³⁰Si(n,γ) & ⁶⁴Ni(n,γ): Status of the Analysis

Michele Spelta

³⁰Si(n,y): Motivations

³⁰Si(n, γ) cross section is important:

- to predict the abundance of Silicon isotopes produced in the convective carbon shell of massive stars
- to understand the Si isotopic abundances measured in pre-solar
 SiC grains, disentangling the contributions of s-process and GCE

K. Guber et al., Phys. Rev. C 67, 062802 (2003)

RECAP

⁶⁴Ni(n,γ): Motivations

⁶⁴Ni(n, γ) cross section is important:

 because, as a seed of the s-process, it affects the abundances of many isotopes synthesized in the process

Cescutti et al., MNRAS 478, 4101 (2018)

 to possibly explain the discrepancy observed in SiC grains between measured and predicted ⁶⁴Ni isotopic abundances Vescovi et al., ApJ Lett 897, 25 (2020)

RECAP

Setup

³⁰Si(n, y) & ⁶⁴Ni(n, y) : Status of the analysis

³⁰Si(n,γ) EAR1: Status

³⁰Si(n,γ) & ⁶⁴Ni(n,γ): Status of the analysis

³⁰Si(n,y) EAR1: Yield Corrections

³⁰Si and Gold de-excitation cascades have been simulated and tuned using **NUDEX** to correct for the **thresholds** and the **electron conversion** effects.

³⁰Si(n, y) & ⁶⁴Ni(n, y): Status of the analysis

3

2

Counts (a. u.)

 10^{-1}

 10^{-2}

0

³⁰Si(n,y) EAR1: Mass Problem

The mass of ³⁰Si sample increased in the sintering procedure (oxidation), so a direct measurement of the actual mass of ³⁰Si in-beam is not available, but it has been estimated using a ^{Nat}Si metallic sample:

³⁰Si(n,γ) EAR1: Resonance Fitting

³⁰Si(n,γ) & ⁶⁴Ni(n,γ) : Status of the analysis

³⁰Si(n,γ) EAR1: Resonance Fitting

³⁰Si(n,γ) EAR1: Resonance Fitting

³⁰Si(n, y) & ⁶⁴Ni(n, y): Status of the analysis

³⁰Si(n,γ) EAR1: Preliminary MACS

The first two resonances are the dominant contribution to the MACS up to 25 keV (Direct contribution still missing, estimated at 0.3 – 0.45 mb by Beer / Guber)

³⁰Si(n,y) EAR1: High Energy Region

Resonances after 100 keV are smaller and suffer by large fluctuations and poor statistics. For the moment, **just some fitting attempts** have been performed...

EAR2: Calibrations

Gain shift has been comparing different Y88 and Au runs:

counts/bin counts/bin Y88_1 Y88 1 Y88_2 Y88_2 Y88 3 Y88 3 10-2 Y88 4 - Y88 4 Y88 5 Y88 5 Y88 6 10-4 Y88 6 – Y88 7 Y88 7 - Y88_8 Y88 8 10⁻⁵ 10⁻⁵ 3.8 % 10^{-6} 10⁻⁶ C6D6 N #2 STED #3 10⁻⁷ 6000 8000 12000 14000 2000 4000 10000 2000 0 4000 6000 8000 10000 12000 amplitude-charge (channel) amplitude-charge (channel)

C6D6: Gain Shift

STED: Stable

³⁰Si(n, y) & ⁶⁴Ni(n, y): Status of the analysis

Calibration and resolution functions have been computed fitting the results from different sources. The calibration of the STEDs are pretty linear.

Calibration and resolution functions have been computed fitting the results from different sources. The calibration of the STEDs are pretty linear.

EAR2: Thresholds STED

STED rebounds have been fixed adjusting the **PSA**. Energy deposited thresholds can be set at **130 keV**.

28, 29Si(n,y) Preliminary results

(barn Si29(n,g) section OSS Contamination from **Pd** in Si29 sample? Α. 10 Some "new" resonances for Si29 (≈ 70 keV, > 100 keV)? Β. 10-C. Some resonances not seen in Si28 10-3 10^{-} $\times 10^{-15}$ Counts/protons 10^{4} 10⁵ ToF unweighted spectra 1000bpd **Si28** Neutron Energy Si29 Counts/protons Dummy Si28 Si29 Dummy B 10^{-15} 3 B 10^{-16} 10⁴ 10^{5} neutron energy (eV) 10^{3} 10^{2} 10^{-1} 10 10⁴ neutron energy (eV)

Si28(n,g)

Summary

	³⁰ Si(n,ɣ) EAR1	⁶⁴ Ni, ³⁰ Si(n,ɣ) EAR2	
July 2023	Measurement	Measurements	August 2023
	• Preliminary results EAR1	Preliminary results	
	• Detector calibrations EAR1	Detector calibrations	
	• WF EAR1	• WF	STED
	• Yield EAR1	• Yield	
Sept 2024	• Resonance Fitting EAR1	 Resonance Fitting 	Spring 2025
	High Energy (> 100 keV) resonances	• Papers	2025
June 2025	• EAR2 (thermal)		

³⁰Si(n,γ) & ⁶⁴Ni(n,γ): Status of the Analysis

Michele Spelta

³⁰Si(n,y) EAR1: Yield Corrections

³¹Si de-excitation cascade for the 4.98 keV resonance has been tuned using **NUDEX** to correctly reproduce the measured spectrum (tuning of the primary transition probability)

³⁰Si(n,y) EAR1: Yield Corrections

Gold de-excitation cascade for the 4.9 eV resonance has been simulated using **NUDEX** to correct for the threshold and electron conversion.

	C6D6 1	C6D6 2	C6D63	C6D64
Total w counts no thrshold (Au)	1.0396	1.0440	1.0364	1.0460
Total w counts + EC (Au)	1.0103	1.0138	1.0079	1.0060
Total w counts no thr + EC (Au)	1.0503	1.0584	1.0446	1.0522

³⁰Si(n,γ) EAR1: High Energy Region

Resonances after 100 keV are smaller and suffer by large fluctuations and poor statistics. For the moment, just some fitting attempts have been performed...

Calibration and resolution functions have been computed fitting the results from different sources. The calibration of the STEDs are pretty linear.

EAR2: Thresholds STED

³⁰Si(n,γ) & ⁶⁴Ni(n,γ): Status of the analysis