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Black hole entropy

Accepted wisdom: The area law gets corrections in the 
presence of higher-curvature corrections to Einstein’s gravity.

relativity statistical physics

gravity

QM

• Follows area law and is huge!

• It is holographic:

Bekenstein’s (universal) bound



Plan for Lecture 3
I. Two more ways to study BH TDs

II. Lovelock gravity: a prototype of higher curvature theory

III. 4D Gauss-Bonnet gravity
• 4D GB term and its effect on entropy
• D->4 limit & BH solutions
• Shift symmetry: area entropy & modified temperature

IV. Back to Lovelock: shall the area law prevail?

V. Summary
Based on:

• DK, M. Liška, Shall the area law prevail? Phys. Rev. D108 (2023) 
L121501; ArXiv:2307.16201.

• M. Liška, R. Hennigar, DK, No logarithmic corrections to entropy in 
shift symmetric Gauss-Bonnet gravity, JHEP 11 (2023) 195; 
ArXiv:2309.05629.



I) Two more ways to study black 
hole thermodynamics

• R. Wald, Black hole entropy is the Noether charge, 
PRD 48, R3427, 1993.

• Braden, Brown, Whiting, York, Charged black hole in 
a grand canonical ensemble, PRD 42, 3376 (1990).



Covariant phase space method

• Vary the Lagrangian

• Variation induced by diffeo ξ:         

define a current:

• Conserved on-shell:

• For a Killing vector ξ generating the horizon

Wald entropy (invariant under adding 
boundary terms)



Euclidean path integral a la Brown & York

• Introduce Euclidean time

• Calculate Euclidean action SE, to get the partition function:

• Standardly: inverse temp β fixed by regularity on horizon

• Physical twist: BH off-shell, put a boundary and 

consider β there
Fixes temperature (send 

boundary to infinity)



II) Lovelock gravity: a prototype of 
higher-curvature gravity theories



Gravitational action
• To write the Gravitational Action we want 

 

• Scalar Lagrangian -- diffeomorphism invariance
• Second-order (E-L) equations for the metric

• One possibility is to write the Einstein-Hilbert action

• Is this just the simplest choice or can we add other 
scalars?



Lovelock’s Theorem
D. Lovelock, The Einstein Tensor and Its Generalizations“, 
Journal of Mathematical Physics. 12 (3): 498–501 (1971). 

Einstein’s theory is the unique theory in 4D!

In 4D, the Einstein-Hilbert action is the only local action 
(apart from the cosmological constant and topological 
terms) that leads to the second order differential 
equations for the metric. In higher D, we can have 
Gauss-Bonnet (Lovelock) theories.



Gauss-Bonnet gravity

• In D<4 it identically vanishes!

• In 4D, the Gauss-Bonnet term is topological (total 
derivative!?!?). 

• In D=5 and higher dimensions it yields non-trivial 
EOMs:

2nd-order PDEs !!!



Lovelock gravity

where           are the 2k-dimensional Euler densities 

= Unique higher-curvature (with local action) gravity 
that yields 2nd-order PDEs for the metric

• k=0: cosmological term
• k=1: Einstein-Hilbert term         (topological in 2D)
• k=2: Gauss-Bonnet term          (topological in 4D)
• k=3: 3rd-order Lovelock             (topological in 6D)

“Natural generalization of Einstein’s theory in higher dimensions”



Lovelock gravity
= Unique higher-curvature (with local action) gravity 
that yields 2nd-order PDEs for the metric

Wald entropy:



III) 4D Gauss-
Bonnet 
gravity



Gauss-Bonnet gravity in 4D?

• In 4D, the Gauss-Bonnet term is topological (a 
total derivative). 

• Theory remains that of Einstein, but entropy 
gets modified! 

How well is this established? Is it a problem for BH mergers?



Glavan & Lin’s proposal



Conformal trick: D->4 limit of GB theory

• Start with GB                                        (topological in 4D)
 

R. Hennigar, DK, R. Mann, C. Pollack, On taking the D->4 limit of 
Gauss-Bonnet gravity: theory and solutions, KHEP 07 (2020) 027. 

• Evaluate it for the conformally rescaled metric

• Expand around                         :

• Rescale the coupling:



Conformal trick: D->4 limit of GB theory

• Formally, one can introduce a counter-term 

R. Hennigar, DK, R. Mann, C. Pollack, On taking the D->4 limit of 
Gauss-Bonnet gravity: theory and solutions, JHEP 07 (2020) 027. 

• After field redefinition: 



The new theory

G. W. Horndeski, Second-order scalar-tensor field equations in a four-
dimensional space, International Journal of Theoretical Physics 10 
(1974) 363-384.

• Is a scalar-tensor theory of Horndeski-type 

• It can also be derived by Kaluza-Klein compactification 
in the limit of vanishing extra dimensions:

H. Lu and Y. Pang, Horndeski Gravity as D->4 Limit of Gauss-
Bonnet, 2003.11552. (see also T. Kobayashi, 2003.12771)



Solutions: GB Black Hole
H. Lu and Y. Pang, Horndeski Gravity as D->4 Limit
of Gauss-Bonnet, 2003.11552.

• Constructed the SSS solutions of the Horndeski-GB theory 

• Special class of solutions has 

• Metric coincides with the 
naïve D->4 limit.

• Uniqueness – Fernandes 
et al, Arxiv:2107.00046 



Solutions: GB Black Hole

• Have a theory – so can use Wald’s formalism to calculate 
entropy, which picks up logarithmic corrections:

• The same spacetime considered as “quantum gravity 
corrected metric”

• Y. Tomozawa, Quantum corrections to gravity, 1107.1424.
• G. Cognola, R. Myrzakulov, L. Sebastiani and S. Zerbini, 

Einstein gravity with Gauss-Bonnet entropic corrections, 
Phys. Rev. D 88 024006, [1304.1878].



Shift symmetry

• Is a shift-symmetric theory

• However, such a change shifts entropy by a constant 
(this may now become negative?)

• Consider instead a manifestly shift-symmetric action

(DBC for metric & NBC for scalar)



• For 4D GB theory, we have on-shell covariant expression
(up to superpotential – that does not contribute to 

 Noether charges)

• Validity of 1st law: then requires modified temperature

…follows from the Brown-York Euclidean action calculation!

(Wald entropy for the 
shift-invariant action)

see also: M. Minamitsuji, K. Maeda, Arxiv:2308.01082.



Summary of thermodynamics

“standard TDs” “shift symmetric TDs”



IV) Back to 
Lovelock: shall 
the Bekenstein’s 
area law prevail?



Area law for Lovelock black holes
• If the area law holds for the 4D GB theory, shouldn’t it also 

hold before the limit in higher dimensions?

• After-all every Lovelock gravity can be reduced to shift-
symmetric scalar-tensor theory in the critical dimension. 

• Spec: spherical black holes - observation



Area law for Lovelock black holes

• If the spacetime possesses a KV ξ, then 
(A. Yale & T. Padmanabhan 2011)

• In 4D GB:

(covariant expression for G^a not known!!!)

• In higher dimensions:

(Wald & 
Brown-York)



Summary of Lecture 3
1) While the GB term becomes topological in 4D, its presence 

is believed to shift the BH entropy by a constant proportional 
to the genus of the manifold. (Problem with BH formation, in 
which the entropy can subsequently decrease?)

2) One can take a singular limit D->4, rescaling the GB coupling. 
The resultant theory is a scalar-tensor theory known as 4D GB 
gravity: 

3) The corresponding BHs have been claimed to feature 
logarithmic corrections to entropy. This seems to be a 
consequence of breaking the shift-symmetry at the action 
level. When shift-symmetric action is written down, we recover 
Bekenstein’s area law:



Summary of Lecture 3
4. Similarly: One can cook up a certain boundary term 

for higher-dimensional Lovelock gravity so that the 
area law prevails and the BH temperature is modified.

5. What is the origin of modified temperature?

a) Modified speed of gravitons on the horizon?
See Hajian, Liberati, Sheikh-Jabbari, M. Vahidinia, 
PLB 812, 136002 (2021).

b) “Screening effect” of strong gravitational field?
c) Effect of certain boundary terms on the 

“interpretation of TD ensemble”?
d) Assumed fixed topology in standard calculations?

Maybe: The area law shall prevail!



Mini course summary: 
Existential advice





Appendices



Brown-York approach

• Boundary data:  

Braden, Brown, Whiting, York, Charged black hole in a grand 
canonical ensemble, PRD 42, 3376 (1990).



Brown-York approach

• Regular (horizon) center:  

Braden, Brown, Whiting, York, Charged black hole in a grand 
canonical ensemble, PRD 42, 3376 (1990).



Brown-York approach

• Impose Gauss and Hamiltonian constraints: 



Brown-York approach
• Reduced action

Stationary points w.r.t. e and r+ fixes potential and 
temperature:

• Thermodynamic potential: 



Brown-York approach

As rb sent to infinity, the middle term vanishes, and we 
recover the standard TDs. All quantities were derived 
from the action!

• Thermodynamic potential: 

• Remaining TD quantities: 



2) Lovelock Thermodynamics



3) 4D GB gravity: equations of motion

Interesting consequence:



Some properties of the theory
• Is the theory well posed? May be – probably not?

• A.D. Kovacs, H.S. Reall, Well-posed formulation of Lovelock 
and Horndeski theories, PRD 101, 124003 (2020).

• Asymptotic structure: no propagating scalar dof
• H. Lu, P. Mao, Asymptotic structure of Einstein-Gauss-Bonnet 

theory in lower dimensions, ArXiv:2004.14400.

• Observational constraints 

• T. Clifton, P. Carrilho, P.G.S. Fernandes, D.J. Muryne, 
Observational constraints on the regularized 4D Einstein-
Gauss-Bonnet theory of gravity, ArXiv:2006.15017.

• J-X. Feng, B-M Gu, F-W. Shu, Theoretical and observational 
constraints on regularized 4D Einstein-Gauss-Bonner gravity, 
ArXiv:2006.16751.



4) Kaluza-Klein approach
H. Lu and Y. Pang, Horndeski Gravity as D->4 Limit of Gauss-
Bonnet, 2003.11552. (see also T. Kobayashi, 2003.12771)

• Start with EHGB

• Compactify on

• Resultant effective p-dimensional action is



Kaluza-Klein approach
• In                 one can substract topological (zero) term 

• Rescale the coupling alpha and take the limit:                            

Gauss-Bonnet in

(Limit of 0-dim. 
internal space)
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