Meeting nazionale n_TOF

Misura di n + 63,65 Cu. Analisi preliminare e prossime misure

ALMA MATER STUDIORUM Università di Bologna Nicholas Pieretti

INFN Bologna

Università di Bologna

21 Novembre 2024

990

< □ > < @ > < 注 > < 注 > ... 注

Why Copper?

Nuclear Technologies:

- Generation IV fast reactors
- Nuclear data and materials testing at the TAPIRO research reactor
- S&U studies revealed inadequacies in Cu data libraries

Why Copper?

Nuclear Astrophysics:

- Contributions of various Copper nucleosynthesis scenarios to be determined
- Accurate determination of Cu MACS will constrain the s-process contribution

$n + {}^{63,65}Cu$ @ n_TOF EAR1: (n, γ)

10² 10^{3}

10

- 2024: ${}^{63}Cu(n,\gamma)$ and ${}^{65}Cu(n,\gamma)$
- Measurements with C_6D_6 detectors
- Resonance parameter extraction in the energy range of interest $E_n < 400 \, \rm keV$

10⁵ 10⁶

10⁴ Neutron energy (eV)

$n + {}^{63,65}Cu @ n_TOF EAR1: (n,tot)$

- 2025: ⁶³Cu(n,tot) and ⁶⁵Cu(n,tot)
- Measurements with ²³⁵U-loaded fission chamber
- Resonance parameter extraction in the energy range of interest $E_n < 5 \,\mathrm{MeV}$
- Target: σ_{tot} uncertainty below 5% for $E_n > 100 \, keV$ with 100 bpd

Meeting nazionale n_TOF

• 2025: Tests for feasibility of elastic/inelastic angular distribution measurements

• Discussion on setup and detector R&D : this meeting!

Plan @ n_TOF: capture

Exp.	Sample	Protons	Comments			DLAN		
Capture	^{63}Cu	$2.0 imes 10^{18}$				PLAN		
Capture	^{65}Cu	2.0×10^{18}		PROTONS (x10^17)				17)
Capture	^{nat}Cu	$0.3 imes 10^{18}$	EAR1 or EAR2		SHIFT	planned	Ongoing	%
Capture	Empty-sample	$0.2 imes 10^{18}$	background study	Cu63	54	21.6	21.8	101
Capture	$^{\rm Pb}$	$0.2 imes 10^{18}$	background study	Au	5	2.0	17	85
Capture	\mathbf{C}	$0.2 imes 10^{18}$	background study	Emanda	-	2.0	1.7	100
Capture	¹⁹⁷ Au	$0.1 imes 10^{18}$	normalization	Empty	/	2.8	2.9	103
Transmission	^{63}Cu	$1.0 imes 10^{18}$	"Sample-in"	Pb	3	1.2	1.1	89
Transmission	^{65}Cu	$1.0 imes 10^{18}$	"Sample-in"	С	3	1.2	1.1	95
Transmission	Empty-sample	1.0×10^{18}	"Sample-out"	AOB	6	2.4	6.6	274
		8.0×10^{18}		TOTAL	79	31.2	35.2	112.9

Table 3: Summary of requested protons.

- Observe resonances up to 50-200 keV
 - σ_{γ} uncertainty below 3-5%

э

Plan @ n_TOF: capture

Exp.	Sample	Protons	Comments			DLAN		
Capture	^{63}Cu	2.0×10^{18}				PLAN		
Capture	^{65}Cu	$2.0 imes 10^{18}$		PROTONS (x10^17)				
Capture	^{nat}Cu	$0.3 imes 10^{18}$	EAR1 or EAR2		SHIFT	planned	Ongoing	%
Capture	Empty-sample	$0.2 imes 10^{18}$	background study	Cu65	50	18.3	17.3	94
Capture	$^{\rm Pb}$	$0.2 imes 10^{18}$	background study	Au	1	0.4	1.0	269
Capture	\mathbf{C}	$0.2 imes 10^{18}$	background study	Emerada	-	1.5	1.7	115
Capture	^{197}Au	0.1×10^{18}	normalization	Empty	4	1.5	1.7	115
Transmission	^{63}Cu	$1.0 imes 10^{18}$	"Sample-in"	Pb	2	0.7	0.9	118
Transmission	^{65}Cu	$1.0 imes 10^{18}$	"Sample-in"	С	2	0.7	0.9	129
Transmission	Empty-sample	1.0×10^{18}	"Sample-out"	filters	8	2.9	4.0	136
		8.0×10^{18}				2.0		200
				IOTAL	67	24.6	25.7	104.8

Table 3: Summary of requested protons.

- Observe resonances up to 50-200 keV
 - σ_{γ} uncertainty below 3-5%

⁶³Cu capture campaign

Sac

65 Cu capture campaign: target & C₆D₆

⁶⁵Cu capture campaign: MicroMegas

Preliminary analysis results: ⁶³Cu

э

SiMON amplitude spectra

N. Pieretti

Meeting nazionale n_TOF

21 Novembre 2024 13 / 39

SiMON TOF spectra

N. Pieretti

Meeting nazionale n_TOF

21 Novembre 2024

SiMON TOF spectra

N. Pieretti

21 Novembre 2024 15 / 39

æ

990

C₆D₆ amplitude spectra Au

Meeting nazionale n_TOF

C₆D₆ TOF spectra Au

N. Pieretti

21 Novembre 2024 17 / 39

C₆D₆ amplitude spectra Cu

C₆D₆ TOF spectra Cu

N. Pieretti

Meeting nazionale n_TOF

21 Novembre 2024 19 / 39

C₆D₆ counts normalized to neutron intensity

C_6D_6 counts normalized to neutron intensity

PhD RAMEN: to do next

- Check C_6D_6 gains calibrations
 - Produce MC WF for Cu
 - Study C_6D_6 background
 - Produce yields
 - RSA on Cu
- Systematic study on uncertainties
 - Transmission measurements

• . . .

22 / 39

Thank You!

3

Backup slides

æ

SiMON amplitude spectra

N. Pieretti

Meeting nazionale n_TOF

21 Novembre 2024 25 / 39

C₆D₆ TOF spectra Au

Au_T_w1_C6D6

N. Pieretti

21 Novembre 2024 26 / 39

э

590

C₆D₆ TOF spectra Cu

Cu_T_w1_C6D6 wcounts/bin 10² 10 ± 10^{-1} 10⁻² 10⁻³ 10³ 10⁵ 10⁶ 10^{7} time - Ty (ns) 10^{-1} 10² 10⁴ 10 1

N. Pieretti

21 Novembre 2024 2

æ

୬ ୯ ୯ 27 / 39

C6D6

Au_T_w1_C6D6

N. Pieretti

21 Novembre 2024

æ

Au_T_w1_C6D6

21 Novembre 2024

æ

DQC

29 / 39

Au_T_w1_C6D6

э. 21 Novembre 2024 30 / 39

æ

990

Cu_T_w1_C6D6

æ

990

Cu_T_w1_C6D6

21 Novembre 2024

æ

990

32 / 39

Cu_T_w1_C6D6

wcounts/bin

э 33 / 39 21 Novembre 2024

æ

Why Copper?

Nuclear Technologies:

- TAPIRO research reactor plays a crucial role for testing nuclear data and materials for fast reactors
- S&U studies revealed inadequacies in major data libraries regarding Copper evaluations

Why Copper?

Nuclear Astrophysics:

- The contributions of various nucleosynthesis scenarios (weak s-process in massive stars, main s-process in AGBs, SNe Ia and SNe II) need to be determined
- With accurate determination of Cu MACS, it will also be possible to improve the quantitative description of the s-process in massive stars

n + 63,65Cu @ n_TOF EAR1: (n,n)

• A combined analysis of capture and transmission data will help deduce the $\sigma_e \simeq \sigma_{tot} - \sigma_{\gamma}$, with potential future studies on elastic angular distribution and the inelastic channel.

The n_TOF facility

- Wide energy range: 10 meV < E_n < 1 GeV
- High current: $7 \times 10^{12} \text{ p/bunch} \rightarrow$ $\sim 10^6 \text{ n/pulse from spallation}$ target
- Energy resolution: $\Delta E/E \sim 10^{-4} @ {\sf EAR1}$

PhD RAMEN project proposal

- Experimental data acquisition
- Tests for feasibility of elastic angular distribution measurements
- Analysis of the acquired data

MicroMegas

3

SAC