), with updated

Input parameters

[ A Iy Y N M N N |

8 10 1012 1014 1016 1018 1020 From PDG 2024
107 107107 107 107 10710 M, = 172.57 £0.29 GeV /

RGE scale 1 in GeV a3 (M) = 0.1180 =+ 0.0009
M, = 12520 +0.11 GeV




Higgs (effective) potential

EW minumum

\

only quadratic

—/Iminh4 f (super-planckian)
' minimum = 103° Gev

most likely
escape point

~ 1020 Gev




Decay rate ~Apinh?

ESti mate most likely

escape point

.~ 10°°GeV
Ain = 0.01

» Decay rate mainly governed by the minimum of A(/) f

 Tunnelling exponent given by B = R7r° / 3Amin




Decay rate

Towards a better precision

 Potential V(h) was extrapolated with RG equations at NNNLO precision
 However we only gave a rough estimate of the prefactor

* |t can be obtained as a path integral over fluctuations about the most
probable escape history, or Bounce, which is a saddle point of the action

* |n a Gaussian approximation of the path integral, this is equivalent to account
for one-loop effects

 Work in Euclidean signature...



Decay rate

The prefactor

S” is a differential operator, e.g. for scalars [] + Ah?

\

S(h+¢) =S(h )/+ bS" P + .

linear term absent as / solves the equations of motion

S(h) =B

B B2 [ sDet'S"\ >

= e —
ybUbblé 471_2 SD et S(/)/

\

comes from expanding the action about the false vacuum solution



Computing the prefactor

B B? [ sDet’S” -3
Youbble — €  —— | —<———=
472 \ sDet Sy

 Determinant of a differential operator is given by the product of eigenvalues

. On general grounds [S”, J,.,] because of SO(4) invariance of S and h(x, 1)
. 3" acts on scalars like &, spinors like the top, and gauge bosons Z, and W/f

 To diagonalise 8", we need to understand SO(4) rep. theory of these fields



Spherically symmetric operators

o Similar (no, identical'!) to the problem of diagonalising a hamiltonian for a point
particle in a radial potential V(r)

* Basis of spherical harmonics Yim if the particle is a scalar, or spin-orbit effects
can be neglected

« Different angular basis if the particle has spin L and spin-orbit effects are

2
important (Dirac equation)

- In general only total J,, and not L, commute with the hamiltonian (L2 Q)




Spherically symmetric operators

0’ + A h*(r) | «—— Higgs sector

7,0, + ytl_z(r) <«— Top Gauge bosons coupled

to would-be-NGB (&=1
background gauge)

((az+g2E2(r))5W 2g%,1(r) ) g

28% h'(r) 0° + (g% + Dh*(r)




Reduction to radial differential operators

3 angles in 4 Euclidean dimensions
O(c(NY:,(9)) = Y,,(9) O(c()

\

Reduced radial operator depends
only on j and not on polarisation o

3 (j+2
E.g. for scalars: (62)]. = 0%+—a,,_~’(f : )
r r




Reduction to radial differential operators

O(c(r)Y,(9)) = Y, O,(c(r))

True for any operator with the property | O, JW] = ()
If one chooses the proper angular basis




Angular basis for all spins

 Focus on the angular part, i.e. consider fields on the three-sphere

* They transform under rotations as infinite dimensional representations
$(0) — py(R) ¢;(R™'6)
l 1] J

 Finite-dimensional rep. p depends on the spin of the field



Angular basis for all spins

Peter-Weyl theorem

* Unitary representations of compact groups admit a decomposition into finite
dimensional irreducible representations

e Spherical harmonics for scalars in 3 dimensions ¢(0, @) = 2 CimYin(0, B)
* More abstractly j.m

(2j+1)-dimensional

. of
Vector space of scalar rep. of SO(3) spin 1/2

fields on the 2-sphere




Angular basis for all spins
Peter-Weyl theorem for SO(4)

« Decompose 8" in (Euclidean) four-space with r=1

 Irreps. of SO(4) are labelled by two half-integers [ SO(4) ~ SO(3) X SO(3) |

\ Corresponds to
“hyper-spherical

Vector space of scalar harmonics™ basis

fields on the 3-sphere



Angular basis for all spins

Construction

* Dirac spinors like the top are understood as the tensor product
1 1
Vbirac = [(E’O) D (O’E)] X Véb

o Similarly for gauge bosons, which are vector fields



Angular basis for all spins

Construction

v(v+2)

U
Q“// I/(I/+1)

©
Scalar ¢(Z)

. Dirac ¥, (Z)

©

+1

5
2
2
3
2
1
1
2
0

Easy to count number of independent polarisations = dimension of SO(4) multiplet = (2ja+1)(2js+1)



Transverse modes

v(v+2)

 Number of independent transverse

polarisations was wrong in previous
work on the topic

o |t enters in ¥,,11c PECaUSe oOf the
prefactor

dets”= |] [H (det S} dv]

sectors 1

- N | = p—t N | Qo \) N | O




Transverse modes

 Number of independent transverse
polarisations was wrong in previous
work on the topic

o |t enters in ¥,,11c PECaUSe oOf the
prefactor

aees' =TT |T1 (dets

sectors 1

- N | = p—t N | Qo \) N | O

v(v+2)




Revising ygw

» We recomputed ygyw With updated
SM parameters and revised d

 No room for absolute stability
within 3o

* Gauge sector changes by 6%

» Main change in ygyw comes from ' absolutely stable
experimental side I7?).114 I 0116 I IO.I|18I I 6.1|26 I |0.1|22| I 6.1;4
as(mz)
log,o(7ew Gyr Gpe?) = — 8713317 >+200
mHigg/; ! \a + 6 from corrected multiplicity

mtop S



Revising vy

og1g{re Gyr Gpe’) = = 871534212

+ 6 from corrected multiplicity




