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Classical energy conditions

What are energy conditions?

Restrictions on contractions of the stress-energy tensor that encode
“physical” properties of matter such as the positivity of energy.

▶ Weak energy condition: WEC
▶ Strong energy condition: SEC
▶ Dominant energy condition: DEC
▶ Null energy condition: NEC

Name Physical Geometric Perfect fluid

WEC TµνU
µUν ≥ 0 GµνU

µUν ≥ 0
ρ ≥ 0 and
ρ+ P ≥ 0

SEC

(
Tµν −

Tgµν
n − 2

)
UµUν ≥ 0 RµνU

µUν ≥ 0
ρ+ P ≥ 0 and

(n − 3)ρ+ (n − 1)P ≥ 0
DEC TµνU

µξν ≥ 0 GµνU
µξν ≥ 0 ρ ≥ |P|

NEC Tµνℓ
µℓν ≥ 0 Rµνℓ

µℓν ≥ 0 ρ+ P ≥ 0

Uµ and ξµ: co-oriented timelike vectors, ℓµ: null vector

...
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Classical energy conditions

Visualize perfect fluid energy conditions
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Classical energy conditions

Connections
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Classical energy conditions

Why do we need energy conditions?

Gµν = 8πGTµν

Einstein tensor: spacetime geometry

Energy-momentum tensor: matter

Solving Einstein’s equations in reverse: you can have any kind of space-
time you want with the right kind of matter.

...
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Classical energy conditions

Why do we need energy conditions?

Questions that arise:

▶ Does our spacetime have singularities? Can they be naked?

▶ Are wormholes, superluminal communication and closed timelike curves
allowed?

Matter

Physical
energy

conditions

Einstein
equations

Geometric
energy

conditions

Allowed
spacetimes
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Classical energy conditions

The minimally coupled scalar field

Classical gravitational action integral

S =

∫
dnx

√
−g

[
R

16πGN
+

1

2
(∇ϕ)2 − V (ϕ)

]

Field equation (
□g +m2

)
ϕ = 0 .

For V (ϕ) = m2ϕ2/2 the stress-energy tensor is

Tµν = (∇µϕ)(∇νϕ)−
1

2
gµν(m

2ϕ2 − (∇ϕ)2)

...
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Classical energy conditions

Energy conditions for ϕ

Tµν = (∇µϕ)(∇νϕ)−
1

2
gµν(m

2ϕ2 − (∇ϕ)2)

▶ DEC: For all co-oriented timelike vectors Uµ, ξν the tensor
Uµξν + ξµUν − (Uαξα)g

µν is positive definite as Uαξα < 0.

▶ WEC and NEC: They hold as DEC holds.

▶ SEC:

UµUν
(
Tµν −

T

n − 2
gµν

)
= (Uµ∇µϕ)

2 − 1

n − 2
m2ϕ2

only obeyed it m = 0, but it can be violated when m > 0.
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Quantum energy inequalities

Violation of classical energy conditions in QFT

Positivity of the energy density is in general incompatible with quantum
field theory.

Sketch of the theorem
Let A any local operator that has zero expectation value in the vacuum state
⟨Ω|A|Ω⟩ = 0. Then if A is positive we can write ∥A1/2Ω∥2 = ⟨Ω|A|Ω⟩ = 0. So
AΩ = 0 and then A is identically zero. So A cannot be positive. [Epstein,
Glaser, Jaffe, 1965]

⇒There is a nonzero probability for both positive and negative measurement
values, so the spectrum of A extends into the negative half-line.

...



11/63

Energy conditions Singularities Exotic spacetimes Conclusions and questions

Quantum energy inequalities

Violation of classical energy conditions in QFT

Positivity of the energy density is in general incompatible with quantum
field theory.

Sketch of the theorem
Let A any local operator that has zero expectation value in the vacuum state
⟨Ω|A|Ω⟩ = 0. Then if A is positive we can write ∥A1/2Ω∥2 = ⟨Ω|A|Ω⟩ = 0. So
AΩ = 0 and then A is identically zero. So A cannot be positive. [Epstein,
Glaser, Jaffe, 1965]

⇒There is a nonzero probability for both positive and negative measurement
values, so the spectrum of A extends into the negative half-line.

...



11/63

Energy conditions Singularities Exotic spacetimes Conclusions and questions

Quantum energy inequalities

Violation of classical energy conditions in QFT

Positivity of the energy density is in general incompatible with quantum
field theory.

Sketch of the theorem
Let A any local operator that has zero expectation value in the vacuum state
⟨Ω|A|Ω⟩ = 0. Then if A is positive we can write ∥A1/2Ω∥2 = ⟨Ω|A|Ω⟩ = 0. So
AΩ = 0 and then A is identically zero. So A cannot be positive. [Epstein,
Glaser, Jaffe, 1965]

⇒There is a nonzero probability for both positive and negative measurement
values, so the spectrum of A extends into the negative half-line.

...



12/63

Energy conditions Singularities Exotic spacetimes Conclusions and questions

Quantum energy inequalities

Quantization and renormalization

We follow algebraic quantization and our main object of interest is the two
point function,

Wψ(x , x
′) ≡ ⟨ϕ(x)ϕ(x ′)⟩ψ ,

where ψ is a quantum state of interest. The class of states we consider in this
paper are the Hadamard states whose two point-functions have well-known
singularity structures.

The two-point function is divergent in QFT. As we know the singularity
structure of the states we can renormalize the stress-tensor by subtract-
ing these singularities.

We renormalize the stress-energy tensor following the prescription of Hollands
and Wald [Hollands, Wald, 2001].

...
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Quantum energy inequalities

Quantization and renormalization

First let’s define the point-split stress-energy operator

T split
µν′ (x , x

′) = ∇(x)
µ ⊗∇(x′)

ν′ −1

2
gµν′(x , x

′)gλρ
′
(x , x ′)∇(x)

λ ⊗∇(x′)
ρ′ +

1

2
m2gµν′(x , x

′)1⊗1 ,

where gµν′(x , x
′) is the parallel propagator. Then we can define

⟨T fin
µν⟩ψ(x) = lim

x′→x
gν
ν′(x , x ′)T split

µν′ ◦ (

smooth︷ ︸︸ ︷
Wψ − H(k))(x , x

′) ,

Hadamard parametrix : a bi-distribution that encodes the singularity structure
of the two-point function of Hadamard states
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Quantum energy inequalities

Quantization and renormalization

Coincident limit
[[B]] (x ′) = lim

x→x′
B(x , x ′).

The difference between two Hadamard states ψ and ψ0 is smooth at the
coincident limit x → x ′

⟨T ren
µν ⟩ψ − ⟨T ren

µν ⟩ψ0 =
[[
gν
ν′ T split

µν′ ◦ (Wψ −Wψ0)
]]
,

where
⟨T ren

µν ⟩ψ(x) = ⟨T fin
µν⟩ψ − Q(x)gµν(x) + Cµν(x)︸ ︷︷ ︸

Renormalization freedom

.

Massless Minkowski vacuum

⟨:Tµν :⟩ψ :=
[[
gν
ν′ T split

µν′ ◦ (Wψ −WΩ)
]]
.

...
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Quantum energy inequalities

What are quantum energy inequalities?

We can’t have non-negativity of ⟨T ren
µν ⟩ψ(x) at every spacetime point.

Quantum energy inequalities (QEIs) introduce a restriction on the pos-
sible magnitude and duration of any negative energy densities or fluxes
within a quantum field theory.

If ρ is some contraction of the stress-energy tensor

⟨ρ(f )⟩Ψ ≥ −⟨Q(f )⟩Ψ ,

⟨ρ(f )⟩Ψ − ⟨ρ(f )⟩Ψ0 ≥ −⟨QΨ0(f )⟩Ψ .

f : non-negative smearing function on spacetime

...
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Quantum energy inequalities

Derivation of a quantum energy inequality

Average over a timelike geodesic:

⟨ρ ◦ γ⟩ψ(f 2) =
∫ ∞

−∞
dtf 2(t)⟨ρ⟩ψ(γ(t)) .

Define
ρsplit(t, t′) =

(
hµhνT split

µν ϕ⊗ ϕ)
)
(γ(t), γ(t′)) .

Then
⟨:ρ:splitψ0

⟩ψ (t, t′) = ⟨ρsplit(t, t′)⟩ψ − ⟨ρsplit(t, t′)⟩ψ0 ,

...
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Quantum energy inequalities

Derivation of a quantum energy inequality

⟨:ρ:ψ0 ◦ γ⟩ψ(f
2) =

∫ ∞

−∞
dt dt′ f (t)f (t′)δ(t − t′)⟨:ρ:splitψ0

⟩ψ (t, t′)

=

∫ ∞

0

dα

π

∫ ∞

−∞
dt dt′ f (t)f (t′)e iα(t−t′)⟨:ρ:splitψ0

⟩ψ (t, t′)

=

∫ ∞

0

dα

π

∫ ∞

−∞
dt dt′ ⟨ρsplit(t, t′)⟩ψfα(t)fα(t′)

−
∫ ∞

0

dα

π

∫ ∞

−∞
dt dt′ ⟨ρsplit(t, t′)⟩ψ0 fα(t)fα(t

′) ,

where fα(t) = f (t)e iαt .

...
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⟩ψ (t, t′)

=

Positive!︷ ︸︸ ︷∫ ∞

0

dα

π

∫ ∞

−∞
dt dt′ ⟨ρsplit(t, t′)⟩ψfα(t)fα(t′)

−
∫ ∞

0

dα

π

∫ ∞

−∞
dt dt′ ⟨ρsplit(t, t′)⟩ψ0 fα(t)fα(t
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where fα(t) = f (t)e iαt .

Assumptions for ρsplit

▶ Symmetric

▶ Of positive type
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Quantum energy inequalities

Derivation of a quantum energy inequality

⟨:ρ:ψ0 ◦ γ⟩ψ(f
2) ≥ −

∫ ∞

0

dα

π

∫ ∞

−∞
dt dt′ ⟨ρsplit(t, t′)⟩ψ0 fα(t)fα(t

′) ,

[Fewster, 2000]

⟨:ρ: ◦ γ⟩ψ(f 2) ≥ −
∫ ∞

0

dα

π

[
(f ⊗ f )(γ ⊗ γ)∗(Q ⊗ Q H̃k)

]∧
(−α, α) ,

[Fewster, Smith, 2007]

...
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Quantum energy inequalities

Derivation of a quantum energy inequality

⟨:ρ:ψ0 ◦ γ⟩ψ(f
2) ≥ −

∫ ∞

0

dα

π

∫ ∞

−∞
dt dt′ ⟨ρsplit(t, t′)⟩ψ0 fα(t)fα(t

′) ,

[Fewster, 2000]

⟨:ρ: ◦ γ⟩ψ(f 2) ≥ −
∫ ∞

0

dα

π

[
(f ⊗ f )(γ ⊗ γ)∗(Q ⊗ Q H̃k)

]∧
(−α, α) ,

[Fewster, Smith, 2007]

But what are these lower bounds?
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Quantum energy inequalities

Examples of QEIs

For minimally coupled scalars on Minkowski spacetime∫
dt f 2⟨:TµνUµUν :⟩ψ ≥ − 1

16π2

∫
f ′′(t)2dt

...
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Quantum energy inequalities

Examples of QEIs

For minimally coupled scalars on Minkowski spacetime

1

τ

∫
dt f 2⟨:TµνUµUν :⟩ψ ≥ − C

τ 4

[Ford, Roman, 1995], [Fewster, Eveson, 1998]
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Quantum energy inequalities

Examples of QEIs

For minimally coupled scalars on spacetimes with small curvature∫
γ

dt f (t)2⟨T ren
µνU

µUν⟩ψ(t, 0) ≥ − 1

16π2

{
I1 +

5

6
RmaxJ2

+ R ′′
max

[
23

30
J3 +

(
43

40
+ 16π2(24|a|+ 11|b|)

)
J4

]
+ R ′′′

max

[
163π + 14

96π
J5 +

7(2π + 1)

192π
(4J6 + J7)

]}
.

[E-AK, Olum, 2015] The curvature is considered bounded in the following sense

|Rab| ≤ Rmax |Rab,cd | ≤ R ′′
max |Rab,cde | ≤ R ′′′

max .

...
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Quantum energy inequalities

Examples of QEIs

Other derivations:

▶ State-dependent bounds for the non-minimally coupled field [Fewster,
Osterbrink, 2000], [Fewster, E-AK, 2018]

▶ Results on Maxwell, Proca and Dirac fields [Fewster, Pfenning, 2003],
[Fewster, Mistry, 2003]

▶ Results for two-dimensional CTFs [Fewster, Hollands, 2005]

▶ Two-dimensional integrable interacting QFTs [Bostelmann, Cadamuro,
Mandrysch, 2023]

...
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Quantum energy inequalities

Null QEIs

Can we have similar bounds for null geodesics?

The counterexample

Considered a sequence of vacuum-plus-two-particle states in which the
three-momenta of excited modes are unbounded and become more and more
parallel to the spatial part of the null vector ℓµ. [Fewster, Roman, 2002]

...
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Quantum energy inequalities

SNEC

Idea
In quantum field theory there is often an ultraviolet cutoff ℓUV which restricts
the three-momenta. We can write GN ⪅ ℓ2UV.

[Freivogel, Krommydas, 2018] Smeared null energy condition (SNEC) for the
minimally coupled scalar field in four dimensional Minkowski spacetime:∫

dλ⟨:Tµν :ℓµℓν⟩ψf 2 ≥ −4B

GN
∥f ′∥2

What is B?
Numerical constant that expresses the scale of the UV cutoff

▶ ℓUV ≈ Planck length → B order 1 → A lot of negative energy allowed

▶ ℓUV ≫ Planck length → B small → A little negative energy allowed

...
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Quantum energy inequalities

DSNEC

SNEC bound dependent on the cutoff. Can we do better? Integrate
over two null directions!

x x+ -

δ δ+
-

∫
d2x±f 2(x±)⟨T−−⟩ψ ≥ − N

(δ+)n/2−1(δ−)n/2+1

▶ N : in general depends on number of dimensions, mass and curvature(*)

▶ The bound diverges for δ± → 0

▶ There are no theory-dependent parameters as the ℓUV

▶ Derivations for non-minimally coupled fields and large N CFTs [Fliss,
Freivogel, E-AK, Pardo-Santos, 2023, 2024]
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Quantum energy inequalities

The average null energy condition

If we take the limit δ+ → 0 and δ− → ∞ while holding δ+δ− ≡ α2 fixed we get
the averaged null energy condition (ANEC):∫ ∞

−∞
dx−⟨T−−⟩ψ ≥ 0 .

Semiclassical proofs of ANEC:

▶ [Flanagan, Wald, 1996] studied spacetimes perturbatively close to
Minkowski and provided the first proof of ANEC incorporating
backreaction.

▶ [Faulkner et al.,2016] have argued that the ANEC can be derived directly
using modular Hamiltonians for a range of interacting QFTs on Minkowski
spacetime.

▶ Using a variation of and argument developed in [Fewster, Olum, Pfenning,
2006], [E-AK, Olum, 2015] proved the achronal ANEC in spacetimes with
small curvature
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Learn more

▶ Curiel, Erik. “A primer on energy conditions.” Towards a theory of
spacetime theories (2014) ArXiv: 1405.0403

▶ Kontou, Eleni-Alexandra, and Ko Sanders. “Energy conditions in general
relativity and quantum field theory.”(2020) ArXiv: 2003.01815

▶ Fewster, Christopher J. “Lectures on quantum energy inequalities.”
(2012) ArXiv:1208.5399
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Singularities
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The classical theorems

What is a singularity?

▶ Intuitive definition: A “place” where the curvature
diverges.

▶ Problems: Except in highly symmetrical cases (e.g
Schwarzschild ) we cannot represent the singularity
as “place” since the metric is not defined there.
The divergence of curvature scalars doesn’t cover
all singularity cases.

Definition
A spacetime is singular if it possesses at least one incomplete geodesic.
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Singularity theorems structure

1. The initial or boundary condition
There exists a trapped surface (null geodesics) or a spatial slice with
negative expansion (timelike goedesics)
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The classical theorems

Singularity theorems structure

2. The energy condition
Restriction on the stress-energy tensor expressing “physical” properties of
matter.
Null geodesics: Geometric form of the NEC → Null Convergence
Condition Rµνℓ

µℓν ≥ 0
Timelike geodesics: Geometric form of the (SEC) → Timelike
Convergence Condition RµνU

µUν ≥ 0

3. Causality condition
There is a Cauchy surface: spacelike hypersurface which intersects causal
geodesics once and only once

Proof structure

1. Initial condition: Geodesics start focusing

2. Energy condition: Focusing continues

3. Causality condition: No focal points

⇒ Geodesic incompleteness

...



28/63

Energy conditions Singularities Exotic spacetimes Conclusions and questions

The classical theorems

Singularity theorems structure

2. The energy condition
Restriction on the stress-energy tensor expressing “physical” properties of
matter.
Null geodesics: Geometric form of the NEC → Null Convergence
Condition Rµνℓ

µℓν ≥ 0
Timelike geodesics: Geometric form of the (SEC) → Timelike
Convergence Condition RµνU

µUν ≥ 0

3. Causality condition
There is a Cauchy surface: spacelike hypersurface which intersects causal
geodesics once and only once

Proof structure

1. Initial condition: Geodesics start focusing

2. Energy condition: Focusing continues

3. Causality condition: No focal points

⇒ Geodesic incompleteness

...



28/63

Energy conditions Singularities Exotic spacetimes Conclusions and questions

The classical theorems

Singularity theorems structure

2. The energy condition
Restriction on the stress-energy tensor expressing “physical” properties of
matter.
Null geodesics: Geometric form of the NEC → Null Convergence
Condition Rµνℓ

µℓν ≥ 0
Timelike geodesics: Geometric form of the (SEC) → Timelike
Convergence Condition RµνU

µUν ≥ 0

3. Causality condition
There is a Cauchy surface: spacelike hypersurface which intersects causal
geodesics once and only once

Proof structure

1. Initial condition: Geodesics start focusing

2. Energy condition: Focusing continues

3. Causality condition: No focal points

⇒ Geodesic incompleteness

...



29/63

Energy conditions Singularities Exotic spacetimes Conclusions and questions

The classical theorems

Focal points

Timelike geodesic normal to spacelike hypersurface S

Focal point

A geodesic issuing normally from a spacelike hypersurface S and is continued
past a focal point no longer locally extremizes length.

▶ N: focal point

▶ AN equal to A′N

▶ ANB longer than A′CB
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The classical theorems

The index form

Problem
Maximise proper time among timelike curves joining surface S to point q.

Consider an 1-parameter family of smooth curves γs : [0, τ ] → M

Uµ =
∂γµs
∂t

, V µ =
∂γµs
∂s

L[γ] =

∫ t

0

|γ̇(t)| dt, |γ̇(t)| =
√

gµν γ̇µγ̇ν
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The classical theorems

The index form

The first variation of length

dL[γs ]

ds

∣∣∣∣
s=0

= 0

The second variation of length (index form)

I [V ] =
d2L[γs ]

ds2

∣∣∣∣
s=0

Whether γ is, or is not, a local maximum of the length functional, amounts to
the absence, or presence, of a focal point.

Focal point test

I [V ] ≥ 0 for some V µ =⇒ ∃ focal point in (0, t]
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Hawking’s singularity theorem

Pick a V : Let ei with i = 1, 2, . . . n be an orthonormal basis of Tγ(0)S , with
eµ0 = Uµ. Then, take f a smooth function with f (0) = 1 and f (t) = 0, so that
Vi = fei and sum over i

n∑
i=1

I [fei ] = −
∫ t

0

(
(n − 1)ḟ 2 − f 2RµνU

µUν
)
dt − K︸︷︷︸

Expansion

|γ(0) ≥ 0
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Hawking’s singularity theorem

Condition for the formation of a focal point∫ t

0

(
(n − 1)ḟ 2 − f 2RµνU

µUν
)
dt ≤ −K
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Hawking’s singularity theorem

Condition for the formation of a focal point

∫ t

0

(
(n − 1)ḟ 2 −

+︷ ︸︸ ︷
f 2RµνU

µUν
)
dt ≤ −K

▶ Timelike convergence condition RµνU
µUν ≥ 0

▶ Choose a function f (t) = 1− t/τ
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Hawking’s singularity theorem

Condition for the formation of a focal point

(n−1)/τ︷ ︸︸ ︷∫ τ

0

(
(n − 1)ḟ 2 −

+︷ ︸︸ ︷
f 2RµνU

µUν
)
dt ≤

|K |︷︸︸︷
−K

▶ Timelike convergence condition RµνU
µUν ≥ 0

▶ Choose a function f (t) = 1− t/τ

▶ Negative expansion K < 0

⇒ Focal point for τ ≥ (n − 1)/|K |
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Hawking’s singularity theorem

(n−1)/τ︷ ︸︸ ︷∫ τ

0

(
(n − 1)ḟ 2 −

+︷ ︸︸ ︷
f 2RµνU

µUν
)
dt ≤

|K |︷︸︸︷
−K

▶ Timelike convergence condition RµνU
µUν ≥ 0

▶ Choose a function f (t) = 1− t/τ

▶ Negative expansion K < 0

⇒ Focal point for τ ≥ (n − 1)/|K |

The causality condition implies the timelike geodesics have no focal points and
thus they have length at most τ .
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Penrose’s singularity theorem

Differences between timelike and null case

▶ Action integral instead of length

▶ Co-dimension 2 hypersurface instead of Cauchy surface

▶ Mean normal curvature instead of expansion

▶ The affine parameter is fixed by requiring Kµdγµ/dλ = 1 on S
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Penrose’s singularity theorem

(n−2)/ℓ︷ ︸︸ ︷∫ ℓ

0

(
(n − 2)f ′2 −

+︷ ︸︸ ︷
f 2Rµνℓ

µℓν
)
dλ ≤

(n−2)|K |︷ ︸︸ ︷
−(n − 2)K

▶ Null convergence condition Rµνℓ
µℓν ≥ 0

▶ Choose a function f (λ) = 1− λ/ℓ

▶ Trapped surface K < 0

⇒ Focal point for ℓ ≥ 1/|K |

...



33/63

Energy conditions Singularities Exotic spacetimes Conclusions and questions

The classical theorems

Penrose’s singularity theorem

(n−2)/ℓ︷ ︸︸ ︷∫ ℓ

0

(
(n − 2)f ′2 −

+︷ ︸︸ ︷
f 2Rµνℓ

µℓν
)
dλ ≤

(n−2)|K |︷ ︸︸ ︷
−(n − 2)K

▶ Null convergence condition Rµνℓ
µℓν ≥ 0

▶ Choose a function f (λ) = 1− λ/ℓ

▶ Trapped surface K < 0

⇒ Focal point for ℓ ≥ 1/|K |

The causality condition implies the null geodesics have no focal points and thus
they have length at most ℓ.
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Semiclassical singularity theorems

Semiclassical singularity theorems
▶ Quantum gravity: is believed that it will lead to a resolution of singularities

▶ Semiclassical gravity: are singularities predicted in that context?

Strategy

▶ Step 1: Replace the pointwise condition by an average one and prove the
theorem ∫

γ

f 2RµνU
µUν ≥ −(bound)

▶ Step 2: Find a condition obeyed by quantum fields with the same kind of
bound ∫

γ

f 2⟨:Tµν :UµUν⟩ψ ≥ −(bound)

▶ Step 3: Use the semiclassical Einstein equation

8πGN⟨:Tµν :UµUν⟩ψ = RµνU
µUν
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Semiclassical singularity theorems

Singularity theorems with weaker conditions

Theorem [Fewster, E-AK, 2019]

1. Energy condition∫ τ

0

f 2RµνU
µUν dt ≥ −Qm∥f (m)∥2 − Q0∥f ∥2

and Scenario 1: RµνU
µUν ≥ ρ0 for [0, τ0]: Timelike convergence condition

obeyed after we measure K
or Scenario 2: RµνU

µUν < −ρ0 for [−τ0, 0]: timelike convergence
condition violated before we measure K

...
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µUν ≥ ρ0 for [0, τ0]: Timelike convergence condition

obeyed after we measure K
or Scenario 2: RµνU

µUν < −ρ0 for [−τ0, 0]: timelike convergence
condition violated before we measure K

2. Initial condition: K ≤ −ν(Qm,Q0, τ0, τ, ρ0)

3. Causality condition: There exists a Cauchy surface.

⇒ The spacetime is timelike geodesically incomplete.
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Singularity theorems with weaker conditions

Theorem [Fewster, E-AK, 2019]

1. Energy condition∫ τ

0

f 2RµνU
µUν dt ≥ −Qm∥f (m)∥2 − Q0∥f ∥2

and Scenario 1: RµνU
µUν ≥ ρ0 for [0, τ0]: Timelike convergence condition

obeyed after we measure K
or Scenario 2: RµνU

µUν < −ρ0 for [−τ0, 0]: timelike convergence
condition violated before we measure K

2. Initial condition: K ≤ −ν(Qm,Q0, τ0, τ, ρ0)

3. Causality condition: There exists a Cauchy surface.

⇒ The spacetime is timelike geodesically incomplete.

Comments

▶ Same for Penrose’s theorem

▶ Still classical! Condition only inspired by QEIs
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Semiclassical singularity theorems

Idea of the proof
Condition for the formation of a focal point∫ τ

0

(
(n − 1)ḟ 2 − f 2RµνU

µUν
)
dt ≤ −K , f (0) = 1 , f (τ) = 0

Energy condition∫ τ

0

f 2RµνU
µUν dt ≥ −Qm∥f (m)∥2 − Q0∥f ∥2 , f (0) = f (τ) = 0

0 τ0 τ

1

t

f

ϕ

Two options:
▶ Pick functions for general m
▶ Optimize for m = 1

K ≤ −ν(Qm,Q0, τ0, τ, ρ0)
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The problems (timelike)

What we need
A QEI for the SEC with a bound depending only on the smearing function.

Effective energy density

ρU = Tµν

(
UµUν − gµν

n − 2

)
[Fewster, E-AK, 2019] Quantum strong energy inequality for the minimally
coupled scalar field in n-dimensional Minkowski spacetime:∫

dt⟨:ρU :⟩ψf 2(t) ≥ −ℏ πS2m−2

2m(2π)2m
∥f (m)(t)∥2 − M2

n − 2
⟨:Φ2: ◦ γ⟩ψ f (t)2

Problems

▶ State dependence

▶ Only valid for Minkowski
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Solutions (timelike)
▶ State dependence: pick a class of states where∣∣∣⟨ : Φ2 : ◦ γ⟩ψ

∣∣∣ ≤ ϕ2
max ,

▶ Only valid for Minkowski: Series of functions with compact support

f 2 =
n∑

i=1

(f ϕn)
2

0 τ

1

t

ϕn(t)

∫
γ

⟨:ρU :⟩ψf 2dt ≥ −Qm|||f |||2 − Q0||f ||2

|||f |||2 ≡
m∑
j

cj(T0, τ)∥f (j)∥2 , Qm =
ℏS2m−2

(2π)2m−2
, and Q0 =

4πM2ϕ2
max

m − 1

▶ T0: Curvature scale
▶ τ : Maximum time for singularity
▶ M: Mass of the field
▶ m: n/2
▶ ϕ2

max: Maximum field value
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Semiclassical singularity theorems

The problems (null)

What we need
A QEI for the NEC with a bound depending only on the smearing function.

Smeared null energy condition (SNEC) for the minimally coupled scalar field in
four dimensional Minkowski spacetime [Freivogel, Krommydas, 2018]∫

dλ⟨:Tµν :ℓµℓν⟩ψf 2(λ) ≥ −4B

GN
∥f ′∥2

Problems

▶ No current generalization to curved spacetimes

▶ ℓUV cutoff dependent on the theory

Solutions?
Could we have a singularity theorem with DSNEC?
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Timelike semiclassical singularity theorem

Assumptions:

▶ Minimally coupled scalar quantum field

▶ Bounded field value ϕmax

▶ Geodesic with controlled curvature

▶ Semiclassical Einstein equation

8πGN⟨:ρU :⟩ = RµνU
µUν
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▶ Bounded field value ϕmax

▶ Geodesic with controlled curvature

▶ Semiclassical Einstein equation
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Timelike semiclassical singularity theorem

Theorem [Fewster, E-AK, 2021]

1. Energy condition∫
dt f 2RµνU

µUν ≥ −Qm|||f |||2 − Q0||f ||2

and Scenario 1: RµνU
µUν ≥ 0 holds for t ∈ [0, τ0]

2. The initial extrinsic curvature of S satisfies

K ≤ −ν(M, ϕmax,T0, τ0, τ)

3. There exists a Cauchy surface.

⇒ The spacetime is timelike geodesically incomplete.
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Cosmological application

▶ We use the ΛCDM model and data from [PLANCK, 2018]: Ωm0 = 0.31
and ΩΛ0 = 0.69

We want to estimate: ν(M, ϕmax,T0, τ0, τ)

Parameters
M (the mass of the field), ϕmax (the maximum magnitude of the scalar field),
T0 (timescale for valid Minkowski QEI at S), τ (timescale for singularity) and
τ0 (timescale that the SEC is assumed).

Parameter ϕmax is determined using the square root of the Wick square in a
Minkowski spacetime KMS state of a temperature that is 1% of the reduced
Compton temperature TCompton which defines a scale beyond which the model
cannot be trusted.

ϕ2
max ∼ 10−2 c4

GN
(MℓPl)

2K1(100)

...
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Cosmological application

Particle optimal τ in s ν∗ in s−1 minT0 in s

Pion 2.02× 1020 3.57× 10−20 1.05× 10−10

Proton 4.16× 1018 1.73× 10−18 1.51× 1011

Higgs 2.33× 1014 3.09× 10−14 1.14× 10−13

and τ0 ≈ T0/2.

▶ The SEC was last satisfied when t∗ = 2.41× 1017s,

H∗ = 3.14× 10−18 s−1

...
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Null semiclassical singularity theorem

Assumptions:

▶ Minimally coupled scalar quantum field

▶ Dominant negative term is the Minkowski one

▶ Semiclassical Einstein equation

8πGN⟨:Tµν :ℓµℓν⟩ψ = Rµνℓ
µℓν
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Null semiclassical singularity theorem

Assumptions:

▶ Minimally coupled scalar quantum field

▶ Dominant negative term is the Minkowski one

▶ Semiclassical Einstein equation

8πGN⟨:Tµν :ℓµℓν⟩ψ = Rµνℓ
µℓν

⇒ 1. Energy condition∫
dλ f 2Rµνℓ

µℓν ≥ −Q1||f ′||2 , Q1 = 32πB
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Null semiclassical singularity theorem

Theorem [Freivogel, E-AK, Krommydas, 2020]

1. Energy condition∫
dλ f 2Rµνℓ

µℓν ≥ −Q1||f ′||2 , Q1 = 32πB

and Scenario 2: Rµνℓ
µℓν ≤ 0 holds for λ ∈ [−ℓ0, 0]

2. The mean normal curvature of P satisfies

K ≤ −ν(B, ℓ0, ℓ)

3. There exists a non-compact Cauchy surface.

⇒ The spacetime is null geodesically incomplete.
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Black hole application
Toy model of evaporating black holes

l
lo

P
Rs

Affine distance → Coordinate distance

▶ ℓ→ yRs

▶ ℓ0 → xRs

Strategy: compare K of Schwarzschild geometry to ν(B, ℓ0, ℓ) from theorem

We want: Small x (P close to the horizon)

y

1
3

1

x

Q1=1

Q1=0.1

1/3

...
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Learn more

▶ Senovilla, José MM. “Singularity theorems and their consequences.”
ArXiv: 1801.04912 (1998)

▶ O’Neill, B. “Semi-Riemannian geometry with applications to relativity.”
Pure and Applied Mathematics/Academic Press, Inc (1983)

▶ Fewster, Christopher, and Kontou Eleni-Alexandra, “Singularity theorems
with weakened energy conditions” In preparation (2025)
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Exotic spacetimes
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Wormholes and energy conditions

converge
paths
incoming outgoing

paths
diverge
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Wormholes and energy conditions

▶ Wormholes violate pointwise energy conditions [Tipler, 1977]

▶ [Morris, Thorne, Yurtsever, 1988] showed that the wormhole’s
stress-energy tensor must violate the average weak energy condition

▶ [Friedman, Schleich, Witt, 1995] proved that ANEC violation is required to
constrain topology changes

Constructing and sustaining an (asymptotically flat) wormhole requires
ANEC violation

...
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ANEC violations

1. Violations of the ANEC on chronal null geodesics.

2. Violations of the non-self consistent ANEC, meaning that it doesn’t satisfy
the (classical or semiclassical) Einstein equation.

3. Violations of the order of Planck scale.

...



50/63

Energy conditions Singularities Exotic spacetimes Conclusions and questions

ANEC violations

1. A quantum scalar field in a Schwarzschild spacetime around a black hole
[Visser, 1996], [Levi, Ori, 2016]
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ANEC violations

2. Conformal transformation [Visser, 1994]

g̃µν = Ω2gµν ,

T̃µ
ν = Ω−4(Tµ

ν − 8αZµν ln Ω) ,

If Tµν obeys the ANEC, for ANEC violation with T̃µ
ν we need

8α ln Ω

∫
γ

dλZµνℓµℓ
ν

︸ ︷︷ ︸
Jγ

>

∫
γ

dλTµ
νℓµℓ

ν ,

For a scalar field α = 1/(2880π2) so:
▶ Jγ < 0: enormous contraction
▶ Jγ > 0: enormous dilation

⇒ Consistency with the (semiclassical) Einstein equation cannot be
imposed.

...
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ANEC violations

3. Violations that occur of the order of Planck length: outside the scope of
semiclassical gravity.
[Flanagan, Wald, 1996]: Calculated the ANEC integral in a perturbative
way. Non-negative if the integral is transversly smeared over a few Planck
lengths:

S(x) ∝ 1

1 + x4

ΛT

ΛT : Length of the order of a few Planck lengths
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The self-consistent achronal ANEC

The self-consistent AANEC is free of counterexamples in semiclassical
gravity.

[Graham, Olum, 2007] There cannot be causality violations in a spacetime
where the self-consistent achronal ANEC holds, is generic, asymptotically flat
and partially asymptotically predictable.

Wormholes?

1. Not asymptotic flatness

2. Not in the realm of semiclassical gravity

3. Wormholes that don’t lead to causality violations? Long wormholes!

...
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The idea of long wormholes

▶ AANEC obeyed in semiclassical gravity: are there wormholes that don’t
have complete achronal null geodesics?

▶ ‘Long’: it takes longer to go through the wormhole than through the
ambient space.

▶ Those wormholes need a source of negative energy and the ANEC should
be violated on the chronal null geodesics.

▶ [Maldacena, Milekhin, Popov, 2018] Idea: In the presence of the magnetic
field, a massless charged fermion gives rise to q two-dimensional fields.
The corresponding two dimensional field moves on the spatial circle and
gives rise to a negative Casimir-like vacuum energy.

...
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The wormhole of Maldacena, Milekhin and Popov

Flat spacetime

Mouths

Throat

[Maldacena, Milekhin, Popov, 2018] It only uses matter predicted from the
standard model and not any speculative particles: it is a solution of an
Einstein–Maxwell theory with charged massless fermions
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The wormhole of Maldacena, Milekhin and Popov

1. The mouths are described by the magnetically charged black hole
solutions:

ds2 = −
(
1− 2MGN

r
+

r 2e
r 2

)
dt2 +

(
1− 2MGN

r
+

r 2e
r 2

)−1

dr 2 + dΩ2
2 ,

where r 2e = πq2ℓ2pl/g
2 and d is the distance between the two mouths

2. The throat: the near horizon geometry approaches AdS2 × S2

ds2 = r 2e

[
−(ρ2 + 1)dτ 2 +

dρ2

ρ2 + 1
+ dΩ2

2

]
,

The matching conditions are

τ =
t

ℓ
, ρ =

ℓ(r − re)

r 2e
, with 1 ≪ ρ,

r − re
re

≪ 1, 1 ≪ ℓ

re
,

where ℓ is the length of the wormhole

3. Asymptotically flat region

...
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2 and d is the distance between the two mouths

2. The throat: the near horizon geometry approaches AdS2 × S2

ds2 = r 2e

[
−(ρ2 + 1)dτ 2 +

dρ2

ρ2 + 1
+ dΩ2

2

]
,

The matching conditions are

τ =
t

ℓ
, ρ =

ℓ(r − re)

r 2e
, with 1 ≪ ρ,

r − re
re

≪ 1, 1 ≪ ℓ

re
,

where ℓ is the length of the wormhole

3. Asymptotically flat region
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Length of the wormhole
Maximum achronal segment:

∆ρ
∣∣
WH

< ∆ρ
∣∣
OUT

.

∆ρ
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WH

=

∫ ρ0/2

−ρ0/2

dρ

1 + ρ2
= 2arctan (ρ0/2) .

∆ρ
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OUT

=

∫ −ρ0/2

−∞

dρ

1 + ρ2
+

d

ℓ
+

∫ ∞

ρ0/2

dρ

1 + ρ2
= π − 2 arctan (ρ0/2) +

d

ℓ
.

ρ0 < 2 tan

(
π

4
+

d

4ℓ

)
The maximum value of d is found by minimizing the energy of the wormhole:
d = πℓ/2.35, so ρ0 = 4.13 The stress-energy tensor inside the wormhole is

⟨Ttt⟩ = − q

12π2r 2e ℓ2
A ,
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SNEC constraints

The coordinate ρ is an affine parameter so SNEC becomes∫ ∞

0

dρ f (ρ)2
2ℓ2

(1 + ρ2)2
⟨Ttt⟩ω ≥ −4B

GN

∫ ∞

0

dρ f ′(ρ)2 .

For f (ρ) a normalized Gaussian function of width σ

C

∫ ∞

0

dρ e
− ρ2

2σ2
1

(1 + ρ2)2
≤ 1

σ4

∫ ∞

0

dρ
ρ2

4
e
− ρ2

2σ2 , C =
g 2

24Bπ3q
A

Setting σ = ρ0 = 4.13,
Bq ⪆ 1.3× 10−2 .

If B = 1/32π2, we need q ⪅ 1 to saturate SNEC. But q ≫ 1 so that the
wormhole is stabilized [Freivogel, E-AK, Krommydas, 2020]
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DSNEC constraints
Flat metric

ds2 = −r 2e ds
−ds+ ,

where s− = τ − ρ and s+ = τ + ρ for ρ+ 1 ≈ 1.

∫
d2s±

δ+δ−
f (s±)2⟨Ttt⟩ω ≥ − 8

81π2δ+(δ−)3

(∫
ds+f ′′+ (s+)2

)1/4 (∫
ds−f ′′− (s−)2

)3/4

For f 2 = (f+)
2(f−)

2 a normalized Gaussian function

C̃ ≤ 3

(δ−)3δ+
, C̃ =

27

32

qA

r 2e ℓ2

We have δ− = ℓ and δ+ = re , the AdS2 radius. To violate the DSNEC we need
q ⪆ re/ℓ. As re ≪ ℓ the DSNEC is easily violated. Difference between the
SNEC and the DNEC

⟨T−−⟩SNEC ≥ − 4B

ℓ2plℓ
2
, ⟨T−−⟩DSNEC ≥ − N

ℓ3re

.

[E-AK, 2024]
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Learn more

▶ Visser, Matt. “Lorentzian wormholes. from Einstein to Hawking.”
Woodbury (1995)

▶ Kontou, Eleni-Alexandra. “Wormhole restrictions from quantum energy
inequalities.” ArXiv: 2405.05963 (2024)
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Conclusions and questions
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What to remember

▶ General relativity does not provide any constraints on the type of
spacetimes allowed, creating the need for energy conditions.

▶ Classical energy conditions are violated in QFT but average restrictions
still hold.

▶ Singularities are generally predicted in the context of semiclassical gravity.

▶ The self-consistent achronal averaged null energy condition seems to be
fundamental in semiclassical gravity and it is sufficient to rule out causality
violations.

...
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Questions

▶ Are QEIs fundamental? What is their form independently of the kind of
field?

▶ Why are null QEIs different than the timelike ones?

▶ Can we have a singularity theorem with DSNEC?

▶ Are there meaningful constraints to long wormholes?
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