Possible neutron capture measurements at n_TOF for astrophysics

Diego Vescovi^{1,2}, Sergio Cristallo^{1,2}, Luciano Piersanti^{1,2}

INAF – Osservatorio Astronomico d'Abruzzo, Teramo, Italia
 INFN – Sezione di Perugia, Perugia, Italia

Meeting nazionale n_TOF Bologna – Italia, 21-22 Novembre 2024

Origin of the heavy elements

s(low) process

- Mild neutron density $n_n \sim 10^7$
- Asymptotic giant branch (AGB) and massive stars

i(ntermediate) process

- Intemerdiate neutron density
 n_n~10¹⁵
- AGB, rapidly accreting white dwarfs, massive stars, etc.

r(apid) process

- → High neutron density $n_n \gtrsim 10^{21}$
- Supernovae and compact binary mergers

s-Processing in AGB stars

Comparison to solar distribution

Branchings in the s-process

• Branching points: if $\tau_n \sim \tau_\beta$ several paths are possible

- ⁸²Se is a stable nucleus
- Its production during the s-process largely depends on the branching at ⁷⁹Se and ⁸¹Se
- Its solar value is mostly of r-process origin (88.9%: see Prantzos+ 20)
- It can be produced via the i-process
- Its abundance is mostly determined by the • 82 Se(n, γ) (Pignatari+ 23, Martinet+ 24)

Martinet+ 24, A&A

Medium Impact

High Impact

⁸²Se

• ⁸²Se MACS adopted in the astrophysical codes is theoretical

Incident Energy (MeV)

86,87,88**S**r

- ^{86,87,88}Sr are produced during the main s-process
- ⁸⁸Sr has very low cross section \rightarrow bottleneck, difficult measurement
- Extremely precise measurements of strontium isotopic ratios in presolar grains
- Measurements already proposed by us in 2022 and 2023 but ⁸⁷Sr proposal by Gunsing+ recently approved by INTC
- ⁸⁶Sr MACS evaluation based on TOF measurements by Macklin 89

⁸⁶Sr

- ⁸⁶Sr is a reference term for Sr isotopic ratio
- Tests varying the ⁸⁶Sr MACS by ±40%

⁹⁹Tc

- The half life of ⁹⁹Tc is 0.21 Myr
- 0.11 Myr at 100 MK
- 4.5 years at 300 MK
- → The neutron-capture path of the branching point is mostly open, producing ¹⁰⁰Tc, which quickly decays into ¹⁰⁰Ru, thus skipping ⁹⁹Ru
- → Radiogenic decay of ⁹⁹Tc produces ⁹⁹Ru
- → Observation of Tc in AGB stars
- Presence of ⁹⁹Tc in single stardust SiC grains at the time of their formation discovered via laboratory analysis of the Ru isotopic composition of these grains (Savina+ 04)

Lugaro & Chieffi 18, ASSL

⁹⁹Tc

▼ List of all available values								
original	renorm.	year	type	Comment	Ref			
933 ± 47		2000	С	Linac, TOF	GLM00, GLM01			
782 ± 50		1987	С	Linac, TOF, ⁶ Li, Au:Sat.	WiM87			
779 ± 40		1982	b	Linac, TOF, ⁶ Li, Au:Sat.	Mac82b			

⁹⁹Tc

Tests varying the ⁹⁹Tc MACS by ±20%

The Early Solar System

- Many short-lived radionuclides (SLRs) were present in the first few million years of Solar System history
- Their presence is inferred through excesses in daughter isotopes (compared to normal terrestrial isotopic composition) in various materials found in primitive meteorites
- Their abundances have profound impact on the timing of stellar nucleosynthesis events prior to Solar System formation, chronology of events in the early Solar System, early solar activity, heating of early-formed planetesimals, and chronology of planet formation

The Early Solar System

- Neutron captures produce significant abundances of ⁴¹Ca, ⁶⁰Fe, ¹⁰⁷Pd, ¹³⁵Cs, ¹⁸²Hf, and ²⁰⁵Pb
- The survival of ¹³⁵Cs and ²⁰⁵Pb in stellar environments is very uncertain because of the strong temperature and density dependence of their half lives, decreasing by orders of magnitudes in stellar conditions and determined only theoretically
- ⁴¹Ca, ¹⁰⁷Pd, and ²⁰⁵Pb are produced by neutron captures on the stable isotopes
- ⁶⁰Fe, ¹³⁵Cs, and ¹⁸²Hf can be reached via the activation of branching points at ⁵⁹Fe, ¹³⁴Cs, and ¹⁸¹Hf

Table 1	SLRs once	existing in Solar	System obje	cts; shaded	rows i	ndicate §	SLRs wi	ith un	confirm	ed or	unce	ertain	
abundar	ices						D	avis	s A. N	1.2	2, A	ARA&	J

		Parent Daughter Estimated initial Solar		Estimated initial Solar System			
	Fractionation ^a	nuclide	Half-life (Ma) ^b	nuclide	abundance	Objects found in	Reference(s)
	Nebular	⁷ Be	$53.22\pm0.06~\mathrm{d}$	⁷ Li	$(6.1 \pm 1.3) \times 10^{-3} \times {}^{9}\text{Be}$	CAI	27
	Nebular	¹⁰ Be	1.387 ± 0.0012	¹⁰ B	$(7.3 \pm 1.7) \times 10^{-4} \times {}^{9}\text{Be}$	CAIs	36; this article
	Nebular,	²⁶ Al	0.717 ± 0.024	²⁶ Mg	$(5.20 \pm 0.13) \times 10^{-5} \times {}^{27}\text{Al}$	CAIs, chondrules,	44, 45
	planetary					achondrites	
	Planetary	³⁶ Cl	0.3013 ± 0.0015	³⁶ S, ³⁶ Ar	$(1.7-3.0) \times 10^{-5} \times {}^{35}\text{Cl}$	CAIs, chondrites	55
⇒	Nebular	⁴¹ Ca	0.0994 ± 0.0015	⁴¹ K	$4 \times 10^{-9} \times {}^{40}$ Ca	CAIs	62
	Nebular,	⁵³ Mn	3.7 ± 0.4	⁵³ Cr	$(7 \pm 1) \times 10^{-6} \times {}^{55}Mn$	CAIs, chondrules,	69
	planetary					carbonates,	
		10				achondrites	
	Nebular,	⁶⁰ Fe	2.62 ± 0.04	⁶⁰ Ni	$(1.01 \pm 0.27) \times 10^{-8} \times {}^{56}\text{Fe}$	Achondrites,	79
	planetary				5 03	chondrites	
	Planetary	⁹² Nb	34.7 ± 2.4	⁹² Zr	$(1.66 \pm 0.10) \times 10^{-5} \times {}^{93}\text{Nb}$	Chondrites,	89
		07		07		mesosiderites	
	Planetary	⁹⁷ Tc	4.21 ± 0.16	⁹⁷ Mo	$<1 \times 10^{-6} \times {}^{92}Mo$	Iron meteorites	90
	Planetary	⁹⁸ Tc	4.2 ± 0.3	⁹⁸ Ru	$<2 \times 10^{-5} \times {}^{96}$ Ru	Iron meteorites	91
	Planetary	¹⁰⁷ Pd	6.5 ± 0.3	¹⁰⁷ Ag	$(5.9 \pm 2.2) \times 10^{-5} \times {}^{108}$ Pd	Iron meteorites,	94
						pallasites	
	Planetary	¹²⁶ Sn	0.230 ± 0.014	¹²⁶ Te	$<3 \times 10^{-6} \times {}^{124}$ Sn	Chondrules,	101
						secondary	
		120		130		minerals	
	Planetary	¹²⁹ I	16.14 ± 0.12	¹²⁹ Xe	$(1.35 \pm 0.02) \times 10^{-4} \times {}^{12}/\mathrm{I}$	Chondrules,	This article
						secondary	
_	N7.1.1	130	1 22 1 0 10	1350	20 10-6 130	minerais	100
	Nebular	146 g	1.33 ± 0.19	1425 KI	<2.8 × 10 ⁻⁶ × ¹⁵⁵ Cs	CAIs, chondrites	109
	Planetary	140Sm	$103 \pm 5^{\circ}$	¹⁴² Nd	$(8.40 \pm 0.32) \times 10^{-5} \times 10^{-5}$ Sm	Planetary	114
<u> </u>	DI	182110	0.00 1.0.00	187337	(1.010 + 0.042) - 10-4 - 180110	differentiates	117
	Planetary	H	8.90 ± 0.09	102 W	$(1.018 \pm 0.043) \times 10^{-4} \times 10^{-6}$ Hf	differentiates	117
_	Dlanatama	205 DL	17.0 ± 0.0	205701	$(1.9 \pm 1.2) \times 10^{-3} \times 204$ DL	Chandrites	121
	Planetary	244 p	17.0 ± 0.9	232771 C 1	$(1.0 \pm 1.2) \times 10^{-3} \times {}^{204}Pb$	CAL	121
	Planetary	247 c	81.5 ± 0.5	Th; fission	$(7.7 \pm 0.6) \times 10^{-3} \times 236 \text{U}$	CAIs, chondrites	123
	Nebular	24/Cm	15.6 ± 0.5	2350	$(5.6 \pm 0.3) \times 10^{-3} \times 2^{33}$ U	CAIs	4,55

⁴¹Ca(n,p) & ⁴¹Ca(n,α)

- ⁴¹Ca is long-lived radioactive nuclei lighter than iron
- Important also for ⁴¹K/³⁹K excesses measured in presolar grains from supernovae (Amari+ 96)
- Can be made by neutron captures on ⁴⁰Ca (half life of 0.1 Myr), which is stable and with relatively high solar abundance
- Neutron captures also destroy ^{41}Ca via different channels, the predominant being $^{41}Ca(n,\alpha)^{38}Ar$
- Experimental estimates for the neutron-capture cross section is available (e.g. de Smet et al. 2006),
- Electron-capture rate of ⁴¹Ca is expected to vary significantly for different temperatures and densities relevant to stellar conditions
- Theoretical computations by Fuller+ 82

⁴¹Ca(n,p) & ⁴¹Ca(n,α)

- Thermal n-capture cross sections from Wagemans+ 98
- ${}^{41}Ca(n,\alpha){}^{38}Ar$ reaction cross section up to 80 keV measured at GELINA (Vermote+ 12)
- Studied via inverse kinematics \rightarrow ³⁸Ar(α ,n)⁴¹Ca and ³⁸Ar(α ,p)⁴¹K (Talwar+ 18)

• Too long-living ($T_{1/2}$ = 6.5 Myr, down to 700 years at 300 MK) to act as a branching point during the s-process

→ Behaves as a stable nucleus

• Experimentally determined neutroncapture cross section (Macklin 1985)

 Its radiogenic decay is responsible for production of ¹⁰⁷Ag

¹⁰⁷Pd

• Experimentally determined neutron-capture cross section (Macklin 1985)

Incident Energy (MeV)

• Tests varying the ¹⁰⁷Pd MACS by ±30%

¹⁸²Hf

- Production of ¹⁸²Hf via activation of the branching point at ¹⁸¹Hf
- The half life of ¹⁸¹Hf, is believed to strongly decrease from 42 days to ~2 days in stellar conditions, mostly via population of an excited state at 68 keV (TY 87)
- However, the more recent, detailed experiments of Bondarenko+ 02 on the nuclear structure of ¹⁸¹Hf suggested that this energy level does not exist
- Possible large production of ¹⁸²Hf to the sprocess in AGB stars

- This may resolve the discrepancy between the abundances of ¹²⁹I and ¹⁸²Hf in the early solar system and allow to time the latest r- and s-process events that contributed to the build-up of solar system matter before the formation of the Sun (see discussion in Lugaro+ 14 and Vescovi+ 18)
- Its decay into ¹⁸²W is of importance also for determing the solar r-process residual of this isotope

Lugaro+ 18, PrPNP

¹⁸²Hf

• Experimentally determined n-capture cross section via activation technique (Vockenhuber+ 07)

Incident Energy (MeV)

- Despite its long terrestrial half-life ($T_{1/2} = 17$ Myr) of ²⁰⁵Pb acts as a branching point because of the strong dependence on temperature and electron density
- ²⁰⁵Tl becomes unstable during TPs and its β^- decay is competing with the β^+ decay of ²⁰⁵Pb

- Measured for the first time the boundstate β⁻ decay of ²⁰⁵Tl
- The measured half-life is **4.7 times larger** than the previous theoretical estimate (291 days vs. 58 days)
- <u>Diverging behavior at low temperatures</u> due to the different extrapolation to the terrestrial value (log versus linear)

Leckenby+ 24, Nature

- Plugging in <u>new yields in basic GCE models</u> and comparing to the ²⁰⁵<u>Pb/²⁰⁴Pb ratio from</u> meteorites, the isolation time of Solar material inside its parent molecular cloud can be determined
- **Positive isolation times** that are consistent with the other s-process short-lived radioactive nuclei found in the early Solar System

original	renorm.	year	type	Comment	Ref	1
54 ± 12		1976	S		MaW76	
102		2000	t		RaT99	
83		1981	t		Har81	
58		1976	t		HWF76	
65.8		2002	t	MOST 2002	Gor02	
81.0		2005	t	MOST 2005	Gor05	
• Theoretic	al (n,γ) cross	section		1000- 100-		JEFF-3.3: PB-205(N,G)PB-206, pt:5012 JENDL-5: PB-205(N,G)PB-206, pt:660 • 1996,S.Raman+, pt:1 #13628002

Incident Energy (MeV)

• Tests varying the ²⁰⁵Pb MACS by a factor 2

