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VUW

Figure: Il buco nero di Monticello
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Introduction: VUW

Introduction
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Introduction:

Basic orientation...
Some examples...
Horizon penetrating coordinates?
(Versus horizon non-penetrating coordinates?)

What sort of horizon?
Killing horizon?
Isolated horizon?
Event horizon?
Apparent horizon?
Trapping horizon?
Dynamical horizon?

All of these have drawbacks of one form or another...
Carter–Penrose diagrams: “Nice” versus “not-so-nice” slices...
Dynamical models versus kinematical models?
Convergence conditions versus energy conditions?
Raychaudhuri equation — which version?
Semiclassical quantum physics versus full quantum physics?
Summary
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Introduction: VUW

Reference materials
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Basic concepts: VUW

Basic concepts
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Basic concepts: VUW

Definition

Black hole:
Any spacetime containing one or more horizons.
Standard idealized examples:
Schwarzschild, Reissner–Nordström, Kerr, Kerr–Newman.
But ultimately we need to consider more realistic astrophysical black holes.

Definition

Horizon:
Any effectively “one way” membrane in spacetime.
Typically associated with infinite gravitational redshift.
Need to go beyond idealized examples.
Ultimately we need to consider more realistic astrophysical horizons.

——VUW——
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Basic concepts: VUW

Figure: Schematic only — at least for now — many more details later...

Matt Visser (VUW) SIGRAV Winter School 2025 11 / 92



Basic concepts: VUW

Schwarzschild (Hilbert–Droste form, curvature coordinates):

ds2 = −
(

1− 2m

r

)
dt2 +

dr2

1− 2m/r
+ r2dΩ2.

One horizon at the unique root of (1− 2m/r) = 0:

rS = 2m.

The t coordinate is timelike only for r > 2m.

The r coordinate is spacelike only for r > 2m.

The t coordinate is spacelike for r < 2m.

The r coordinate is timelike for r < 2m.

The hypersurface r = 2m is located at a coordinate singularity.

Some of the nutters totally lose contact with reality at this point...

Matt Visser (VUW) SIGRAV Winter School 2025 12 / 92



Basic concepts: VUW

Figure: Locally the light cones always look like this...
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Basic concepts: VUW

Figure: Schwarzschild light cones in Hilbert–Droste coordinates...
Note the cones flip by 90 degrees at r = 2m...
Note ingoing light rays pile up at r = 2m... (Horizon non-penetrating...)

Matt Visser (VUW) SIGRAV Winter School 2025 14 / 92



Basic concepts: VUW

Reissner–Nordstrom (curvature coordinates):

ds2 = −(1− 2m/r + Q2/r2)dt2 +
dr2

1− 2m/r + Q2/r2
+ r2dΩ2.

Two horizons at the roots of (1− 2m/r + Q2/r2) = 0

r± = m ±
√
m2 − Q2.

The t coordinate is timelike only for r > r+ or r < r−.

The r coordinate is spacelike only for r > r+ or r < r−.

The t coordinate is spacelike for r ∈ (r−, r+).

The r coordinate is timelike for r ∈ (r−, r+).

The hypersurfaces at r = r± are located at coordinate singularities.

Some of the nutters totally lose contact with reality at this point...
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Basic concepts: VUW

Kottler (Schwarzschild–de Sitter; curvature coordinates):

ds2 = −
(

1− 2m/r − 1

3
Λr2

)
dt2 +

dr2

1− 2m/r − 1
3 Λr2

+ r2dΩ2.

Three (mathematical) horizons at roots of (1− 2m/r − 1
3 Λr2) = 0.

At most two of these horizons are physical.
Write Λ = 1/a2 and rewrite the cubic as r3 − 3ra2 + 6ma2.
Then

rε = 2a sin

(
1

3
arcsin

[
3m

a

]
+ ε

2π

3

)
; ε ∈ {0,±1}.

This process nicely generalizes...
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Basic concepts: VUW

Generic spherical symmerty (curvature coordinates):

ds2 = −e−2Φ(r) f (r) dt2 +
dr2

f (r)
+ r2dΩ2.

Possibly many horizons rHi
at roots of f (r) = 0.

(Possibly zero horizons; a “compact object”.)

Eventually we will get around to adding time dependence:

ds2 = −e−2Φ(r ,t) f (r , t) dt2 +
dr2

f (r , t)
+ r2dΩ2.

Possibly many evolving horizons rHi
(t) at roots of f (r , t) = 0.

(Possibly zero horizons; a “compact object”.)

Sometimes other coordinate systems are preferable...
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Basic concepts: VUW
Pick a closed orientable spacelike 2-surface....

Embedded in spacetime in a 2-sided fashion...

Construct ingoing and outgoing null sheets...

This is the usual case:

Figure: Non-trapped region — the usual case
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Basic concepts: VUW
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Basic concepts: VUW
Schwarzschild (Painlevé–Gullstrand form):

ds2 = −dt2 +
(
dr +

√
2m/rdt

)2
+ r2dΩ2.

This is still Schwarzschild spacetime — the Ricci tensor is zero...
Note the spatial slices are flat...
Explicit coordinate transformation

dtPG = dtHD −
√

2m/r

1− 2m/r
dr .

Radial light rays: ds2 = 0 implies −dt2 + (dr +
√

2m/rdt)2 = 0.
Thence

dr

dt
= ±1−

√
2m/r

“Outgoing” light rays dragged backwards (dr/dt < 0) once r < 2m.
Explicitly a trapped region...
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Basic concepts: VUW
Schwarzschild (Painlevé–Gullstrand form):

ds2 = −dt2 +
(
dr +

√
2m/rdt

)2
+ r2dΩ2.

These Painlevé–Gullstrand coordinates are horizon-penetrating.
These Painlevé–Gullstrand coordinates (1922) pre-date Eddington’s
version (1924) of what are now called Kerr–Schild coordinates by at
least 2 years.

ds2 = −dt2 + dr2 + r2dΩ2 +
2m

r
(dr + dt)2.

These Painlevé–Gullstrand coordinates (1922) pre-date what are now
called Eddington–Finkelstein coordinates by some 36 years.

ds2 = −(1− 2m/r)dv2 + 2 dr dv + r2dΩ2.

The history is quite weird and twisty...

Matt Visser (VUW) SIGRAV Winter School 2025 21 / 92



Basic concepts: VUW

You are just going to have to get used to dealing with multiple
coordinate systems; they are just too useful.

Changing coordinates will not change the physics — but might
improve insight and understanding...

Some of the nutters totally lose contact with reality at this point...

Major dividing point: Horizon penetrating versus non-penetrating.

Coordinate systems with a diagonal metric (Hilbert-Droste, isotropic,
tortoise) are not horizon penetrating and, (one way or another),
are not great for dealing with horizons.
Horizon-penetrating coordinates (Painlevé–Gullstrand, Kerr–Schild,
Eddington–Finkelstein) have a non-diagonal line element,
(which sometimes makes computations messier), but one gets a much
better intuition regarding horizons and trapped regions.
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Basic concepts: VUW

Schwarzschild (Painlevé–Gullstrand form):

Rehash:

ds2 = −dt2 +
(
dr +

√
2m/rdt

)2

+ r2dΩ2.

Radial null curves: ds2 = 0 implies −dt2 +
(
dr +

√
2m/rdt

)2

.

Thence
dr

dt
= ±1−

√
2m/r .

Ingoing light rays always have dr/dt ≤ −1 ≤ 0.
“Outgoing” light rays dragged backwards (dr/dt < 0) once r < 2m.
Explicitly a trapped region...

Of course these notions generalize...
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Basic concepts: VUW

Schwarzschild (Kerr–Schild form):

ds2 = −dt2 + dr2 + r2dΩ2 +
2m

r
(dr + dt)2.

Radial null curves: ds2 = 0 implies −dt2 + dr2 + 2m
r (dr + dt)2 = 0.

Thence

(dr + dt)

(
dr − dt +

2m

r
(dr + dt)

)
= 0.

Thence
dr

dt
∈
{
−1,

1− 2m/r

1 + 2m/r

}
.

Ingoing light rays always have dr/dt = −1.
“Outgoing” light rays dragged backwards (dr/dt < 0) once r < 2m.
Explicitly a trapped region...

Of course these notions generalize...
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Basic concepts: VUW

Schwarzschild (Eddington-Finkelstein form):

ds2 = −(1− 2m/r)dv2 + 2 dr dv + r2dΩ2.

Note v is a “null coordinate”...
Radial null curves: ds2 = 0 implies −(1− 2m/r)dv2 + 2 dr dv = 0.
Thence

dv [2dr − (1− 2m/r)dv ] = 0.

Thence

dv = 0 or
dr

dv
=

(1− 2m/r)

2
.

Ingoing light rays always have dr/dv = −∞.
“Outgoing” light rays dragged backwards (dr/dv < 0) once r < 2m.
Explicitly a trapped region...

Of course these notions generalize...
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Basic concepts: VUW

Figure: Schwarzschild light cones in Eddington–Finkelstein coordinates...
Note the cones tilt past the vertical at r = 2m...
Note ingoing light rays cheerfully cross r = 2m... (Horizon penetrating...)
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Horizons: VUW

Horizons
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Killing Horizons: VUW

Essentially everything I have done so far refers to static spacetimes.

Static spacetimes are particularly simple...

(Stationary spacetimes are almost as good)...

In static spacetimes all horizons are Killing horizons...

Time independent...
Specified by the asymptotically timelike time-translation Killing vector
going null...

gabK
aK b = 0; K = K a∂a = ∂t ; K a = (1, 0, 0, 0).

The event/apparent/trapping/dynamical distinction is not yet
important.

What happens once we add time dependence?
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Horizons: VUW
Consider these geometries (still spherically symmetric for simplicity):

ds2 = −e−2Φ(r ,t)

(
1− 2m(r , t)

r

)
dt2 +

dr2

1− 2m(r , t)/r
+ r2dΩ2.

ds2 = −c(r , t)2dt2 +
(
dr +

√
2m(r , t)/r c(r , t) dt

)2
+ r2dΩ2.

ds2 = −(1− 2m(r , v)/r) c(r , v)2 dv2 + 2 c(r , v) dr dv + r2dΩ2.

In all 3 cases:
To find the trapped regions just solve for (1− 2m(r , t)/r) < 0,
or (1− 2m(r , v)/r) < 0.
Bonus: Check that m(r , t), or m(r , v), is just the Misner–Sharp
quasi-local mass: m(r , t) = r

2 [1− g ab ∂ar ∂br ].
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Apparent horizons: VUW

Trapped regions are relatively easy to find...
(At least spherically symmetric trapped regions in spherical symmetry)

Definition:
Apparent horizons are just the boundaries of trapped regions.

Apparent horizons can be determined by quasi-local measurements...

(Not ultra-local measurements; you do need a finite-size laboratory...)

Warning:

Ultra-local: Measurement at a point.
Quasi-local: Measurement using a finite-size laboratory.

The word “local” is dangerously ambiguous.

In spherical symmetry apparent horizons are easy to find

Solve: 2m(r , t) = r to find rH(t).

Why is this not the end of the story?
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Apparent horizons: VUW

Even if the spacetime is spherically symmetric,
you could go out of your way to cook up trapped surfaces
that are not spherically symmetric.

If you choose to do this, you can find lopsided trapped surfaces,
leading to lop-sided apparnent horizons, arbitrarily close to the origin,
r = 0. (Where the radial null geodesics are otherwise well behaved.)

Worse, or at least weirder, inner horizons are anti-trapped...

Worse, if your spacetime is not spherically symmetric,
all hell breaks loose...

For these reasons apparent horizons are often deprecated....

Still, in spherical symmetry with spherically symmetric trapped
regions, they cover almost all the relevant physics.

Even Stephen Hawking has been known to suppress technical quibbles
and for pedagogy talk about “long-lived apparent horizons”.
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Event horizons: VUW
Event horizons in contrast require extremely strong global
assumptions to even define them, let alone detect them...

You need an asymptotically flat spacetime...{
i−,J −, i0,J +, i+

}
At the very least you need to be able to define J +.

The event horizon is then the boundary of the region from which
future-directed null geodesics cannot reach J +.

This implicitly requires teleology.

This implicitly requires an immortal omniscient super observer.

Event horizons are simply not physics.

No finite-resource physicist or astronomer (finite time, not immortal;
finite space, not omniscient) will ever be able to detect an event
horizon, not even in principle.

That’s why we got rid of the luminiferous aether...

Why bother? Great for proving mathematical theorems...
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Apparent/Event horizons: VUW

Observation:

If accretion dominates over Hawking radiation,
then the event horizon will lie slightly outside the apparent horizon.
If Hawking radiation dominates over accretion,
then the event horizon will lie slightly inside the apparent horizon.
In the static limit the event/apparent horizons coincide.

Remember:

Geodesics are an approximation applicable to the test particle limit...
If a finite-mass object falls into a black hole,
then you cannot use the geodesic equations...
If a finite-mass object falls into a black hole, then once it is close
enough, the event horizon will rise up to engulf it.
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Apparent/Event horizons: Collapse and formation. VUW
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Apparent/Event horizons: Collapse and formation. VUW
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Apparent/Event horizons: Collapse and formation. VUW
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Apparent/Event horizons: Collapse and formation. VUW
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Apparent/Event horizons: VUW

You can see that both event and apparent horizons have their quirks...

Event horizons can form in Riemann flat portions of spacetime...
Zero gravity at formation; depends on something in the future...

But at least the event horizons are future directed null surfaces...

Apparent horizons can jump backwards and forwards in time...

But at least the apparent horizons require strong gravitational
“potential”:

(potential) :=
m(r , t)

r
=

1

2
.

Neither event nor apparent horizons require strong gravitational fields:

∇(potential) = (arbitrarily small).

Is there anything better we can do?
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Isolated horizons: VUW

Definition

Isolated horizon:
A “locally Killing” horizon — the black hole is taken
(at least temporarily) to be in equilibrium with its environment.

There is locally a hypersurface orthogonal Killing vector,
defined on some finite region of the spacetime.

This local Killing vector is timelike above the horizon,
and spacelike below the horizon.

No global Killing vector need exist.
In particular defining surface gravity is rather indirect and tricky.

Pick a simple normalization for ingoing radial null curves: θk = 2/r .
Enforce gab k

a lb = −1.
Define lb∇b l

a = κ la.

So the geometry is locally Schwarzschild/Reissner–Nordström,
or some variant thereof.
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Isolated horizon: VUW

2

1

∆

∆ δM

M

Figure 2: A spherical star of mass M undergoes collapse. Much later, a spherical shell of mass
ωM falls into the resulting black hole. While ∆1 and ∆2 are both isolated horizons, only ∆2 is part
of the event horizon.

would be a part of the event horizon if nothing further happens. Suppose instead, after a
million years, a thin spherical shell of mass ωM collapses. Then ∆1 would not be a part of
the event horizon which would actually lie slightly outside ∆1 and coincide with the surface
r = 2(M + ωM) in the distant future. On physical grounds, it seems unreasonable to exclude
∆1 a priori from thermodynamical considerations. Surely one should be able to establish the
standard laws of mechanics not only for the equilibrium portion of the event horizon but also
for ∆1.

Next, let us consider numerical simulations of binary black holes. Here the main task is to
construct the space-time containing evolving black holes. Thus, one needs to identify initial
data containing black holes without the knowledge of the entire space-time and evolve them
step by step. The notion of a event horizon is clearly inadequate for this. One uses instead
the notion of apparent horizons (see Section 2.2). One may then ask: Can we use apparent
horizons instead of event horizons in other contexts as well? Unfortunately, it has not been
possible to derive the laws of black hole mechanics using apparent horizons. Furthermore, as
discussed in section 2, while apparent horizons are ‘local in time’ they are still global notions,
tied too rigidly to the choice of a space-like 3-surface to be directly useful in all contexts. Is
there a truly quasi-local notion which can be useful in all these contexts?

Disparate paradigms
In different communities within gravitational physics, the intended meaning of the term ‘black
hole’ varies quite considerably. Thus, in a string theory seminar, the term ‘fundamental black
holes’ without further qualification generally refers to the BPS states referred to above – a
sub-class of stationary, extremal black holes. In a mathematical physics talk on black holes,
the fundamental objects of interest are stationary solutions to, say, the Einstein–Higgs–Yang–
Mills equations for which the uniqueness theorem fails. The focus is on the ramifications
of ‘hair’, which are completely ignored in string theory. In a numerical relativity lecture,
both these classes of objects are considered to be so exotic that they are excluded from
discussion without comment. The focus is primarily on the dynamics of apparent horizons

5

Figure: Two isolated horizons... (not really to scale)... not entirely accurate...
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Trapping horizons: VUW

Definition

Trapping horizon (outer):
Smooth 3 dimensional submanifold of spacetime,
that can be foliated by a family of spacelike 2-surfaces:

Expansion θl of the outgoing null normal la vanishes.

Expansion θk of the ingoing null normal ka is negative.

Derivative of outgoing expansion along ingoing null vector is negative.

No real need to specify ahead of time whether the 3-surface is
timelike/null/spacelike.

Spacelike ⇐⇒ accretion dominated...
Null ⇐⇒ equilibrium (isolated horizon)...
Timelike ⇐⇒ Hawking evaporation dominated...
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Trapping horizons: VUW
Technical details:

Projection tensor:

hab = gab +
(kalb + lakb)

(gcdkc ld)

hab g cd hde = hae

Expansions:
θk = hab ∇akb; θl = hab ∇alb;

θk < 0; θl = 0.

Outer trapping horizons have

ka∇aθl < 0.

Inner trapping horizons flip this sign

ka∇aθl > 0.

No a priori need to restrict attention to spherical symmetry.
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Trapping horizons: VUW

But in spherical symmetry it does simplify:

Find the outgoing and ingoing radial null trajectories,(
dr±
dt

)
(r ,t)

.

Demand:

dr+
dt

∣∣∣∣
H

= 0;
dr−
dt

∣∣∣∣
H

< 0;

[
d

dr

(
dr+
dt

)]
H

> 0.

This can be reduced to a simple grad-student algorithm...
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Dynamical horizons: VUW
Dynamical horizons are closely related to trapping horizons.

Definition

Dynamical horizon:
Smooth 3 dimensional spacelike submanifold of spacetime,
that can be foliated by a family of spacelike 2-surfaces:

Expansion θl of the outgoing null normal la vanishes.

Expansion θk of the ingoing null normal ka is negative.

This definition presupposes that accretion dominates...

This definition excludes isolated or Killing horizons...

This definition excludes event horizons...

No condition on the derivative of the outgoing expansion along the
ingoing null vector...

Cannot (without more structure) distinguish inner versus outer...
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Horizons — Summary: VUW

There are many subtly different notions of black hole horizon floating
around in the literature...

(Non-expanding horizons, marginal horizons, chronology horizons...)

My personal favourites:

When full generality is required, use trapping horizons....
When simplicity and clarity is required, restrict attention to spherically
symmetric spacetimes with spherically symmetric foliations,
then trapping horizons simplify tremendously ...
(You can then largely get away with using apparent horizons...)

My personal unfavourite:

Event horizon — teleological — not physics —
requires immortal omniscient super observers...
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Carter–Penrose diagrams: VUW

Carter–Penrose diagrams
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Carter–Penrose diagrams: VUW

Carter introduced the notion of conformal causal diagrams,
and Penrose popularized their use.

Conformal transformations gab → Ω2(x) gab preserve
the light-cone stucture.

Conformal transformations gab → Ω2(x) gab do not preserve
the volume, and can squeeze an entire (1+1) slice of spacetime
onto a finite sheet of paper.

Convention: Light rays travel at ±45◦...
(otherwise it’s not called a Carter–Penrose diagram...)

Some examples (and cautions) below...
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Carter–Penrose diagrams: VUW

Figure: Classical collapsed object in asymptotically flat spacetime...
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Carter–Penrose diagrams: VUW

Figure: Classical collapsing object in asymptotically flat spacetime...
Where is the apparent horizon?
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Carter–Penrose diagrams: VUW

Figure: Collapse followed by Hawking evaporation...
Where is the apparent horizon? What happens at the endpoint?
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Carter–Penrose diagrams: VUW

Figure: Collapse followed by Hawking evaporation...
Where are the horizons? What happens at the endpoint?
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Carter–Penrose diagrams: VUW

Figure: Collapse and evaporation without strict event horizons...
Where are the trapping horizons?
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Carter–Penrose diagrams: VUW

Figure: Collapse without singularities... Where are the horizons?
(Bergmann–Roman 1983)
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Carter–Penrose diagrams: VUW

0v
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Figure 1. Apparent horizon structure.

For large µ one can solve Eq.(4.2) perturbatively and get

⇢+ = 2µ� 1

2µ
� 1

4µ3
+ . . . , (4.6)

⇢� = 1 +
1

4µ
+

5

32µ2
+

1

8µ3
+ . . . . (4.7)

To describe Hawking evaporation of the black hole we use the following approximation

µ3(v) = µ3
0 � v , (4.8)

so that the rate of the mass loss is

dµ

dv
= � 1

3µ2
. (4.9)

Restoring dimensionality one obtains

dM

dV
= �C

mP l

tP l

m2
P l

M2
, (4.10)

with C = 1/3. For a realistic black hole the coefficient C depends on the number and
statistics of the particles that are emitted. In our model Eq.(4.8) we neglect these details.
For this choice of µ(v) the model contains two parameters: maximal mass of the ‘black
hole’ µ0 and time v0 of its formation. For large mass µ(v) the rate of mass loss Eq.(4.9)
is very small and the evaporation process is adiabatic with very high accuracy. Figure 1
demonstrates the structure of the apparent horizon for the model. Figure 2 shows the
geometry of a flow generated by outgoing null rays in the modified Vaidya metric.

– 6 –

Figure: Collapse and evaporation without singularities? (Frolov 2017)

Matt Visser (VUW) SIGRAV Winter School 2025 54 / 92



Carter–Penrose diagrams: VUW
Nice slice argument:

The “nice slice argument” is quite common but is particularly tricky.

Precise statement of the “nice slice argument” is impossible to find.

Explicit reference for the “nice slice argument” seems non-existent?
(Undocumented personal communication?)

Warning:
As currently used in the literature:

To the extent that “nice slices” exist,
they are not as nice as advertised...
To the extent that “nice slices” are as nice as advertised,
they do not exist...

Carter–Penrose diagrams are good for understanding causal structure,
and causal topology.

Carter–Penrose diagrams can be grossly misleading when it comes to
metrical properties.
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Carter–Penrose diagrams: VUW

Figure: Collapse and evaporation with quantum gravity (Planck slop) region...
Where are the horizons? What type of horizon?
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Carter–Penrose diagrams: VUW

Let
P = (Planck slop region).

Define
H− = ∂(J−(P)).

Past Planck slop horizon?

Define
H+ = ∂(J+(P)).

Future Planck slop horizon?

A while ago I tried introdcing the notion of a “reliability horizon”,
but no-one took up the idea...

Maybe the phrase “Planck slop horizon” will have more impact?

In counterpoint, you might also want to consider
the “domain of dependence” of the Planck slop...
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Carter–Penrose diagrams: VUW3

Birrell and Davies [18] from the beginning, but is for-
gotten in most modern discussions. In particular, many
discussions of the information preservation problem (see
for instance [14] for a highly referenced example) make
essential use of supposed Cauchy surfaces within this dia-
gram, including surfaces on both sides of the evaporation
event. But if the spacetime underlying the diagram has
a naked singularity and is not globally hyperbolic, no
such Cauchy surfaces can be assumed to exist. Because
of this hidden assumption of unpredictability, the useful-
ness of such a diagram in analyzing possibly unitary BH
evaporation must be called into question.

Recognizing these shortcomings, and that evaporation
may profoundly change the character of the BH space-
time diagram, a number of studies have suggested im-
proved diagrams that more easily allow an interpretation
in which information is preserved [9–11, 19–26]. These
form a useful background for investigating BH evapora-
tion and related issues, and we build most directly on the
work of Hayward [9], who has provided the most minimal
and generic model.

By extending this type of model to a form in which
explicit Penrose diagrams can be attained, we explore
the structure of these improved models while resolving
the ambiguity and hidden assumptions inherent to hand
drawn diagrams. The new diagrams (Figs. 4–7) are si-
multaneously both Penrose diagrams and exact coordi-
nate diagrams, allowing a detailed picture of the exact
geometry. A discussion of the diagram formalism, and
an explanation of some key aspects of interpreting the
new diagrams, is provided in Section IV.

II. SHELL MODEL OF BLACK HOLE
FORMATION AND EVAPORATION

We model the process of black hole formation and
evaporation according to the following assumptions:

(i) The black hole is non-rotating and spherically sym-
metric.

(ii) The process is quasistatic, allowing dynamical evo-
lution to be modeled by a sequence of equilibrium
BH solutions joined across null shells of matter
(such null shells may represent either truly light-like
radiation, or highly accelerated timelike matter).

(iii) The equilibrium black hole solutions locally have
the form ds2 = �f(r) dt2 + f(r)�1 dr2 + r2 d⌦2.

final Minkowski space for gluing to be topologically allowed near
B, which creates a Cauchy horizon. The general argument relies
on theorems of Geroch [17] — since the domain of dependence of
a surface is globally hyperbolic, the assumption that the region
beyond H is determined by S1 contradicts continuity of the past
and future volumes within a globally hyperbolic space.

(a) (b)

Figure 2. (Color online). Schematic illustration of Penrose
diagrams for the shell model in simple cases. (a) The simplest
singular case: a Schwarzschild black hole forms by collapse of
a spherical null shell, and evaporates by emitting a single
burst of Hawking radiation, which nucleates at a radius rev =
rhor + lev just outside the apparent horizon at rhor = 2m.
(b) The simplest nonsingular case: a Hayward black hole (see
below) forms and evaporates in the same way.

(iv) Stellar collapse and mass accretion is modeled by
a sequence of ingoing spherical null matter shells,
incident from infinity.

(v) Hawking radiation is modeled by pairs of spherical
null matter shells. Each pair consists of an outgo-
ing positive-mass shell and ingoing negative-mass
shell. Each pair nucleates at a fixed radial distance
lev outside the apparent horizon at r = 2m, with
both shells propagating toward the future. Nucle-
ation points violate the DTR relation (an equation
related to energy conservation, see appendix), but
the amount of violation is arbitrarily small in the
lev ! 0 limit. If lev ⇡ lpl, tiny DTR violations may
be considered small quantum fluctuations. In this
sense, in our semiclassical model, energy conserva-
tion forces Hawking radiation to be emitted from
just outside the horizon.

This model is a slightly generalized discrete approxima-
tion to that proposed originally by Hayward [9], and
the evaporation mechanism agrees, heuristically, with the
classic calculation by Davies, Fulling, and Unruh of the
stress tensor for a quantum scalar field in the presence of
a static BH [6]. We construct spacetimes applying this
model, and their corresponding Penrose diagrams, by the
methods of [5]. It is assumed that physically realistic
models are achieved by first taking the limit lev ! lpl at
each shell of Hawking radiation, then taking the contin-
uous (many-shell) limit.

The simplest example of this approach, in which for-
mation and evaporation each occur in a single burst, is

Figure: Collapse and evaporation with double null shell...
Where are the horizons? What type of horizon?
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Dynamical/kinematical models
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Dynamical/kinematical models: VUW

Should you use a dynamical model or a kinematical model?

Depends:
How much you actually know about the system in question?

Can you find an actual solution to a reasonably well defined set of
equations of motion?

If so, great...

Otherwise, build a model, use symmetries, general principles...

Sometimes, once you have an interesting toy model,
you can reverse engineer a suitable Lagrangian...

EG: Simpson-Visser spacetime, originally just a model, was
subsequently reverse engineered into a solution of a system involving
a minimally coupled phantom scalar and nonlinear electrodynamics...

Reverse engineering is often fine-tuned and fragile...
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Dynamical/kinematical models: VUW

Example:

Morris–Thorne wormhole model (1988):

ds2 = −dt2 + dr2 + (r2 + a2) dΩ2.

Morris–Thorne wormhole solution (1988):

Introduce a negative kinetic energy scalar (phantom scalar).

The transition from model to solution can be almost trivial...

Warning:
Please do not go down the “reversed polarity coupling to gravity”
rabbit hole...
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Dynamical/kinematical models: VUW
Example:

Simpson–Visser wormhole model (2018):

ds2 = −
(

1− 2m√
r2 + a2

)
dt2 +

dr2

1− 2m√
r2+a2

+ (r2 + a2) dΩ2.

We cooked this up as a simple 2-parameter model interpolating
Schwarzschild ←→ Morris–Thorne.

Simpson–Visser wormhole solution (Bronnikov–Walia 2021):

Introduce both a negative kinetic energy scalar and nonlinear EM.

The transition from model to solution can be almost trivial...

There is now an entire micro-industry of reverse engineering various
models to make them solutions of some sort of toy dynamical model
(Lagrangian). I recommend care and discretion...
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Convergence/energy conditions
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Convergence/energy conditions: VUW

Should one use energy conditions
(constraints on the stress-energy tensor)
or purely geometrical convergence conditions
(constraints in the Einstein/Ricci tensor)?

This is ultimately a sociology of physics question,
not really a scientific question.

In standard Einstein gravity

Gab = 8πGN Tab.

So then (energy condition) ⇐⇒ (convergence condition).

In modified gravity?
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Convergence/energy conditions: VUW

In modified gravity, quite generally

some-function (Riemann,metric ,Tab, other-stuff) = 0.

Quite often this can be rearranged into the form

Gab = some-other-function (metric ,Weyl ,Tab, other-stuff) = 0.

If so, then

Gab = 8πGN T effective
ab .

If so, then even in very many (almost all) modified gravities

(energy condition on T effective
ab )⇐⇒ (convergence condition).

This has been extremely well known for decades...
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Convergence/energy conditions: VUW

But this is one place where the sociology of physics trumps the
actual science...

There is now a truly vast industry churning out
endless repetitive and superficial papers on
“energy condition violations in modified gravity”...

Enter this part of the literature at your peril...

In the meantime, merely to short circuit some of the chatter,
it might be a good idea (sociologically, not scientifically)
to focus on convergence conditions...

Expect to see me talking more about convergence conditions in the
future...

It is important to usefully communicate with the widest possible cross
section of the broader community...
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Hawking-Ellis classification: VUW

To hopefully short-circuit a whole extra level of (potential) future
nonsense:

The Hawking-Ellis (Segre-Plebanski) classification of stress-energy
tensors really has very little to do with stress-energy tensors...

The Hawking-Ellis (Segre-Plebanski) classification is really a
classification of T 1

1 tensors...

Look for invariant eigenvalues and eigenvectors...

Either solve
det(Tab − λ gab) = 0

Or solve
det(T a

b − λ δab) = 0

Note T a
b need not be symmetric...

(Math) Need the whole Jordan normal form decomposition...

(Physics) Need type I–II-III-IV.
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Raychaudhuri equation
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Raychaudhuri equation: VUW

Which version of the Raychaudhuri equation should we use?

There is the obvious (and physically important) dichotomy between
timelike and null versions of the Raychaudhuri equation.
The spacelike version of the Raychaudhuri equation is rarely used.
(Classical tachyons exhibit a long list of dubious properties...)
More subtle is the dichotomy between null affine and null non-affine
paramterizations.

For some issues, null affine paramterization is best.
For other issues, null non-affine paramterization is best.

There is also another rat’s nest that can be opened up by looking at
non-geodesic versions of the Raychaudhuri equation.
(You could try to consider bounding the 4-acceleration.)
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Timelike Raychaudhuri equation: VUW
Consider a 4-velocity field V a, with 4-acceleration field Aa.

Define Ba
b = ∇aV

b.

Compute

dBa
b

ds
= V c∇cBa

b = ∇aA
b − Ba

cBc
b − Rac

b
dV

cV d

Contract

dθ

ds
= V c∇cBa

a = ∇aA
a − Ba

cBc
a − RcdV

cV d

Geodesic plus hypersurface orthogonal

dθ

ds
≤ −θ

2

3
− RcdV

cV d

Add TCC (timelike convergence condition) RcdV
cV d ≥ 0

dθ

ds
≤ −θ

2

3
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Timelike Raychaudhuri equation: VUW

Integrate the inequality
dθ

ds
≤ −θ

2

3
to get

θ(s) ≤ θ0

1 + θ0
3 (s − s0)

.

If you start out at s0 with θ0 < 0 then you encounter a crushing
singularity θ(s)→ −∞ at some finite proper time, at or before

s = s0 +
3

|θ0|

provided, of course, you do not hit the edge of spacetime first...

A timelike observer hitting the edge of spacetime at finite proper time
is at least as bad as encountering a crushing singularity...

The situation for null geodesics is more subtle...
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Null Raychaudhuri equation: VUW

Consider a null vector field `a.

Null geodesic plus affine parameter plus hypersurface orthogonal

dθ

dλ
≤ −θ

2

2
− Rcd`

c`d

Add NCC (null convergence condition) Rcd`
c`d ≥ 0

dθ

dλ
≤ −θ

2

2

Integrate this inequality to get

θ(λ) ≤ θ0

1 + θ0
2 (λ− λ0)

.
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Null Raychaudhuri equation: VUW

If you start out at λ0 with θ0 < 0 then you encounter a crushing
singularity θ(λ)→ −∞ at some finite affine parameter, at or before

λ = λ0 +
2

|θ0|
,

provided, of course, you do not run out of affine parameter first...

A null observer hitting running out of affine parameter is nowhere
near as bad as a timelike observer hitting the edge of spacetime...

Example: static inner horizons (Cauchy horizons).

Discussion:
Violations of the null convergence condition in kinematical transitions
between singular and regular black holes, horizonless compact objects,
and bounces
Borissova, Liberati, Visser. 2502.00548 [gr-qc]
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Non-affine null Raychaudhuri equation: VUW
From from the affine parameterized equation

dθ

dλ
≤ −θ

2

2

use dλ = F (λ̂)d λ̂ and θ = θ̂/F (λ̂) to get

d θ̂

d λ̂
≤ +

F ′

F
θ̂ − θ̂2

2
= +κ θ̂ − θ̂2

2

Integrate this inequality to get

θ̂(λ) ≤ θ̂0 exp(
∫
κd λ̂)

1 + θ0
2

∫
exp(

∫
κd λ̂)d λ̂

.

Still get crushing singularity, now at or before∫
exp

(∫
κd λ̂

)
d λ̂ =

2

|θ̂0|
.

Just some annoying details to sort out...
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Non-affine null Raychaudhuri equation: VUW
Example: Consider this metric...

ds2 = −f (r , v)dv2 + 2dvdr + r2dΩ2 with f (r , v) = 1− 2m(r , v)

r
.

(Not the most general, but sufficient for illustrative purposes)
Introduce radial null vectors

kµ = −∂r = (0,−1, 0, 0) and lµ = ∂v +
f

2
∂r =

(
1,

f

2
, 0, 0

)
Normalization g(k , k) = 0 = g(l , l) and g(k , l) = −1.
The ingoing null geodesics are affine parameterized, kν ∇νkµ = 0.
The “outgoing” null geodesics are not affine parameterized,
lν ∇ν lµ = 1

2 f
′(r , v) lµ 6= 0.

NCC:

Rµν kµkν = 0; Rµν lµlν = − ḟ

r
=

2ṁ

r2
.

NCC always OK for ingoing null geodesics,
but depends on ṁ for outgoing geodesics...
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Affine null Raychaudhuri equation: VUW
Example: Consider the same metric...

ds2 = −f (r , v)dv2 + 2dvdr + r2dΩ2 with f (r , v) = 1− 2m(r , v)

r
.

Introduce (different) radial null vectors

kµ = −∂r = (0,−1, 0, 0) and lµ =
2

f
∂v + ∂r =

(
2

f
, 1, 0, 0

)
Normalization g(k , k) = 0 = g(l , l) and g(k , l) = −2

f .

The ingoing and outgoing null geodesics are now both affine
parameterized, kν ∇νkµ = 0 and lν ∇ν lµ = 0.

NCC:

Rµν kµkν = 0; Rµν lµlν = − 4ḟ

f 2r
=

8ṁ

f 2r2
.

NCC always OK for ingoing null geodesics,
but depends on ṁ for outgoing geodesics...

Nasty divide by zero at inner and outer apparent horizons...
Matt Visser (VUW) SIGRAV Winter School 2025 76 / 92



Affine/non-affine null Raychaudhuri equation: VUW

There is a trade off...

Note in general

θ =
`a∇aA

A
=
`a∇ar

2

r2
=

2`r

r

Non affine:

la =

(
1,

f

2
, 0, 0

)
; θl =

f

r

With this normalization θl → 0 at inner and outer apparent horizons.

Affine:

la =

(
2

f
, 1, 0, 0

)
; θl =

2

r
.

With this normalization θl finite at inner and outer apparent horizons.

Expansions at inner/outer apparent horizons might be “unexpected”.

Learn to live with it...
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Evolving inner horizon: VUW
Regardless of whether you choose affine or non affine
parameterization, the “outgoing” null geodesics are dragged
backwards and accumulate at the inner apparent horizon.

So is the inner apparent horizon growing or shrinking?
If the inner horizon shrinks down to zero, then eventually it hits r = 0,
and eventually you have a one-apparent-horizon object, qualitatively
similar to Schwarzschild.
If the inner horizon expands, then (barring miracles) it eventually hits
the outer horizon, and you have an (instantaneously) extremal object,
which might in turn evaporate completely — cf Bergmann-Roman,
Frolov, “topologically toroidal trapping horizon”...

Either way, the r coordinate remains a useful null affine parameter....

Test particle limit implied; geodesic equations =⇒ test particle limit...

Efficient Computation of Null Affine Parameters, Matt Visser
Universe 9 (2023) 521 e-Print: 2211.07835 [gr-qc]
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Quantum physics: VUW

Quantum physics
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Quantum physics: VUW

I have said very little so far that is explicitly quantum...

Quantum physics has been implicit in the discussion...

Most of the “quantum” calculations we can do are actually
semiclassical...
(Classical spacetime background, idealized quantum “matter”)

For example:

Hawking radiation...
Cosmological particle production...
Vacuum expectation values (VEVs),
of renormalized stress-energy tensors (RSETs)...
Quantum modified spacetimes...

Trying to even define a horizon in a fully quantum spacetime setting
is, ah, not yet really a viable proposition...

(You really need the semi-classical background to even get started)...
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Quantum physics: VUW
Attempts at full quantum gravity include:

Canonical quantum gravity:
(Coherent formalism, but almost impossible to calculate anything)

Wheeler-DeWitt equation:
(Coherent formalism, but almost impossible to calculate anything)

Minisuperspace:
(Very limited toy models.)

Loop quantum gravity:
(Technically challenging)

Causal dynamical triangulations:
(Technically challenging)

Causal sets:
(Technically challenging)

String based models:
(50 years of promises.)
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Quantum physics: VUW

At least for the time being, the best way forward seems to be classical
and semi-classical GR.

There are more than enough tractable classical and semi-classical GR
problems to keep generations of grad students (and senior professors
for that matter) usefully occupied.

Keep at least one eye out for what the astronomers/astrophysicists
actually need, practical and efficient ways for interpreting
observational results...

Keep at least one eye out for checking that what you are working on
is (at least in principle) observationally testable...

Planck energy accelerator?
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Summary
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Summary: VUW

Trapping horizons good...
(Ditto dynamical, isolated horizons and their variants)...

Apparent horizons tolerable...
(At least in spherical symmetry with spherical foliations)...

Event horizons bad...
(Unless you are an external super-observer)...

There is still an awful lot of interesting research to be done...
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Crimes against Italian cuisine
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Crimes against Italian cuisine:
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Crimes against Italian cuisine:
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Crimes against Italian cuisine:
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Crimes against Italian cuisine:

Matt Visser (VUW) SIGRAV Winter School 2025 91 / 92



End: VUW

——VUW——
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