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I troduction o Effective field theory of General Relatiivty allows for
Scenarios solutions with timelike singularities: super-extremal
Fluctuations blaCk h0|eS

@ — Cauchy problem not well defined for observer
external to black holes.

St Ges o Evolution non-unitary for external observer.
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Matrix o Conjecture: ultraviolet physics — external observer
Sesmoea shielded from the singularity and non-unitarity by
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Scenarios o EFT: expand fields in comoving Fourier space.
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— ground state energy.

o Add up ground state energies — CC problem.
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eduton o Consider entanglement entropy density sg(f) between
S sub- and super-Hubble modes.

Fluctuations o Consider an phase of inflationary expansion.

o sg(t) increases in time since the phase space of
super-Hubble modes grows.

e o Demand: sg(t) remain smaller than the

. post-inflationary thermal entropy.

Cosmol g o - -

M‘;:l""gy o — Duration of inflation is bounded from above,
Cosmology consistent with the TCC.
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Demanding that inflation yields a causal mechanism for
SN generating CMB anisotropies implies:
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Implications

Upper bound on the energy scale of inflation:

V74 < 3 x 10%GeV

— upper bound on the primordial tensor to scalar ratio r:

r <1030

Note: Secondary tensors will be larger than the primary
ones.
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(L. Heisenberg et al. arXiv:2003.13283]
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o Bouncing cosmologies are consistent with the TCC
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than the Planck scale.
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jivsbelll  Idea: make use of the new symmetries and new degrees of
freedom which string theory provides to construct a new

ieduton theory of the very early universe.

e Assumption: Matter is a gas of fundamental strings

Assumption: Space is compact, e.g. a torus.

Fluctuations

Key points:
o New degrees of freedom: string oscillatory modes
String Gas . o
Cosmology o Leads to a maximal temperature for a gas of strings,
e the Hagedorn temperature
osmology
Matrix o New degrees of freedom: string winding modes

Cosmology

0 Leads to a new symmetry: physics at large R is
equivalent to physics at small R
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T-Duality
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T-Duality
e @ Momentum modes: E, = n/R

Fluctuations @ Winding modes: E;, = mR

o Duality: R — 1/R (n,m) — (m,n)

o Mass spectrum of string states unchanged

Introduction

e o Symmetry of vertex operators

L @ Symmetry at non-perturbative level — existence of
T y

e D-branes

e Note: usual EFTs have lost the T-duality symmetry.
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Temperature-size relation in string gas cosmology
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Introduction

Scenarios

o @ A spatial dimension can only expand it string winding
omaio modes can annihilate into loops.

o This process only allows 3 spatial dimensions to
become large.
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Gosmology o SO(9) — SO(6) x SO(3) symmetry breaking.
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Structure formation in string gas cosmology
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String Gas
Cosmology

N.B. Perturbations originate as thermal string gas
fluctuations.
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o Calculate matter correlation functions in the Hagedorn
Introduction phase (neglecting the metric fluctuations)

Sesnanes o For fixed k, convert the matter fluctuations to metric
e fluctuations at Hubble radius crossing t = t(k)

o Evolve the metric fluctuations for t > t;(k) using the

e usual theory of cosmological perturbations
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o Calculate matter correlation functions in the Hagedorn
phase (neglecting the metric fluctuations)

o For fixed k, convert the matter fluctuations to metric
fluctuations at Hubble radius crossing t = f;(k)

o Evolve the metric fluctuations for t > t;(k) using the
usual theory of cosmological perturbations

Note: the matter correlation functions are given by partial
derivatives of the finite temperature string gas partition
function with respect to T (density fluctuations) or R
(pressure perturbations).
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Introduction and gravitational waves:
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Fluctuations

ds? = 22(n)((1 +2)dn? — [(1 — 20)5; + hyldx'dx’) .

Inserting into the perturbed Einstein equations yields
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Mt ([O(K)[F) = 1672G2k~*(6T (k)5 T % (K))
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Key ingredient: For thermal fluctuations:
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Key ingredient: For thermal fluctuations:
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Scenarios T2

Fd\ﬁl‘ctua‘tTons <5p2> — ﬁ CV .

Key ingredient: For string thermodynamics in a compact
space
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Cosmology Key features:
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Cosmology o scale-invariant like for inflation
Conclusions o slight red tilt like for inflation
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o Non-perturbative analysis: theory of an arbitrary
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Fluctuations
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o Dy: gauge covariant derivative (contains a matrix Ag)
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Cosmology ‘t Hooft limit: N — oo with \ = g2N _ gs/s_3N fixed.
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Matrix Note: It is precisely in d = 9 that both a supersymmetric
S extension is possible and a normalizable zero energy state
Bl cxists (J. Froehlich, G-M. Graf, D. Hasler, J. Hoppe and S-T.
Yau, hep-th/9904182).
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Thermal Initial State

s Consider a high temperature state.

Matsubara expansion:
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©

Introduction

Scenarios )(I(t) = Z)(ine2ﬂi7't

Fluctuations n

Note: no Matsubara zero modes for the Fermionic
matrices.

Sgrss = So + O(1/T)

©

©

String Gas

Cosmology

ot 0 Sy = Sheonie: contribution of the n = 0 modes.
Sosmelosy o At high temperatures, the bosonic sector of the
Casmology (Euclidean) BFSS model is well approximated by the

Conclusions bosonic sector of the (Euclidean) IKKT matrix model.

A= T1/4X0
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J. Nishimura, PoS CORFU 2019, 178 (2020) [arXiv:2006.00768 [hep-lat]].

25y o Eigenvalues of Ay become emergent time, continuous
e in N — oo limit.
o Work in the basis in which Ay is diagonal.
o Work in the basis in which Ag is diagonal: A; matrices
become block diagonal.
o Extent of space in direction i
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Scenarios

Fluctuations

TCC 2 _ 1 n 2

(02 = (STANOR)

Cosmology

L. o In a thermal state there is spontaneous symmetry

Matrix breaking: SO(9) — SO(6) x SO(3): three dimensions
Somay of space become larger, the others are confined.
e [J. Nishimura and G. Vernizzi, JHEP 0004, 015 (2000);

1S.-W. Kim, J. Nishimura and A. Tsuchiya, Phys. Rev.
Lett. 109, 011601 (2012)]
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Emergent Metric from Matrix Theory

=2y o Eigenvalues of Ay become emergent time, continuous
. Branden- in N — oo limit.

berger

@ Work in the basis in which Ag is diagonal: pick n
iesieon (comoving spatial coordinate) and consider the block
ii;:q:;s matrix A;(t).

. o Physical distance between n; = 0 and n; (emergent

space):

TCC
Brysi (1) = (THAND)?) ,
o ey O pnys,i(Ni) ~ ni (for nj < nc)
et @ Emergent infinite and continuous space in N — oo limit.
Cosmology o Emergent metric (S. Brahma, R.B. and S. Laliberte,
conclusions arXiv:2206.12468).
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Introduction gii(ni) / = dn, phys7i(ni)
!

Scenarios

Result:

Fluctuations
gi(nj, t) = A(t)é;i 1=1,2,3

String Gas

Cosmology

" SO(3) symmetry —
Cc?;rrl:ology

Matrix g[j(n7 t) = A(t)(slj = 17273

Cosmology

Conclusions — Spatla”y ﬂat

Note: Local Lorentz invariance emerges in N — oo limit.
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o Hypothesis: The BV mechanism can be embedded into
Seonarios matrix cosmology: winding D1-strings allow only three
s s dimensions of space to become large.

' o What are D1-strings in the IKKT matrix theory?

o D1-strings are solitonic matrix excitations.

T o Analogy: particles are point-like excitations of fields in
‘ QFT.

" o Thermal initial state contains all excitations of Type IIB

C(E)ls’r‘ﬂxology Stl‘ing theOI‘y..
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o Free energy consideration: a spatial dimension can
Seonarios only expand if winding D1 strings can annihilate.

Fluctuations o In the supersymmetric IKKT model, the force
between parallel D1-strings vanishes (to leading order).

o — decay of winding strings requires crossing of world
String Gas SheetS

S o Vanishing probability in more than 3 large spatial

Introduction

Matrix

Gmelley dimensions.
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Gosmology @ — precisely three spatial dimensions become large.
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R Consider a matrix background (Note: breaks
Eerosy supersymmetry)
Introduction

Scenarios AZ = Ag -+ A51 )

Fluctuations

where AE‘ is the classical matrix configuration for a pair of
Beck Feacton parallel D1-strings along the 1 axis separated by a distance

Tce b along the 2 axis.
String Gas
Seusled] Consider fluctuations about this background, insert into

Matrix

Cosmology the expression for the one loop effective action W, y.

Matrix

Cosmology Result: W, independent of b — vanishing force between
Conclusions ‘the para”el D1 -Strlngs

Note: supersymmetry of the IKKT matrix model is crucial.
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S. Brahma, R.B. and S. Laliberte, arXiv:2107.11512
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berger o We assume that the spontaneous symmetry breaking
SO(9) — SO(3) x SO(6) observed in the IKKT model
also holds in the BFSS model.

o Using the Gaussian approximation method we have
shown the existence of a symmetry breaking phase
transition in the BFSS model (S. Brahma, RB and S.

S s Laliberte, arXiv:2209.01255).

S o Thermal correlation functions in the three large
Casmelogy spatial dimensions calculated in the high temperature
Matrix state of the BFSS model (following the formalism

cosmelooy developed in String Gas Cosmology).
o — curvature fluctuations and gravitational waves.
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Fluctuations

S. Brahma, R.B. and S. Laliberte, arXiv:2107.11512
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R. Branden- o Start with the BFSS partition function .
erger
o Note: + correction terms in the BFSS action are crucial!

o Calculate matter correlation functions in the emergent
phase.

o For fixed k, convert the matter fluctuations to metric
fluctuations at Hubble radius crossing t = f;(k).

S—— o Evolve the metric fluctuations for t > t;(k) using the
Cosmology usual theory of cosmological perturbations.
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Cosmology

o ey Note: the matter correlation functions are given by partial

derivatives of the finite temperature partition function
with respect to T (density fluctuations) or R (pressure
perturbations).
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e Inserting into the perturbed Einstein equations yields
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conciisions Note: We assume the validity of the semi-classical Einstein
equations in the far IR.
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@ Scale-invariant spectrum of curvature fluctuations
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Scenarios o With a Poisson contribution for UV scales.

Fluctuations @ Scale-invariant spectrum of gravitational waves.

TCC — BFSS matrix model yields emergent infinite space,
e emergent infinite time, emergent spatially flat metric and an
i emergent early universe phase with thermal fluctuations
Co leading to scale-invariant curvature fluctuations and

ey gravitational waves.

Conclusions

Note: Horizon problem automatically solved.
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Conclusions

Early
R. Branden- o BFSS matrix model is a proposal for a non-perturbative

eraet definition of superstring theory. Consider a high
Introduction temperature state of the BFSS model.

Scenarios

o — emergent time, 3D space and metric. Emergent
space is spatially flat and infinite.

Fluctuations

Back Reacion o Thermal fluctuations of the BFSS model —

160 scale-invariant spectra of cosmological perturbations
Gosmology and gravitational waves.

S @ Horizon problem, flatness problem and formation of
o structure problem of Standard Big Bang Cosmology
e resolved without requiring inflation.

Conclusions

o Transition from an emergent phase to the radiation
phase of expansion. No cosmological constant.
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Overall Conclusions
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Inflation is not the only viable early universe scenario.

Introduction

o Cosmological perturbation theory is the key tool to
connect early universe physics with observations.

o EFT inevitably breaks down in the early universe.

o Starting from the BFSS matrix model in a finite
String Gas temperature state, we can obtain emergent space-time,
Cosmology an emergent metric and an emergent early universe

Matrix

Cosmology CosmOIOgy'

. o Key prediction: blue tilt of the gravitational wave
spectrum.
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