Quantum many-body analogue black-holes and analogue cosmology

> Uwe R. Fischer Seoul National University

Group: Theory of Cold Atoms

June 27, 2025, RQI-N 15, Napoli

Why Quantum Simulation of Curved Spacetimes with Many-Body Systems?

Key Importance: Observability of Fundamental QFT Effects

eg Hawking Temperature of Astrophysical Black Holes (solar mass BH: $T_H \sim 60$ nK) *Unobservable* on Top of CMB

> First <u>Observations</u> of Hawking Radiation

Nature & Nature Physics, 2016, 2019 & 2021 [Steinhauer Group Technion]

Cosmological QFT Effects Observable

Science 2013 [Chin Group Chicago] PRX 2018 [Campbell Group Maryland] Nature 2022 [Oberthaler Group Heidelberg]

Quantum Many-Body Black Holes

Steinhauer BEC Experiments:

Swees Blue-Detuned Trapping Potential Jump Through Condensate to Create BH in Essentially 1D Gas

 \Rightarrow Highly Nonequilibrium State (At Least Initially)

Basic Question We Addressed: Does Finite-Size Stationary Black Hole Exist in 1D?

Note: Hohenberg Theorem Rules Out Size $\ell \to \infty$ in 1D [Phase Fluctuations Growing Without Bound, Destroy BEC]

・ 同 ト ・ ヨ ト ・ ヨ ト

Our Setup

Finite Size Condensate With Source and Drain

Creation of Horizon:

Interaction Coupling Constant $g = g_{1\mathrm{D}}$ Jump at $x_{\mathrm{H}} = 0$

Source (at $-\ell_1/2$) and Drain (at $\ell_2/2$)

 \Rightarrow Create Steady State of Single Black Hole

Else Black–White Hole Pair Unavoidable

(For Steady Circulating State, by Topology on the Torus)

Diagnostic Tool of Bogoliubov:

Take Bogoliubov Expansion of Bosonic Field Operator (v: Constant Flow Speed)

$$\hat{\Psi}(t,x) = e^{-i\mu t + ivx} [\sqrt{\rho} + \hat{\psi}(t,x)]$$

Quantum Depletion (:= Number of Particles Not in Condensate)

$$\delta\rho=\langle\hat\psi^\dagger\hat\psi\rangle$$

Should be Suitably "Small" $\delta \rho \ll \rho$ Then Bogoliubov Approach Consistent

[By Convention We Kept $\delta \rho / \rho \leq 10\%$ (Typically 3%)]

・ 回 ト ・ ヨ ト ・ ヨ ト

Finite BH Lifetime from Spectrum

 \Rightarrow Irregular Behavior but also **Stability Windows**

4 3 b

Quench Preparation of Black Hole

Spectrum Gives Generally Unstable Quantum Modes in BH Configuration

 \Rightarrow Start from Horizonless Configuration in the Quasi-1D Box

Advantage:

Initial Quasiparticle Vacuum Well Defined Without Sonic Horizon No Issues with Vacuum in Presence of Instabilities!

Then Compute Depletion $\delta \rho = \delta \rho(t)$

(日本) (日本) (日本)

크

Hawking Radiation Buildup in Upstream Depletion

Quantum Depletion "Shock Front" Outside of Horizon Builds Up

Signature of Hawking Radiation

And... Oscillations Downstream (Inside Black Hole) Emerge!

Less Deep Quench

 \Rightarrow Oscillations have Relatively Higher Amplitude

Image: A math and A

< ∃⇒

Detection Tool of Horizon Emergence:

Power Spectrum of Quantum Depletion [Measured for 3D Gas: Hadzibabic Group, PRL **119** (2017)]

Note: Depletion ⇔ First-Order Correlations Usual HR Signature: Weak Density-Density Correlations

Ribeiro, Baak & URF, PRD 105 (2022)

Analogue Quantum Cosmology

S M Chandran & URF

arXiv:2506.02719v2 [gr-qc] (10th June, 2025)

Cosmological Expansion-Contraction Power Spectrum Duality:

Same Scale-Invariant Power Spectrum for Inflation and Bounce

Wands PRD 60 (1999)

However: Duality Holds Only in Lorentz-Invariant Theories!

Cosmological Trans-Planckian Dispersion Modiification

Microscopic Control in Dipolar (+ Contact) Quantum Gas for Previously Ad Hoc Trans-Planckian Dispersions Brandenberger, Martin, Niemeyer, Kempf, Parentani...

Cosmology

Dipolar BEC

"Unruh Flat-Band" Dispersion:

Dipolar and Contact Couplings Identical!

Trans-Planckian Modification: Duality Broken

Blue Tilt

However: "Unruh Flat-Band" Dispersion: Red Tilt!

• 3 >

→ ∃ →

臣

Result:

 Power-Spectrum-Indistinguishable Inflation and Bounce (Wands Duality)

イロン 不同 とくほど 不同 とう

æ

Result:

- Power-Spectrum-Indistinguishable Inflation and Bounce (Wands Duality)
- Become Distinguishable due to Trans-Planckian Dispersion

(三)(\Box)(\Box)(\Box)<

臣

Result:

- Power-Spectrum-Indistinguishable Inflation and Bounce (Wands Duality)
- Become Distinguishable due to Trans-Planckian Dispersion
- Currently Realizable in Dipolar Bose-Einstein Condensates (eg Erbium and Dysprosium)

Chandran & URF

arXiv:2506.02719v2 [gr-qc] (10th June, 2025)

A B M A B M

크