

Characterization of irradiated SiPM for the TOP detector at the Belle II experiment

Padova meeting 22/10/2024

Ezio Torassa, Roberto Stroili, <u>Jakub Kandra</u> INFN Padova

Jakub Kandra, INFN Padova

Tests with irradiated modules in Padova

2

Kandra, INFN Padova

- Eventually MCP-PMTs with extended lifetime can be replaced by SiPMs in next long shutdown.
- We irradiated 32 SiPM modules with different neutron fluxes, tested by laser, processed and analysed
- Collected data are read from modules and analyzed:
 - Photon spectra fit using two different methods to extract maximum of photons
 - Extraction breakdown voltage using fitting of gain as function of bias voltage
 - \circ ~ Time resolution of first and second peak of photon spectra
 - Dark count rate measurement
- Compare results using modules after annealing (150 °C for 8 weeks) and re-irradiation at level $1.0 \cdot 10^{10}$

Producer	Code	Index	Dimension	$\operatorname{Pitch}\left[\mu\mathrm{m} ight]$	Neutron 1 MeV eg/cm^2 fluence	
	010000 10F0DD	0 7	[mm×mm]	L / _	01	
Hamamatsu	S13360-1350PE	0 - 7	1.3×1.3	50	$5.0 \cdot 10^{11}$ - $1.0 \cdot 10^9$	
FBK	NUV-HD-RH-3015	8 - 10	3×3	15	$1.0 \cdot 10^{10}$ - $1.0 \cdot 10^9$	
FBK	NUV-HD-RH-1015	11 - 14	1×1	15	$2.0{\cdot}10^{10}$ - $1.0{\cdot}10^{9}$	
Hamamatsu	S14160-3050HS	$15,\ 30,\ 31$	3×3	50	$1.0{\cdot}10^9,1.0{\cdot}10^{10}$	
Kektek	PM3315-WL	16,17	3×3	15	$1.0{\cdot}10^{10},1.0{\cdot}10^{9}$	
Kektek	PM3335-WL	18, 19	3×3	35	$1.0{\cdot}10^{10}, 1.0{\cdot}10^{9}$	
OnSemi	10035	20, 21	1×1	35	$1.0{\cdot}10^{10}, 1.0{\cdot}10^{9}$	
OnSemi	30035	22, 23	3×3	35	$1.0{\cdot}10^{10},1.0{\cdot}10^{9}$	
Hamamatsu	S13360-3025PE	24, 25	3×3	25	$1.0 \cdot 10^{10}$	
Hamamatsu	S13360-3050PE	26, 27	3×3	50	$1.0{\cdot}10^{10}$	
Hamamatsu	S14160-3015PS	28, 29	3×3	15	$1.0{\cdot}10^{10}$	Jakub H

Tests with irradiated modules in Padova

Producer	Code	Index	Non-irradiated	Irradiated	Annealed	Re-irradiated
Hamamatsu	$S13360-1350PE^{1}$	0 - 7	Photon spectra Dark count	Photon spectra Dark count	Dark count	Dark count
FBK	NUV-HD-RH-3015 ²	8 - 10	Dark count	Dark count	Dark count	Dark count
FBK	NUV-HD-RH-1015 ³	11 - 14	Photon spectra Dark count	Photon spectra Dark count	Photon spectra Dark count	Photon spectra Dark count
Hamamatsu	$S14160-3050HS^{4,5}$	15, 30, 31	Photon spectra Dark count	Photon spectra Dark count	Photon spectra Dark count	Photon spectra Dark count
Kektek	$PM3315-WL^2$	16, 17	Dark count	Dark count	Dark count	Dark count
Kektek	PM3335-WL ⁶	18, 19	Photon spectra Dark count	Dark count	Dark count	Dark count
OnSemi	10035	20, 21	Photon spectra Dark count	Photon spectra Dark count	Photon spectra Dark count	Photon spectra Dark count
OnSemi	30035^{6}	22, 23	Photon spectra Dark count	Dark count	Dark count	Dark count
Hamamatsu	$S13360-3025PE^{7}$	24, 25	Photon spectra Dark count			
Hamamatsu	$S13360-3050PE^{7}$	26, 27	Photon spectra Dark count			
Hamamatsu	$S14160-3015PS^{7}$	28, 29	Photon spectra Dark count			

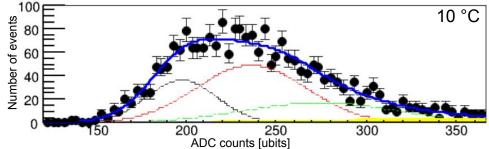
¹ No annealing and re-irradiation data, because photon spectra readout device have been broken.

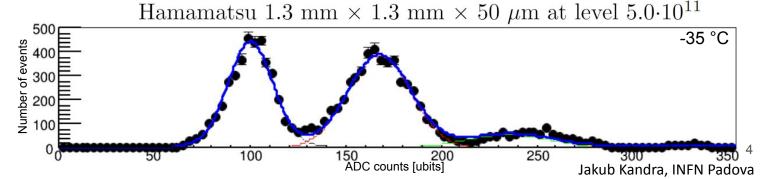
 2 No photon spectra data, because no peaks identified in spectra.

³ Non-irradiated data is collected using different bias voltage range as others.

⁴ For index 17, Non-irradiated data is collected using different bias voltage range as others.

⁵ For indices 30 and 31, non-irradiated data is done and others is analysed now.

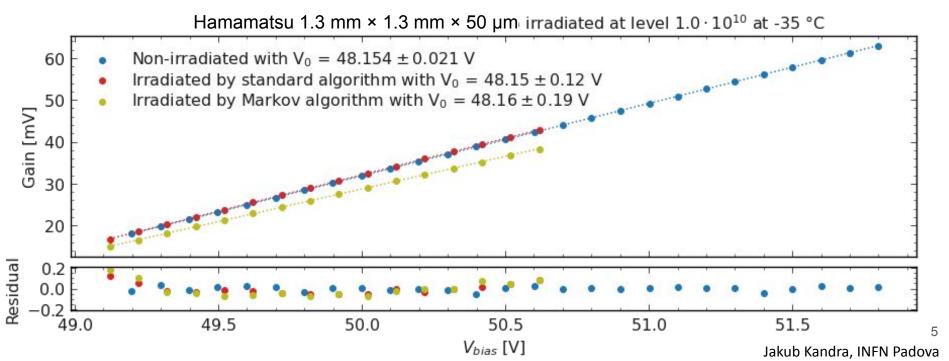

⁶ Non-irradiated data was analysed, in others no peaks was found in photon spectra.


⁷ Non-irradiated data is done and others is analysed now.

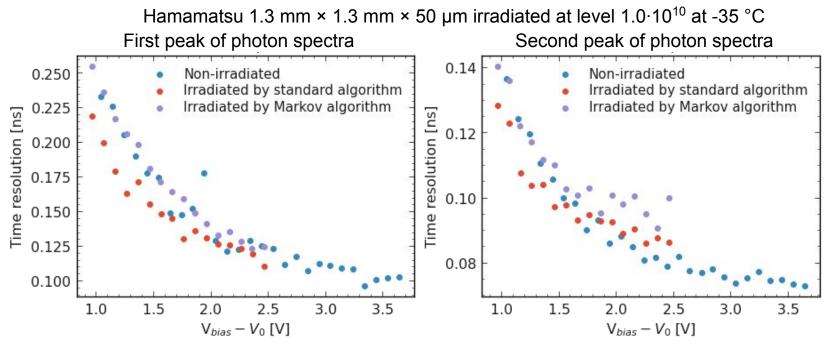
Photon spectra fits

- We are using two different methods for extraction of maximum of photons:
 - Standard algorithm
 - Markov algorithm with background subtraction
- Markov algorithm allows us to provide photon spectra cleaner in harder environments
- Using highly irradiated modules in high temperatures or with large detection area it does not provide sufficient results for photon spectra fit.

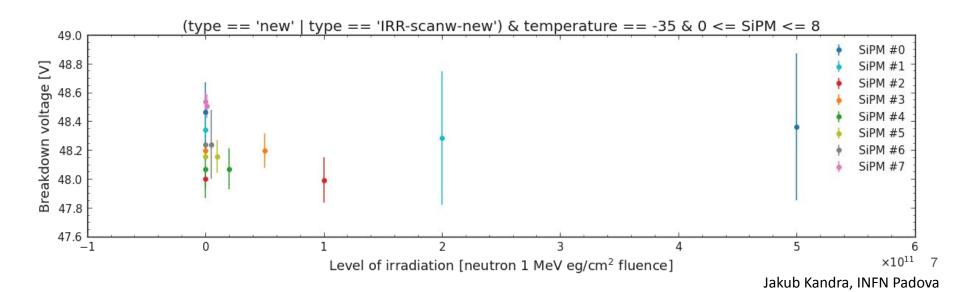
Hamamatsu 1.3 mm \times 1.3 mm \times 50 μm at level 5.0 $\cdot 10^{11}$



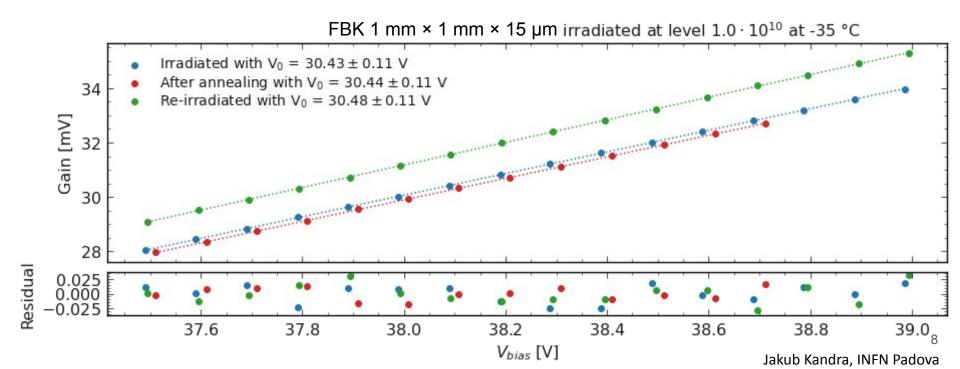
Extraction breakdown voltage


- Gains and breakdown voltage are extracted from photon spectra fit, gain as function of bias voltage, respectively.
- Extracted breakdown voltage after irradiation is consistent with results before irradiation
- Markov algorithm provides precise result as standard algorithm in highly irradiated environment with small difference in slope

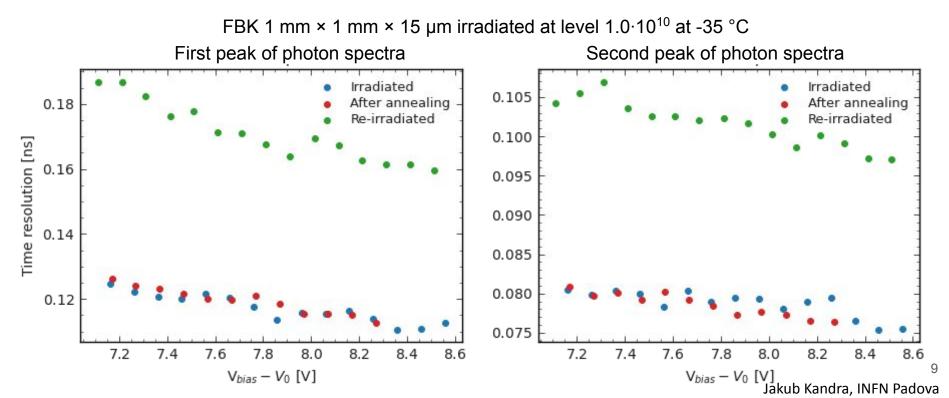
Time resolution


- Then we check time resolution using first and second photons of photon spectra
- Time resolution studies demonstrate time resolution is consistent before and after irradiation

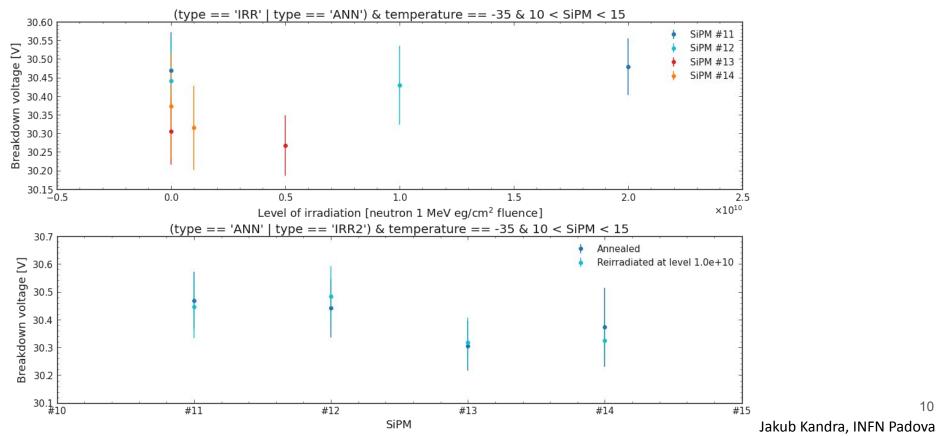
Jakub Kandra, INFN Padova

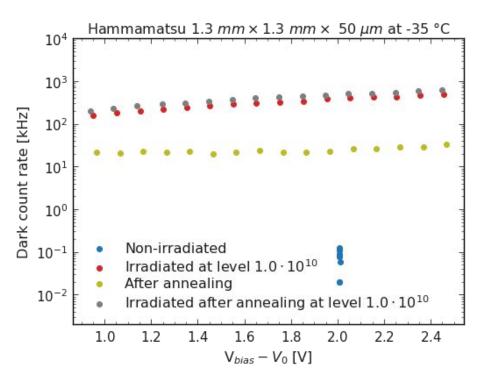

- Breakdown voltages can be presented as function of irradiation level
- Breakdown voltages are consistent before and after irradiation for several high irradiation levels
- The high uncertainty of the breakdown voltages come from a fact, in high irradiated environment is more difficult extract clear photon spectra.

Annealing and re-irradiation


- This module has been irradiated at level 1.0.10¹⁰, then annealed and re-irradiated at same level
- No significant difference between irradiated annealed and re-irradiated data has been observed

Annealing and re-irradiation


- This module has been irradiated at level 1.0.10¹⁰, then annealed and re-irradiated at same level
- No significant difference between irradiated annealed and re-irradiated data has been observed


10

Breakdown voltages are consistent irradiated, annealed and re-irradiated data for several high irradiation levels

Dark count rates

- We provide dark count rate measurements using non-irradiated, irradiated, annealed data and re-irradiated
- Annealing helps to reduce dark count rates in several magnitudes
- Results of re-irradiated are consistent with previous observations

Dark count rates as function of irradiation level

INFN Belle T

-35 °C

Hamamatsu 1.3 mm × 1.3 mm × 50 µm

10 °C

SiPM

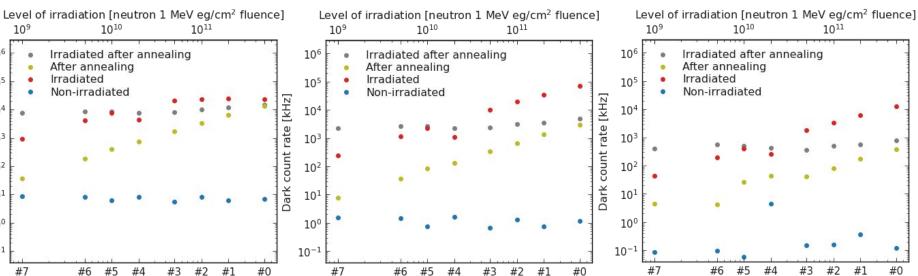
10⁶

10⁵

 10^{4}

10³

10²


10¹

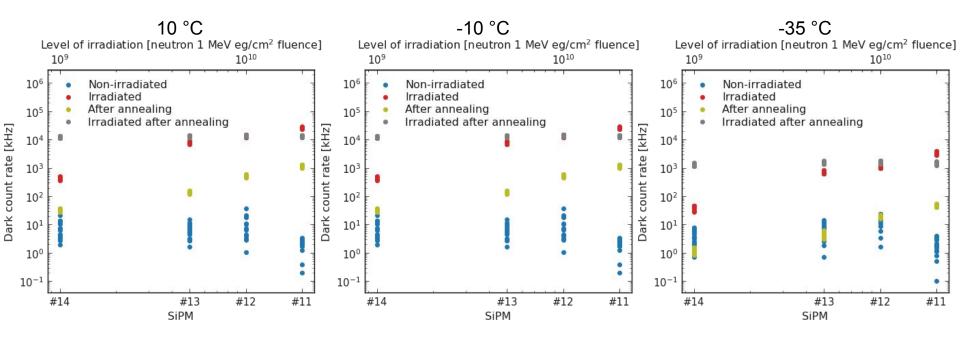
10⁰

 10^{-1}

Dark count rate [kHz]

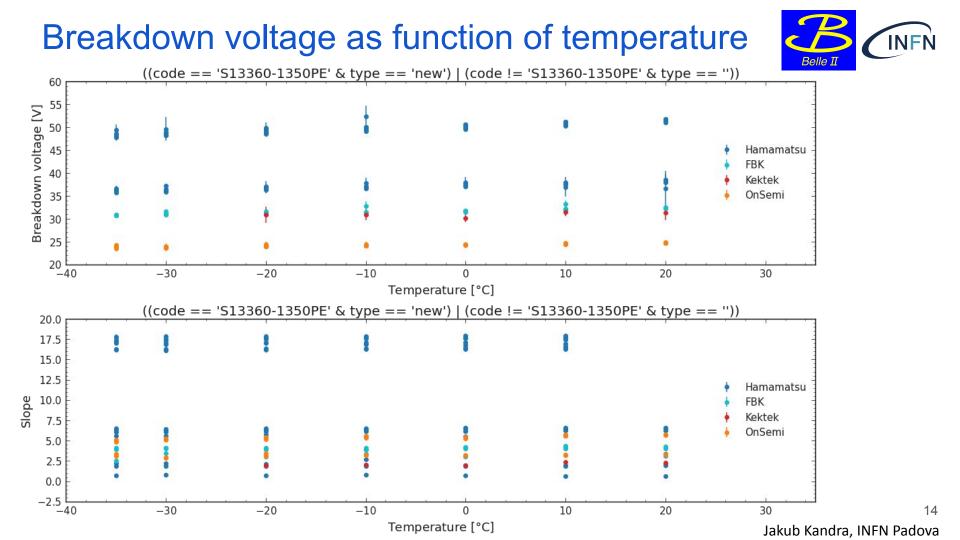
SiPM

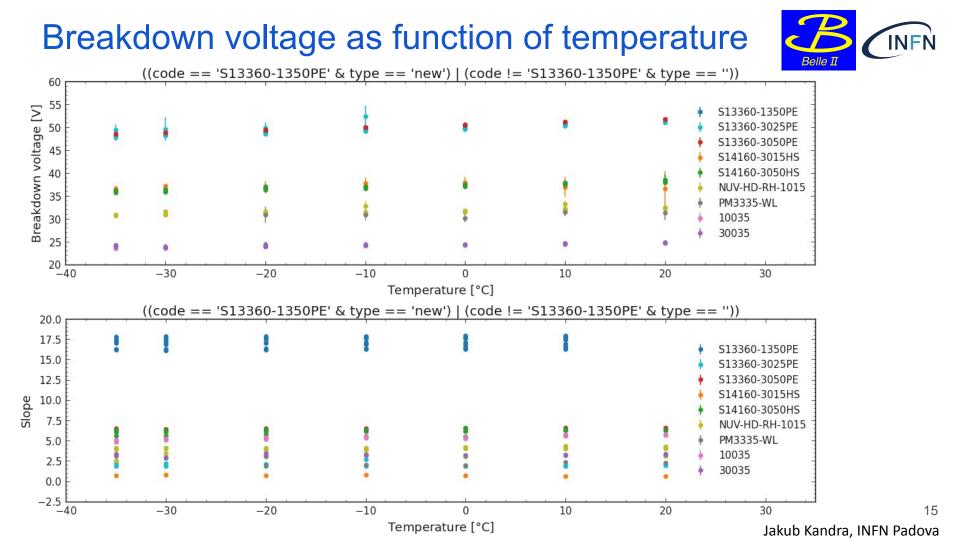
Dark count rates can be recovered by annealing, but not to the level before irradiation. •


Jakub Kandra, INFN Padova

SiPM

Dark count rates as function of irradiation level

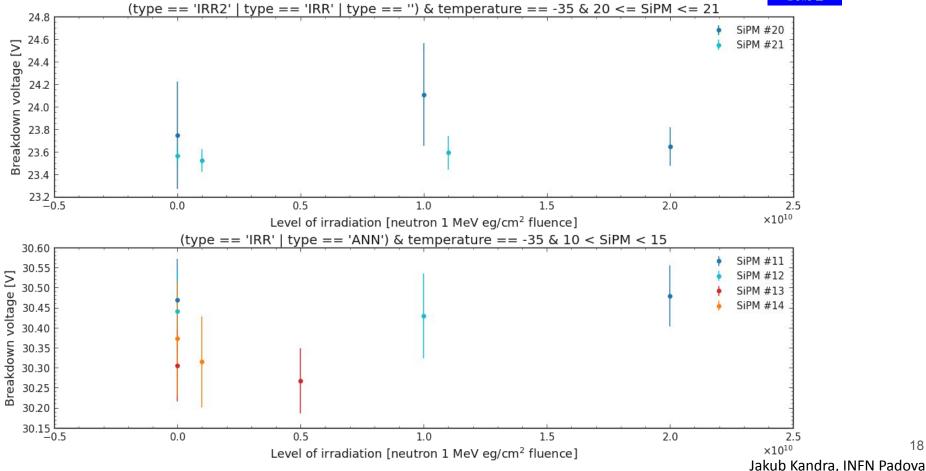



FBK 1 mm \times 1 mm \times 15 μ m

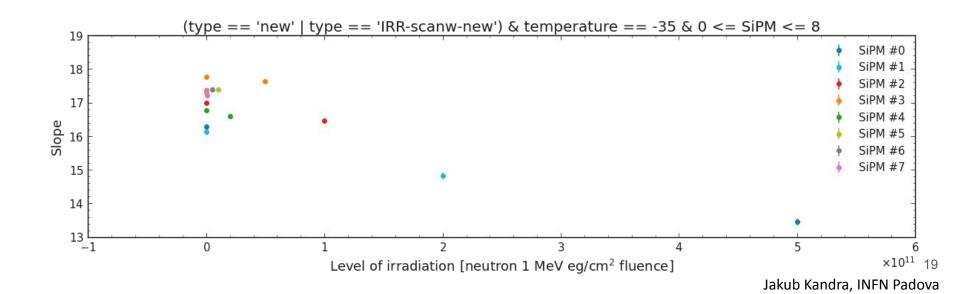
• Dark count rates can be recovered by annealing, but not to the level before irradiation.

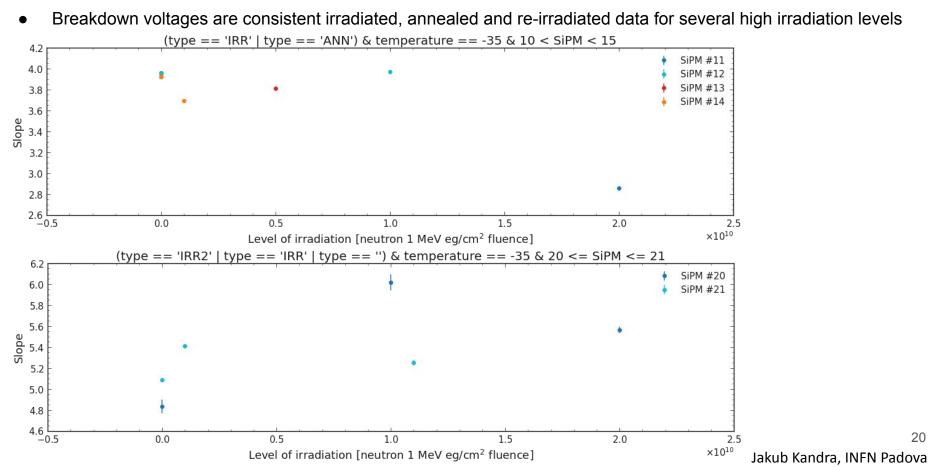
Jakub Kandra, INFN Padova

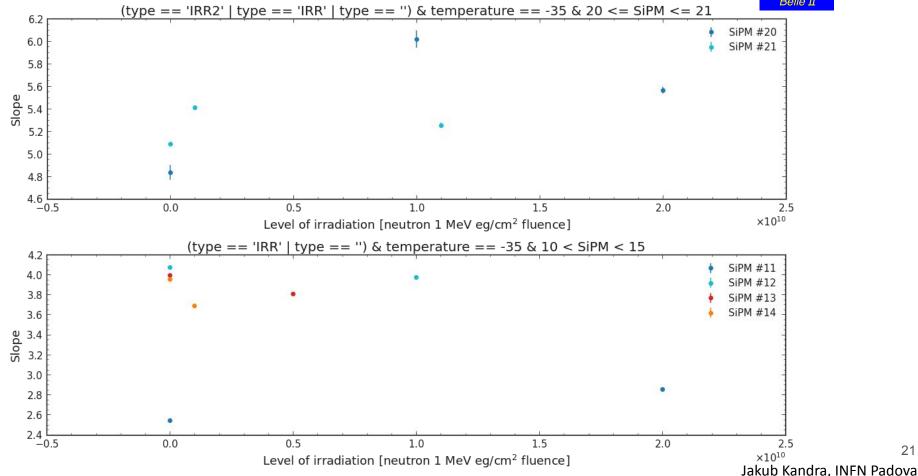
Conclusions and outlook

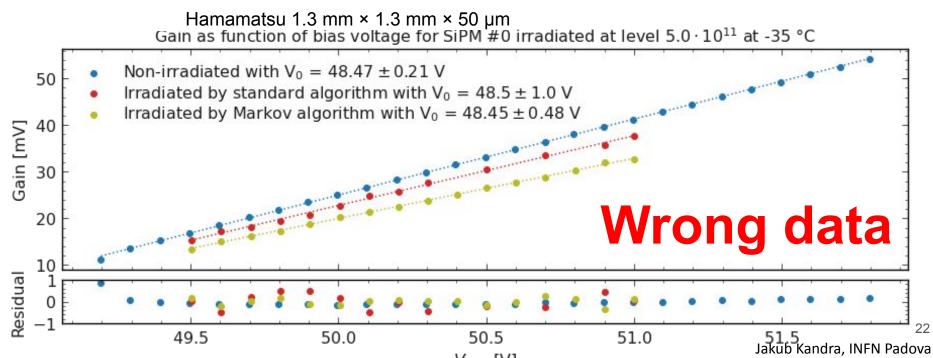


- We irradiated 32 SiPM modules with different neutron fluxes and tested by laser. •
- All of them are processed to study their response. •
- Modules were annealed (at 150 °C for 8 weeks) and processed again •
- Then modules were re-irradiated at level 1.0 · 10¹⁰ and processed again
- Collected data are read from modules and analyzed: •
 - Photon spectra fit using two different methods to extract maximum of photons а.
 - Highly irradiated modules with big sensitive area or at high temperatures worse fitted
 - Extraction breakdown voltage using fitting of gain as function of bias voltage b.
 - Results are consistent before, after irradiation, after annealing and after re-irradiation
 - Time resolution of first and second peak of photon spectra C.
 - Results are consistent before, after irradiation, after annealing and after re-irradiation
 - Dark count rate measurement d.
 - Annealing reduce rates but not to level before irradiation
 - Re-irradiation consistent with previous observations
 - We see some differences dependence on produces or SiPM's code e.

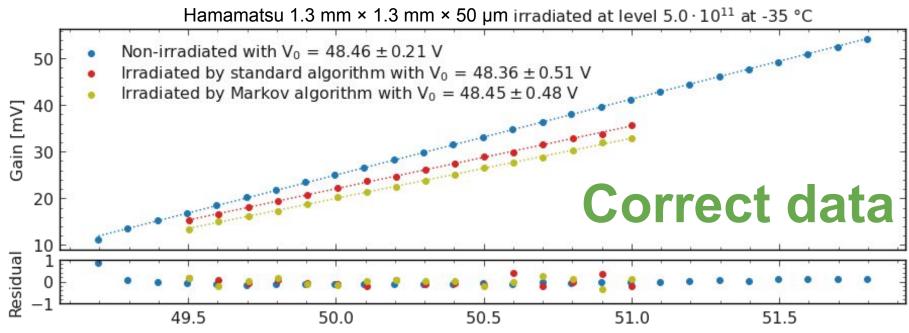

Backup



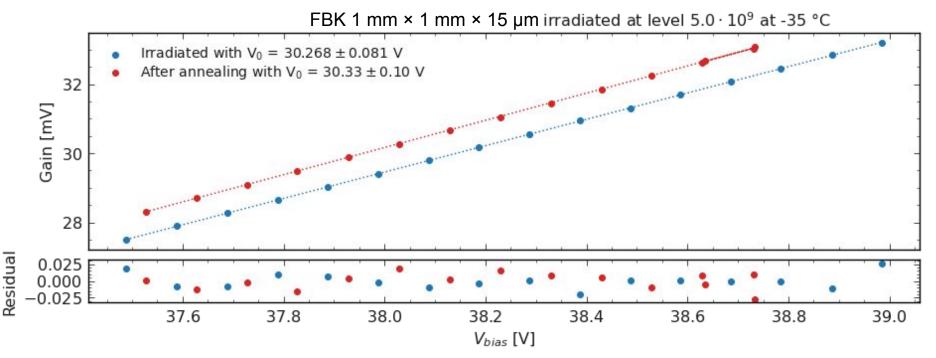

- Breakdown voltages can be presented as function of irradiation level
- Breakdown voltages are consistent before and after irradiation for several high irradiation levels
- The high uncertainty of the breakdown voltages come from a fact, in high irradiated environment is more difficult extract clear photon spectra.



Extraction breakdown voltage


- From photon spectra fit gains are extracted and breakdown voltage is extracted from gain as function of bias voltage
- Extracted breakdown voltage after irradiation is consistent with results before irradiation
- Markov algorithm provides precise result as standard algorithm in highly irradiated environment

Extraction breakdown voltage

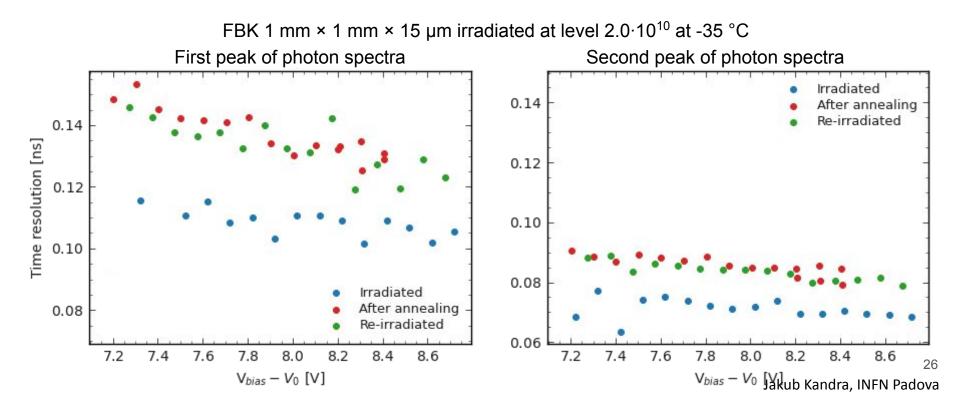


- From photon spectra fit gains are extracted and breakdown voltage is extracted from gain as function of bias voltage
- Extracted breakdown voltage after irradiation is consistent with results before irradiation
- Markov algorithm provides precise result as standard algorithm in highly irradiated environment

Effect of annealing to breakdown voltage

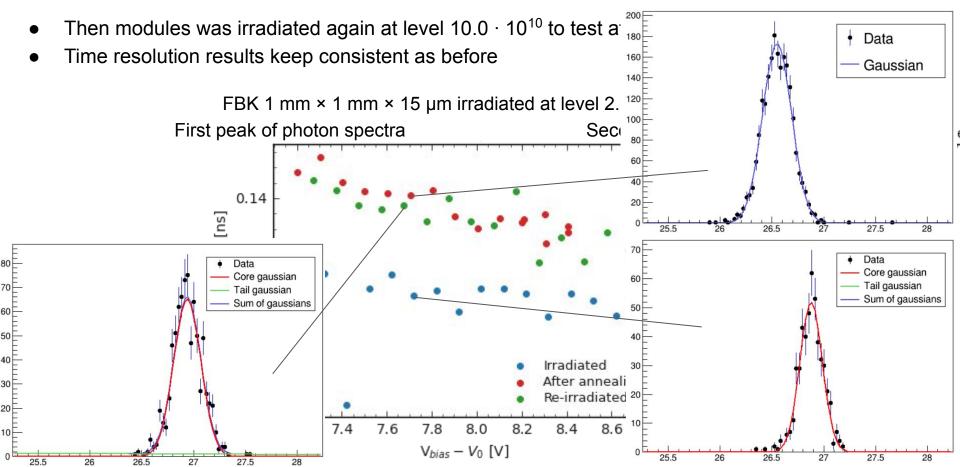
- Additional test has been provided using FBK modules, where photon spectra has been fitted before and after annealing to test if annealing process affect breakdown voltage extraction
- No significant difference has been observed after annealing

Effect of annealing to breakdown voltage

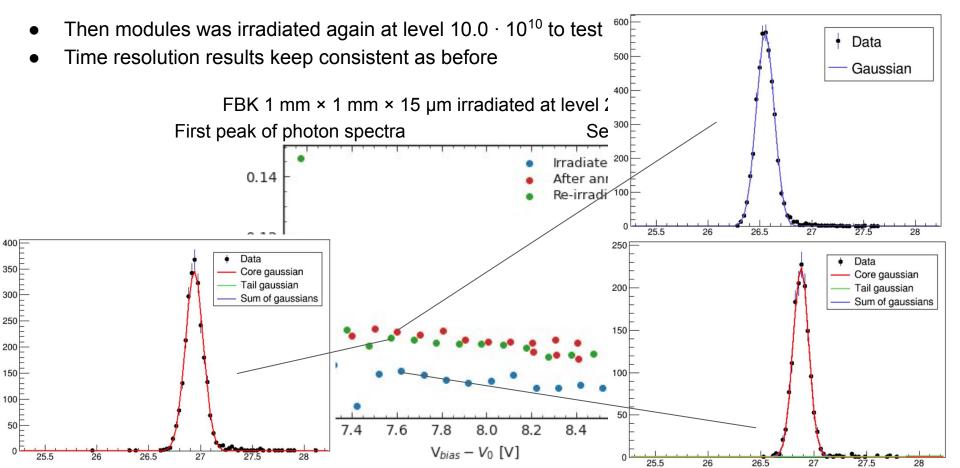

FBK 1 mm × 1 mm × 15 μm	irradiated at le	evel 5.0 · 10	⁹ at -35 °C	
• Irradiated with $V_0 = 30.268 \pm 0.081 \text{ V}$ • After annealing with $V_0 = 30.33 \pm 0.10 \text{ V}$			•• •••••••••••••••••••••••••••••••••••	-
filename	vbias_s5	gain_s5	offset_s5	-
scanw-FBK1-ANN-T-35-0.0-waves-1-08-Jan-2024-13:57	37.527	28.3042	-115.873	-
scanw-FBK1-ANN-T-35-0.1-waves-1-08-Jan-2024-14:00	37.6277	28.7132	-0.310685	-
scanw-FBK1-ANN-T-35-0.2-waves-1-08-Jan-2024-14:03	37.7272	29.0946	-0.0424728	1
scanw-FBK1-ANN-T-35-0.3-waves-1-08-Jan-2024-14:06	37.8263	29.4972	-0.354678	1
scanw-FBK1-ANN-T-35-0.4-waves-1-08-Jan-2024-14:10	37.928	29.8784	0.0736905	_
scanw-FBK1-ANN-T-35-0.5-waves-1-08-Jan-2024-14:13	38.0296	30.2627	0.198086	
scanw-FBK1-ANN-T-35-0.6-waves-1-08-Jan-2024-14:16	38.1297	30.6726	-0.131972	· • · ·
scanw-FBK1-ANN-T-35-0.7-waves-1-08-Jan-2024-14:19	38.2296	31.0508	0.132452	
scanw-FBK1-ANN-T-35-0.8-waves-1-08-Jan-2024-14:22	38.3299	31.4529	-0.201789	1
scanw-FBK1-ANN-T-35-0.9-waves-1-08-Jan-2024-14:25	38.43	31.8488	-0.321876	39.0
scanw-FBK1-ANN-T-35-1.0-waves-1-08-Jan-2024-14:28	38.5285	32.2513	-0.446562	
scanw-FBK1-ANN-T-35-1.1-waves-1-08-Jan-2024-14:31	38.6295	32.631	-0.307714	
scanw-FBK1-ANN-T-35-1.2-waves-1-08-Jan-2024-14:34	38.7303	33.0258	-0.391451	b
scanw-FBK1-ANN-T-35-1.3-waves-1-10-Jan-2024-13:52	38.5344	32.2894	-0.370892	
scanw-FBK1-ANN-T-35-1.4-waves-1-10-Jan-2024-13:55	38.634	32.6616	-0.175506	
scanw-FBK1-ANN-T-35-1.5-waves-1-10-Jan-2024-13:58	38.7328	33.0714	-0.452139	25

Jakub Kandra, INFN Padova

Effect of annealing to time resolution



- Then modules was irradiated again at level 10.0 · 10¹⁰ to test affect to time resolution
- Time resolution results keep consistent as before


Effect of annealing to time resolution

Effect of annealing to time resolution

