

High acceptance Silicon Detector for (n,cp) measurements

GEANT4 SIMULATIONS ON THE PHYSICS CASE

Bologna 2024- Meeting Nazionale n_TOF

Giulio Perfetto

The High Acceptance Detector

This Silicon based apparatus is composed by two double sided annular detectors and four squares, arranged in a cylindrical geometry to maximize the efficiency.

- nTD Silicon
- Based on SAD results: suitable for PSD
 with digital PSA
- Expected efficiency \approx 35/40 %
- Highly segmented:
 - 32 channels on annular detectors (16 front and 16 back)
 - 16 channels on the square detectors (8 front and 8 back)

Geometry

Detector thickness: 400 µm (7 MeV protons PT)

Al Dead Layer thickness: 500 nm

Relative distances between detectors can be adjusted.

Choice of the sample

The High acceptance Si Detector was designed to measure (n,cp) reactions.

Different possible samples are now being studied for nuclear fusion applications. Main candidates for **plasma facing parts**:

- ▶ W it is the main component of the ITER divertor and First Wall, thanks to the high melting point \rightarrow Hard to fabricate.
- Mo is an attractive alternative to Tungsten \rightarrow Easier to fabricate, but significant radioactivity after neutron exposure.
- Cu is a component of the divertor with W-CU monoblocks

TEM image of He bubbles in various metals. From Li,S. et al "Radiation-Induced Helium Bubbles in Metals"

In these materials (n,cp) reactions cause the formation of bubbles, that severely alter the thermomechanical properties of hypothetical nuclear fusion reactors.

🔶 2003 Rapp **(n**, α) ⁹⁵*Mo* 🔫 1986 Szarka 10-3 10^{-3} (barns) Section 10-4 10-4 Cross 10-5 10-5 10-6 10-6 10-6 10-4 10^{-2} 1 Incident Energy (MeV)

State of the data

- In the nuclear data libraries, there is a scarcity in (n,cp) cross sections for these elements, as well as several inconsistencies.
- The evaluated cross sections are relatively small.

GEANT4 Simulations

- ¹⁸⁴W, ⁹⁵Mo, ⁶³Cu samples tested
- 10⁷ neutrons with a cross-section bias of 10³ for all the interactions: equivalent to 10¹⁰ neutrons
- EAR2 flux with neutron energy between 1 and 20 MeV
- Results reported considering a month of irradiation

W simulations

- Produced Particles
- ► Test on ¹⁸⁴W
- Sample thickness = 7 μ m
 - 6 MeV Alpha range in Tungsten: 10.4 µm
- Results for a month in EAR2
- ▶ $1 \text{MeV} < E_n < 20 \text{MeV}$

Produced Particle	Counts
α	1998
р	5920
d	851
†	37

lsotope	Reaction	Q-value (MeV)	Threshold (MeV)
¹⁸⁴ W	(n,p)	-2.08	2.10
	(n,d)	-5.48	5.50
	(n, α)	7.34	0
	(n,t)	-6.15	6.2

W simulations

Detected Particles in the whole detector

Counts vs Neutron Energy in a month E_dep > 2 MeV

10⁴ Counts Counts 10⁵ Ð — Total 10^{3} — Alpha 104 Proton 10² 10³ E 10 10² 1 E F 0 10-1 ¹⁰Neutron Energy (MeV) -1

1036 α were detected in the forward annular

Mo Simulation

- Produced Particles
- ▶ Test on ⁹⁵Mo
- Sample thickness = $7 \, \mu m$
 - 6 MeV Alpha range in Molybdenum: 12.4µm
- Results for a month in EAR2
- ▶ $1 \text{MeV} < E_n < 20 \text{MeV}$

Produced Particle	Counts
α	19684
р	55611
d	0
†	0

lsotope	Reactio n	Q-value (MeV)	Threshold (MeV)
⁹⁵ Mo	(n,p)	-0.14	0.14
	(n,d)	-6.41	6.48
	(n, a)	6.39	0
	(n,t)	-11.02	11.15

An order of magnitude higher than W

Mo simulations

Detected Particles in the whole detector

Detected Particle	Counts	3	1
α	7844	0.40	
р	21978	0.40	

Energy deposited total detector

Alpha and Total are superimposed at lower energies

Mo simulations

Detected Particle	Counts	3
α	1887	0.10
p	5735	0.10

Proton Counts vs Neutron Energy in a month Forward annular

Cu simulation

- ▶ Test on ⁶³Cu
- Sample thickness = $5 \, \mu m$
 - 6 MeV Alpha range
 - ▶ in Copper: 12.7 µm
- Results for a month in EAR2
- ▶ $1 \text{MeV} < E_n < 20 \text{MeV}$

Produced Particle	Counts
α	62752
р	523143
d	31931
†	629

12

Isotope	Reaction	Q-value (MeV)	Threshol d
⁶³ Cu	(n,p)	0.71	0
	(n,d)	-3.90	3.96
	(n, a)	1.71	0
	(n,t)	-8.63	8.76

About:

3 times more than Mo case for α 9 times more than Mo case for p

Cu simulations

Detected Particles in the whole detector

Detecte d Particle	Counts	3
α	24938	0.40
p	182928	0.35
d	13431	0.42
t	148	0.23

13

Counts vs Neutron Energy in a month E_dep > 2 MeV

Proton and Total are superimposed at lower energies

Cu simulations

Detected Particles in the Forward annular

Detected Particle	Counts	3
α	6216	0.10
р	36445	0.07
d	4144	0.13
†	37	0.06

Neutron Energy (MeV)

Comparison between samples

Isotope	Results
¹⁸⁴ W	Very small YieldHigher Z
⁹⁵ Mo	 Higher Yield Very High Q-value
⁶³ Cu	 Highest Yield Smaller Q-value Smallest Z Available

We have considered reactions as candidate

- Relevant for nuclear fusion
- Should Have a High Yield
- (n,a) has a better PSD performance

16

Thanks for the attention!

Bologna 2024- Meeting Nazionale n_TOF

Reactions involved

Isotope	Reaction	Q-value (MeV)	Threshold
¹⁸⁴ W	(n,p)	-2.08	2.10
	(n,d)	-5.48	5.50
	(n, α)	7.34	0
⁹⁵ Mo	(n,p)	-0.14	0.144.8
	(n,d)	-6.41	6.48
	(n, α)	6.39	0
⁶³ Cu	(n,p)	0.71	0
	(n,d)	-3.90	3.96
	(n, α)	1.71	0

18

Total detected 95 Mo

