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Why Quantum Simulation of Curved Spacetimes with
Many-Body Systems?

Key Importance: Observability of Fundamental QFT Effects

eg Hawking Temperature of Astrophysical Black Holes
(solar mass BH: Ty ~ 60 nK)

Unobservable on Top of CMB

First Observations
of Hawking Radiation

Nature & Nature Physics, 2016, 2019 & 2021
[Steinhauer Group Technion]

Cosmological QFT Effects Observable

Science 2013 [Chin Group Chicago]
PRX 2018 [Campbell Group Maryland]
Nature 2022 [Oberthaler Group Heidelberg]
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Quantum Many-Body Black Holes
Steinhauer BEC Experiments:

Swees Blue-Detuned Trapping Potential Jump Through
Condensate to Create BH in Essentially 1D Gas

= Highly Nonequilibrium State (At Least Initially)

Basic Question We Addressed:
Does Finite-Size Stationary Black Hole Exist in 1D?

Note: Hohenberg Theorem Rules Out Size { — oo in 1D
[Phase Fluctuations Growing Without Bound, Destroy BEC]
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Our Setup
Finite Size Condensate With Source and Drain

Upstream flow Downstream flow

.Z‘HZO

S
%

Creation of Horizon:
Interaction Coupling Constant g = gip Jump at xg =0

Source (at —¢1/2) and Drain (at ¢2/2)
= Create Steady State of Single Black Hole
Else Black—White Hole Pair Unavoidable
(For Steady Circulating State, by Topology on the Torus)
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Diagnostic Tool of Bogoliubov:

Take Bogoliubov Expansion of Bosonic Field Operator
(v: Constant Flow Speed)

W(t,x) = e 1L 4 ()]
Quantum Depletion (:= Number of Particles Not in Condensate)
op = (1)
Should be Suitably “Small” dp < p

Then Bogoliubov Approach Consistent

[By Convention We Kept dp/p < 10% (Typically 3%)]

Uwe R. Fischer Quantum many-body black holes



Finite BH Lifetime from Spectrum
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= Irregular Behavior but also Stability Windows
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Quench Preparation of Black Hole

Spectrum Gives Generally Unstable Quantum Modes
in BH Configuration

= Start from Horizonless Configuration in the Quasi-1D Box

Advantage:
Initial Quasiparticle Vacuum Well Defined Without Sonic Horizon

No Issues with Vacuum in Presence of Instabilities!

Then Compute Depletion §p = dp(t)
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Hawking Radiation Buildup in Upstream Depletion
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Quantum Depletion “Shock Front” Outside of Horizon Builds Up
Signature of Hawking Radiation

And... Oscillations Downstream (Inside Black Hole) Emerge!
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Less Deep Quench
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= Oscillations have Relatively Higher Amplitude
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Detection Tool of Horizon Emergence:

Power Spectrum of Quantum Depletion
[Measured for 3D Gas: Hadzibabic Group, PRL 119 (2017)]
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Note: Depletion < First-Order Correlations

Usual HR Signature: Weak Density-Density Correlations

Ribeiro, Baak & URF, PRD 105 (2022)
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Analogue Quantum Cosmology
S M Chandran & URF
arXiv:2506.02719v2 [gr-qc] (10th June, 2025)
Cosmological Expansion-Contraction Power Spectrum Duality:

Same Scale-Invariant Power Spectrum for Inflation and Bounce
Wands PRD 60 (1999)

However: Duality Holds Only in Lorentz-Invariant Theories!

Super-Hubble
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Cosmological Trans-Planckian Dispersion Maodiification

Microscopic Control in Dipolar (+ Contact) Quantum Gas

for Previously Ad Hoc Trans-Planckian Dispersions

Brandenberger, Martin, Niemeyer, Kempf, Parentani...
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Cosmology Dipolar BEC

“Unruh Flat-Band" Dispersion:
Dipolar and Contact Couplings Identical!
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Trans-Planckian Modification: Duality Broken
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However: “Unruh Flat-Band” Dispersion: Red Tilt!
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Result:

» Power-Spectrum-Indistinguishable Inflation and Bounce
(Wands Duality)
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Result:

» Power-Spectrum-Indistinguishable Inflation and Bounce
(Wands Duality)

» Become Distinguishable due to Trans-Planckian Dispersion
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Result:

» Power-Spectrum-Indistinguishable Inflation and Bounce
(Wands Duality)

» Become Distinguishable due to Trans-Planckian Dispersion

» Currently Realizable in Dipolar Bose-Einstein Condensates

(eg Erbium and Dysprosium)

Chandran & URF
arXiv:2506.02719v2 [gr-qc] (10th June, 2025)
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