

Neutron Capture Measurement Status of ¹⁶⁶Er at n_TOF facility, CERN

Rudra N Sahoo INFN Postdoc Fellow INFN Bologna, Italy

Cristian Massimi (Advisor)

V. Alcayne, S. Amaducci, D. Cano-Ott, A. Casanovas, D. M. Castelluccio, S. Cristallo, G.Grasso, E. González-Romero, A. Guglielmelli, A. Manna, T. Martínez, E. Mendoza, R. Mucciola, A. Sánchez-Caballero, P. Schillebeeckx, D. Vescovi and the n_TOF collaboration

Outline

- Motivations of the measurements
- Comparison of the evaluated libraries
- Experimental set-up and ¹⁶⁶Er sample
- Calibrations of detectors: C6D6
- Measurements with ¹⁹⁷Au sample
- Neutron capture of ¹⁶⁶Er
- Measurements with Empty, C, Lead and Filters
- Background subtraction and yields calculations
- Comparison with R-matrix calculations

Motivations of Measurement

Rare earth element Lanthanide series of the periodic table

- **Reactivity Control:** ¹⁶⁶Er serves as a key neutron absorber used to optimize reactor operations by finely tuning reactivity levels.
- **Stellar Insights:** Neutron capture data with ¹⁶⁶Er is crucial for accurate stellar modeling, especially in AGB stars for enhancing understanding of cosmic processes.
- **Refining Models:** Precise cross-section measurements of ¹⁶⁶Er will improve stellar models to explore its origins and natural abundances.

V. Alcayne, S. Amaducci, J. Andrzejewski et al. (the nTOF Collaboration), CERN-INTC-2023-015 / INTC-P-656 A. Guglielmelli, F. Rocchi, C. Massimi et al., Annals of Nuclear Energy 178, 109337 (2022)

Comparison between the Libraries

- ENDF & ROSFOND: Both libraries share similar structures and data sets.
- JEFF: Contains more detailed resonance data in the unresolved resonance regions.
- JENDL: Features unique data characteristics, differing from other nuclear libraries.

Facility and Experimental Set-up

n_TOF facility at CERN@ EAR1

Er166 13mm-224.7mg

ISOTOPE	Er-166						
ENRICHMENT	98.10(±0.10)%						
ELEMENT WEIGHT							

FORM

- Neutron Generation: bombarding high-energy 20 GeV/c proton beam on massive lead target.
- Flux Monitoring: SiMon detector via the ⁶Li(n,³H)⁴He reaction.
- Detection System: 4 C6D6 detectors positioned 125° to the beam

Oxide (Er₂O₃)

Detector Calibrations

C6D6 detectors were calibrated using the sources: ⁸⁸Y, ¹³⁷Cs, AmBe, CmC

Measurements with ¹⁹⁷Au

Shapes of both dedicated and parasitic pulses are same

C6D6 (1 to 4) detectors counts

Nice agreement between all the C6D6 detectors: shape and end-point of the $^{197}Au(n,y)$ cascades on the saturated resonance

Neutron time of Flight Spectrum Converted to Energy

Measurements with ¹⁶⁶Er

Distinct resonances, showcasing characteristic features of the isotope.

All detectors spectra exhibit a consistent structure.

Additional peaks are observed due contaminant in the sample.

Measurements with ¹⁶⁶Er, Empty, Pb and C

Measurements of ¹⁶⁶Er with S and Bi Filter

Filter measurements confirm accurate background levels.

At resonance energy, all neutrons are captured by the filters.

The resonance peaks seamlessly merge with the background spectrum.

In the preliminary analysis, 8 MeV is used as maximum threshold and 150keV is used as minimum threshold. From this Td plots, 20 ns used as dead time.

Background Subtraction

Sources of Background:

Sample independent Bgr (depends on time)

Directly subtracted from the Samples

Spectrum of the C scaled with

density & elastic x-section

Sample dependent neutron scattering

 $\frac{\sigma_{\rm \scriptscriptstyle Er}^{\rm \scriptscriptstyle el}}{\sigma_{\rm \scriptscriptstyle C}^{\rm \scriptscriptstyle el}} \frac{\rho_{\rm \scriptscriptstyle Er}({\rm atms}/{\rm barn})}{\rho_{\rm \scriptscriptstyle C}({\rm atms}/{\rm barn})}$

Sample dependent inbeam g-ray scattering Spectrum of the Pb scaled with density and atomic number

 $\frac{\sigma_{\rm Pb}^{\rm el}}{\sigma_{\rm C}^{\rm el}} \frac{\rho_{\rm Pb}({\rm atms/barn})}{\rho_{\rm C}({\rm atms/barn})}$

$$\frac{Z_{\rm \it Er}}{Z_{\rm \it Pb}} \frac{\rho_{\rm \it Er}({\rm atms}/{\rm barn})}{\rho_{\rm \it Pb}({\rm atms}/{\rm barn})}$$

¹⁶⁶Er Yields Calculations

n_TOF Meeting 2024

Saturated resonance of ¹⁹⁷Au: Different Diameter: 20mm and 40mm

166Er Yield Analysis

Capture yield (not normalized)

Resonances of ¹⁶⁶Er between 0.4 KeV to 2 KeV

When ¹⁶⁷Er impurity included with ¹⁶⁶Er Analysis

Preliminary yields, R-matrix with calculations with ENDF and JENDL

0.30000

0.25000

0.20000

nTOF data ENDF8.1 JENDL5

n_TOF Meeting 2024

Summary and Outlook

The experiment was successfully completed in June-July 2024.Preliminary yield calculations have been performed.Initial results indicate high-quality data.Further data refinement is required to minimize errors.The capture kernel will be calculated to determine the MACS.

Acknowledgments

Funding from INFN Bologna, Euro lab, and n_TOF collaborations All the members and local team of n_TOF Collaborations

Thanks for your attention

ISOTOPE	Er-162	Er-164	Er-166	Er-167	Er-168	Er-170
CONTENT (%)	<0.01	0.02	98.10(±0.10)	1.33	0.45	0.10

