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Introduction

What is localization? It is about where things are found in space and time
Q. How do we talk about where particles are or where measurements occur?
A. Define position operator, number operator, or other observables over some region
Q. Can we meaningfully formalize localization in relativistic quantum theory?

A. It's complicated...

[ Problem: we do not understand localization in relativistic quantum theory
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Why should we care?
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REVIEWS OF MODERN PHYSICS, voLumME 76, JANUARY 2004

Quantum information angd relativity theory

Asher Peres
Department of Physics, Technion.-- Israel Institute of Technology, 32000 Haifa, Israel

Daniel R. Terno
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2y 2W9

(Published 6 January 2004)

This article discusses the intimate relationship between quantum mechanics, information theory, and
relativity theory. Taken together these are the foundations of present-day theoretical physics, and
their inlerrclationship is an essential part of the theory. The acquisition of information from a
quantum system by an observer occurs at the interface of classical and quantum physics. The authors
review the essential tools needed to describe  this interface, i.ec., Kraus matrices and
positive-operator-valued measures. They then discuss  how special - relativity imposes  severe
restrictions on the transfer of information between distant systems and the implications of the fact that
quantum entropy is not a Lorentz-covariant concept. This leads to a discussion of how comes about
that Lorentz transformations of reduced density matrices for entangled systems may not be
completely positive maps. Quantum field theory is, of course, necessary for a consistent description of
interactions. Its structure implies 3 fundamental tradeoff between detector reliability and
locah/abilily. Moreover, general relativity produces new and counterintuitive effects, particularly
when black holes (or, more generally, event horizons) are involved. In this more general context the
authors discuss how most of the current concepts in quantum information theory may require a

reassessment,
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Why should we care?

The real physical problem is how localized detectors can be. The idealization of
“one detector per spacetime point” is obviously impossible. How can we manage to
ensure that two detectors have zero probability of overlapping? There appears to be
a fundamental tradeoff between detector reliability and localizability. The bottom
line is how to formulate a relativistic interaction between a detector and the detected
system. [...] This problem seems to be very far from a solution. Completely new notions

may have to be invented.

'A. Peres and D. R. Terno, Rev. Mod. Phys. 76, 93-123 (2004).
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4D (Lorentz-invariant localization):
Localized system or local scattering operation
in coupling region K of spacetime manifold M
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4D (Lorentz-invariant localization): 3D (Newton-Wigner localization):
Localized system or local scattering operation  Instantaneous, localized measurement in
in coupling region K of spacetime manifold M  volume V on spacelike hyperplane ¥,
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© Localization schemes in relativistic quantum mechanics
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Newton-Wigner localization problem |

Let Sp be the set of localized states at the origin.

Newton and Wigner? took the following postulates:

2T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400-406 (1949).
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Let Sp be the set of localized states at the origin.

Newton and Wigner? took the following postulates:

(a) Linearity: Sy is linear; a superposition of localized states is also localized.

(b) Rotation-reflection invariance: Sy is invariant under spatial rotations and reflections, and
time reversal.

2T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400-406 (1949).
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Newton-Wigner localization problem |

Let Sp be the set of localized states at the origin.

Newton and Wigner? took the following postulates:
(a) Linearity: Sy is linear; a superposition of localized states is also localized.

(b) Rotation-reflection invariance: Sy is invariant under spatial rotations and reflections, and
time reversal.

(c) Orthogonality: Translating a state |¢)) € Sp will make it orthogonal to all other states
in 50.

2T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400-406 (1949).
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Newton-Wigner localization problem |

Let Sp be the set of localized states at the origin.

Newton and Wigner? took the following postulates:
(a) Linearity: Sy is linear; a superposition of localized states is also localized.

(b) Rotation-reflection invariance: Sy is invariant under spatial rotations and reflections, and
time reversal.

(c) Orthogonality: Translating a state |¢)) € Sp will make it orthogonal to all other states
in 50.

(d) Regularity: Generators of the Lorentz group are applicable to the localized states.

2T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400-406 (1949).
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Newton-Wigner localization problem Il

Adopting standard L?-inner product

wlo) = [ xu(x0(x) = [ dpv(p)op)

we have:
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Adopting standard L?-inner product

wlo) = [ xu(x0(x) = [ dpv(p)op)

we have:

(i) NW wavefunction given by Fourier transform

nw(x) = (27r1)3/2/d3PIZNW(P)€'ip'X7
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Newton-Wigner localization problem Il

Adopting standard L?-inner product

wlo) = [ xu(x0(x) = [ dpv(p)op)

we have:

(i) NW wavefunction given by Fourier transform
1 3.7 —ip-x
Ynw(x) = (n)2 /d pinw(p)e P,

(i) NW position operator has standard representations [xxw]x = X or [xxw]p = iVp.
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Lorentz-invariant localization problem Il

But NW localization scheme has serious issues!
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Lorentz-invariant localization problem Il

But NW localization scheme has serious issues!
(i) restricted to spacelike hyperplanes of simultaneity
(i) localization is not Lorentz invariant

(iii) states immediately delocalize under time translations

NW wavefunction not microcausal

[Vnw(x), ¥nw(x')] # 0

for spacelike separation at different times
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Two conceptions of localized measurements

4D (Lorentz-invariant localization): 3D (Newton-Wigner localization):
Localized system or local scattering operation  Instantaneous, localized measurement in
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Lorentz-invariant localization problem |

Philips,3 another student of Wigner, sought a Lorentz-invariant localization problem scheme:

3T. O. Philips, Phys. Rev. 136, B893-B896 (1964).
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Philips,3 another student of Wigner, sought a Lorentz-invariant localization problem scheme:
(a) Linearity: Sp is linear; a superposition of localized states is also localized.

(b) Rotation-reflection invariance: Sy is invariant under spatial rotations and reflections, and
time reversal.

3T. O. Philips, Phys. Rev. 136, B893-B896 (1964).
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Philips,3 another student of Wigner, sought a Lorentz-invariant localization problem scheme:
(a) Linearity: Sp is linear; a superposition of localized states is also localized.

(b) Rotation-reflection invariance: Sy is invariant under spatial rotations and reflections, and
time reversal.

(c) Lorentz invariance: Sy is invariant under Lorentz boosts.

3T. 0. Philips, Phys. Rev. 136, B893-B896 (1964).
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Lorentz-invariant localization problem |

Philips,3 another student of Wigner, sought a Lorentz-invariant localization problem scheme:
(a) Linearity: Sp is linear; a superposition of localized states is also localized.

(b) Rotation-reflection invariance: Sy is invariant under spatial rotations and reflections, and
time reversal.

(c) Lorentz invariance: Sy is invariant under Lorentz boosts.

(d) Regularity: Two additional postulates to ensure localized states are mathematically
well-behaved—normalizability and irreducibility.

3T. O. Philips, Phys. Rev. 136, B893-B896 (1964).
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Lorentz-invariant localization problem |

Philips,3 another student of Wigner, sought a Lorentz-invariant localization problem scheme:
(a) Linearity: Sp is linear; a superposition of localized states is also localized.

(b) Rotation-reflection invariance: Sy is invariant under spatial rotations and reflections, and
time reversal.

(c) Lorentz invariance: Sy is invariant under Lorentz boosts.

(d) Regularity: Two additional postulates to ensure localized states are mathematically
well-behaved—normalizability and irreducibility.

[ NW incompatible with Lorentz boosts—Philips dropped orthogonality postulate

3T. O. Philips, Phys. Rev. 136, B893-B896 (1964).
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Lorentz-invariant localization problem Il

Philips only considered spin-0 case. Adopting Klein-Gordon inner product
. 3 * * d3p *
(0.6) =1 [ dxv" 000 - 600" = /onw (P)o(p).

and Lorentz-invariant normalisation (p|p’) = 2ped®)(p — p’) with py = \/p2 + m2, then:
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(i) Philips wavefunction is

1
T wp( e P

Yp(x) = E
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Lorentz-invariant localization problem Il

Philips only considered spin-0 case. Adopting Klein-Gordon inner product
. 3 * * d3p *
(0.6) =1 [ dxv" 000 - 600" = /onw (P)(p).
and Lorentz-invariant normalisation (p|p’) = 2ped®)(p — p’) with py = \/p2 + m2, then:

(i) Philips wavefunction is

1
W ¢P( Je e

(i) Philips position operator is [xp]x = x or [xp]p, = iVp.

Yp(x) =
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Lorentz-invariant localization problem Il

But Lorentz-invariant localization scheme also has serious issues!

*l. R. de Oliveira, PhD thesis (Universidade de S3o Paulo, Sdo Paulo, Brazil, 2024).
®J. Yngvason, The Message of Quantum Science: Attempts Towards a Synthesis, edited by P. Blanchard and
J. Frohlich (Springer, Berlin, Heidelberg, 2015), pp. 325-348.
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But Lorentz-invariant localization scheme also has serious issues!

(i) not orthogonal—states have nonvanishing overlap

1. R. de Oliveira, PhD thesis (Universidade de S3o Paulo, Sdo Paulo, Brazil, 2024).
®J. Yngvason, The Message of Quantum Science: Attempts Towards a Synthesis, edited by P. Blanchard and
J. Frohlich (Springer, Berlin, Heidelberg, 2015), pp. 325-348.
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But Lorentz-invariant localization scheme also has serious issues!
(i) not orthogonal—states have nonvanishing overlap

(ii) position operator not self-adjoint and non-normal

1. R. de Oliveira, PhD thesis (Universidade de S3o Paulo, Sdo Paulo, Brazil, 2024).
®J. Yngvason, The Message of Quantum Science: Attempts Towards a Synthesis, edited by P. Blanchard and
J. Frohlich (Springer, Berlin, Heidelberg, 2015), pp. 325-348.
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But Lorentz-invariant localization scheme also has serious issues!
(i) not orthogonal—states have nonvanishing overlap
(ii) position operator not self-adjoint and non-normal

(iii) cannot give probabilistic interpretation of inner product

*l. R. de Oliveira, PhD thesis (Universidade de S3o Paulo, Sdo Paulo, Brazil, 2024).

®J. Yngvason, The Message of Quantum Science: Attempts Towards a Synthesis, edited by P. Blanchard and
J. Frohlich (Springer, Berlin, Heidelberg, 2015), pp. 325-348.
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Lorentz-invariant localization problem Il

But Lorentz-invariant localization scheme also has serious issues!
(i) not orthogonal—states have nonvanishing overlap
(ii) position operator not self-adjoint and non-normal

(iii) cannot give probabilistic interpretation of inner product

Same problems in contemporary AQFT approach, known as modular localization* (see brief
review by Yngvason®)

*l. R. de Oliveira, PhD thesis (Universidade de S3o Paulo, Sdo Paulo, Brazil, 2024).
®J. Yngvason, The Message of Quantum Science: Attempts Towards a Synthesis, edited by P. Blanchard and
J. Frohlich (Springer, Berlin, Heidelberg, 2015), pp. 325-348.
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© Strict localization versus strict causality
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Malament’s theorem®

5D. B. Malament, Perspectives on Quantum Reality: Non-Relativistic, Relativistic, and Field-Theoretic, edited
by R. Clifton, The University of Western Ontario Series in Philosophy of Science (Springer Netherlands, Dordrecht,
1996), pp. 1-10.
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Consider projection P(V) strictly localized in volume V

5D. B. Malament, Perspectives on Quantum Reality: Non-Relativistic, Relativistic, and Field-Theoretic, edited
by R. Clifton, The University of Western Ontario Series in Philosophy of Science (Springer Netherlands, Dordrecht,
1996), pp. 1-10.
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Malament’s theorem®

Consider projection P(V/) strictly localized in volume V and fixed foliation of spacetime into
spacelike hypersurfaces

5D. B. Malament, Perspectives on Quantum Reality: Non-Relativistic, Relativistic, and Field-Theoretic, edited
by R. Clifton, The University of Western Ontario Series in Philosophy of Science (Springer Netherlands, Dordrecht,
1996), pp. 1-10.
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Malament’s theorem®

Consider projection P(V/) strictly localized in volume V and fixed foliation of spacetime into
spacelike hypersurfaces then cannot simultaneously satisfy:

(a) Energy bounded from below

5D. B. Malament, Perspectives on Quantum Reality: Non-Relativistic, Relativistic, and Field-Theoretic, edited
by R. Clifton, The University of Western Ontario Series in Philosophy of Science (Springer Netherlands, Dordrecht,
1996), pp. 1-10.
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Malament’s theorem®

Consider projection P(V/) strictly localized in volume V and fixed foliation of spacetime into
spacelike hypersurfaces then cannot simultaneously satisfy:

(a) Energy bounded from below

(b) Spacetime translation covariance

5D. B. Malament, Perspectives on Quantum Reality: Non-Relativistic, Relativistic, and Field-Theoretic, edited
by R. Clifton, The University of Western Ontario Series in Philosophy of Science (Springer Netherlands, Dordrecht,
1996), pp. 1-10.
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Consider projection P(V/) strictly localized in volume V and fixed foliation of spacetime into
spacelike hypersurfaces then cannot simultaneously satisfy:

(a) Energy bounded from below
(b) Spacetime translation covariance

(c) Strictly (spatially) localized projections

P(Ve)P(V{) = P(V{)P(V:) =0

5D. B. Malament, Perspectives on Quantum Reality: Non-Relativistic, Relativistic, and Field-Theoretic, edited
by R. Clifton, The University of Western Ontario Series in Philosophy of Science (Springer Netherlands, Dordrecht,
1996), pp. 1-10.
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Malament’s theorem®

Consider projection P(V/) strictly localized in volume V and fixed foliation of spacetime into
spacelike hypersurfaces then cannot simultaneously satisfy:

(a) Energy bounded from below
(b) Spacetime translation covariance
(c) Strictly (spatially) localized projections

P(Ve)P(V{) = P(V{)P(V:) =0
(d) Microcausality between spacelike regions

[P(V4), P(V{)] =0

5D. B. Malament, Perspectives on Quantum Reality: Non-Relativistic, Relativistic, and Field-Theoretic, edited
by R. Clifton, The University of Western Ontario Series in Philosophy of Science (Springer Netherlands, Dordrecht,

1996), pp. 1-10.
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Hegerfeldt's theorem’

Stronger no-go theorem

(a) Energy bounded from below

’G. C. Hegerfeldt, Ann. Phys. 510, 716-725 (1998), G. C. Hegerfeldt, Irreversibility and Causality Semigroups
and Rigged Hilbert Spaces, edited by A. Bohm et al., Lecture Notes in Physics (1998), pp. 238—245:
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Hegerfeldt's theorem’

Stronger no-go theorem
(a) Energy bounded from below

(b) Time translation covariance

’G. C. Hegerfeldt, Ann. Phys. 510, 716-725 (1998), G. C. Hegerfeldt, Irreversibility and Causality Semigroups
and Rigged Hilbert Spaces, edited by A. Bohm et al., Lecture Notes in Physics (1998), pp. 238—245:
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Hegerfeldt's theorem’

Stronger no-go theorem
(a) Energy bounded from below
(b) Time translation covariance

(c) System localized in volume V implies system localized in V' containing V.

’G. C. Hegerfeldt, Ann. Phys. 510, 716-725 (1998), G. C. Hegerfeldt, Irreversibility and Causality Semigroups
and Rigged Hilbert Spaces, edited by A. Bohm et al., Lecture Notes in Physics (1998), pp. 238—245:
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Hegerfeldt's theorem’

Stronger no-go theorem

(a) Energy bounded from below

(b) Time translation covariance

(c) System localized in volume V implies system localized in V' containing V.
(d)

d) No instantaneous wavepacket spreading

’G. C. Hegerfeldt, Ann. Phys. 510, 716-725 (1998), G. C. Hegerfeldt, Irreversibility and Causality Semigroups
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Hegerfeldt's theorem’

Stronger no-go theorem

(a) Energy bounded from below
(b)

(c) System localized in volume V implies system localized in V' containing V.
(d)

d

Time translation covariance

No instantaneous wavepacket spreading

If at t = 0 a particle is strictly localized in a bounded region Vi then, unless it remains
in Vg for all times, it cannot be strictly localized in a bounded region V', however large,
for any finite time interval thereafter, and the particle localization immediately develops
infinite “tails”.

’G. C. Hegerfeldt, Ann. Phys. 510, 716-725 (1998), G. C. Hegerfeldt, Irreversibility and Causality Semigroups
and Rigged Hilbert Spaces, edited by A. Bohm et al., Lecture Notes in Physics (1998), pp. 238—245:
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Impact of localization on relativistic observables

Not just a matter of defining relativistic position operator x

Localization affects all observables, such as:
e velocity operator v := i[H, x]
e spin operator S :=J —xxp
e observables without explicit position dependence (e.g., number operator, stress-energy
density, etc.)

Incompatibility between localized observables and relativistic causality closely connected
to two distinct unitary representations of Poincaré group
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Three-dimensional

Four-dimensional

Wave equation

Schrédinger eq.

Hyperbolic eq.

Inner product

Probability measure

Lorentz invariant

Position operator

Lorentz covariant X
Self-adjoint v/
Orthogonal states v/

Lorentz covariant v
Self-adjoint X
Orthogonal states X

Energy bounded below,

Microcausal dynamics,

Causality . . but no measurement
superluminal propagation
framework
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The localization problem

Antinomy between localized observables and causal dynamics
(1) want manifest Lorentz covariance and causal dynamics in relativistic quantum theory

(2) also want states/observables defined in formalism... but states/observables can be localized
only instantaneously on spacelike hyperplanes

Antinomy rests on an essential confusion — treating localized operators in the canonical
representation as dynamical variables, e.g., symmetry generators — instantaneity of
localized states is crucial
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On instantaneous states in relativistic quantum theory

Studies in History and Philosophy of Modern Physics 60 (2017) 46-80

Contents lists available at ScienceDirect

Studies in History and Philosophy of Modern Physics

journal homepage: www.elsevier.com/locate/shpsb

The state is not abolished, it withers away: How quantum field theory @ ook
became a theory of scattering

Alexander S. Blum

Max Planck Institute for the History of Science, BoltzmannstraRe 22, 14195 Berlin, Germany
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The first impetus towards this paradigm shift, which therefore shows up as a starting
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theory in a more explicitly relativistic manner. [...] What all these formulations had
in common was that in some sense they problematized the quantum mechanical
notion of an instantaneous state and tended towards replacing it with a focus
on overall processes.
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On instantaneous states in relativistic quantum theory

The first impetus towards this paradigm shift, which therefore shows up as a starting
point in several of the narrative threads below, is the attempt to formulate quantum
theory in a more explicitly relativistic manner. [...] What all these formulations had
in common was that in some sense they problematized the quantum mechanical
notion of an instantaneous state and tended towards replacing it with a focus
on overall processes. This stemmed from the relativistic need to treat space and

time on the same footing and the consequent tendency of relativity towards a block
universe view.8

8A. S. Blum, Stud. Hist. Philos. Sci. B, On the History of the Quantum, HQ4 60, 46-80 (2017)
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> have worldine or worldtube describing
evolution of system to asymptotic in-
and out-states
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On instantaneous states in relativistic quantum theory

Can we have instantaneous states?

> have worldine or worldtube describing
evolution of system to asymptotic in-
and out-states

> want von Neumann measurement
scheme with localized observables in
volumes V4 and V>

> no causality within NW framework—
delimit four-dimensional region My» by
hyperplanes ¥; and %,

> must interchange between three-
and four-dimensional descriptions

Evan P. G. Gale (UQ) The Localization Problem 23-27 June 2025 25 /30
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Conclusion and outlook

More than just localization—implications for causality, dynamics and measurability
e Essential feature missing from current description of relativistic quantum
theory—instantaneous, localized states
e Dual structures—three- versus four-dimensional description—measurement framework

versus causal dynamics
e Nature of duality crucial to further understanding of present foundational problems
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Review of Dirac equation

Dirac equation in non-covariant form is given by

i0¢p = Hpi
where
Hpb=a-p+pSm

0 o I 0
w=fa ) o=l 0)
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Review of Dirac equation

Dirac equation in non-covariant form is given by
i0¢) = Hpt

where
Hpb=a-p+pSm

0 o I 0
w=fa ) o=l 0)

[ Why is this Hamiltonian not H ~ \/p2 + m2?

and

Evan P. G. Gale (UQ) The Localization Problem 23-27 June 2025 28 /30



Relation between unitary representations

Foldy and Wouthuysen® derived the following unitary transformation

Q- _
e =0 (75 P rant (121))

°L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29-36 (1950).
1] L. Foldy, Phys. Rev. 102, 568-581 (1956).
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Relation between unitary representations

Foldy and Wouthuysen® derived the following unitary transformation

Q- _
e =0 (75 P rant (121))

which diagonalises the Dirac Hamiltonian!

H]()C) = UFWHDUPT“W = 5\/p2 + m?

Foldy!® obtained ‘canonical form’ for arbitrary spin

iO¢has1(x, t) = BV —=V2 4+ m? ps1(x, t)

°L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29-36 (1950).
1] L. Foldy, Phys. Rev. 102, 568-581 (1956).
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Dynamical consequences of localization problem

Peculiar feature of the Dirac velocity operator'!

vp := i [Hp, xp] = «.

1G. Breit, Proc. Natl. Acad. Sci. 14, 553-559 (1928).
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Dynamical consequences of localization problem

Peculiar feature of the Dirac velocity operator!!

vp := i [Hp, xp] = «.

[ The velocity operator has eigenvalues +c (restoring units), even for massive particles!

Classically, however, we expect to obtain

for the Hamiltonian H = /p? + m?. This is precisely the NW localization!

wWw =i {H](gc),XNw} = ﬁ%.

1G. Breit, Proc. Natl. Acad. Sci. 14, 553-559 (1928).
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