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Classical Observations
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Relativistic Analogy: Superfluid Helium

Thin-film of superfluid helium between the xy -plane (z = 0) and
z = h(t, x⃗) = h0 + η(t, x⃗) interacts with a laser propagating in the
z-direction.

Long-wavelength surface fluctuations η(t, x⃗) behave as a
(2 + 1) Klein-Gordon field, with quantum interaction Hamiltonian

Ĥint(t) =
αρN
2

Ê (t, h0)
2η̂(t, X⃗ (t))

The laser is described by an electric field

Ê (t, z) =

√
ℏω0

4πε0cA⊥

[
E0(t, z) + δÊ (t, z)

]
with coherent amplitude

E0(t, z) = a0(t − z)e−iω0(t−z) + c .c .

and (vacuum) fluctuations

δÊ (t, z) = e−iω0(t−z)

∫ ∆

−∆

dν

2π
e−iν(t−z)δâν + h.c .
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δÊ (t, z) = e−iω0(t−z)

∫ ∆

−∆

dν

2π
e−iν(t−z)δâν + h.c .
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Ê (t, z) =

√
ℏω0

4πε0cA⊥

[
E0(t, z) + δÊ (t, z)
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Effective Unruh-DeWitt Detectors

Neglecting rapidly oscillating terms, the linear part of (E0 + δÊ )2 becomes

E0δÊ ≈ a0(t − z)

∫ ∆

−∆

dν

2π
e−iν(t−z)δâν + h.c.

Hence, suppressing the evaluation at z = h0, we obtain

Hint(t) ≈ λ a0(t) µ̂(t) η̂(t, X⃗ (t)) ,

analogous to the Unruh-DeWitt detector model, with switching function
a0(t), (2 + 1)-dimensional quantum field η̂(t, X⃗ (t)), and coupling constant

λ =
αρNℏω0

4πε0cA⊥
,

with a monopole moment operator µ̂(t) that is a continuum of
Unruh-DeWitt detectors with energy gaps ν ∈ [−∆,∆]:

µ̂(t) =

∫ ∆

−∆

dν

2π

(
δâνe

−iνt + δâ†νe
iνt

)
.
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Hence, suppressing the evaluation at z = h0, we obtain

Hint(t) ≈ λ a0(t) µ̂(t) η̂(t, X⃗ (t)) ,

analogous to the Unruh-DeWitt detector model, with switching function
a0(t), (2 + 1)-dimensional quantum field η̂(t, X⃗ (t)), and coupling constant

λ =
αρNℏω0

4πε0cA⊥
,

with a monopole moment operator µ̂(t) that is a continuum of
Unruh-DeWitt detectors with energy gaps ν ∈ [−∆,∆]:

µ̂(t) =

∫ ∆

−∆

dν

2π

(
δâνe
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Interaction-picture Perturbations (c.f. Leo)

Time evolution operator Û(tf ) = T exp
(
−i

∫ tf
−∞ Ĥint(t) dt

)
, such that

ρ̂f = Û(tf )ρ̂i Û
†(tf ) = ρ̂i + ρ̂

(1)
f + ρ̂

(2)
f . . . .

ρ̂
(1)
f = −i

∫ tf

−∞
dx

[
Ĥint(x), ρ̂i

]
ρ̂
(2)
f =

∫ tf

−∞
dx

∫ x

−∞
dx ′

[[
Ĥint(x), ρ̂i

]
, Ĥint(x

′)
]
.

If we assume an initially uncorrelated state ρ̂i = ρ̂i ,E ⊗ ρ̂i ,η, and trace over
the electric field to focus on the final state of the fluid height, we find

ρ̂
(1)
f ,η = −i

αρN
2

∫ tf

−∞
dt ′

[
η̂
X⃗
(t ′), ρ̂i ,η

]
⟨Ê (t ′)2⟩i

which we use to find the expectation value of the fluid height

⟨η̂(t, x⃗)⟩f =
αρN
2

∫ t

−∞
dt ′GR(t

′, X⃗ (t); t, x⃗)⟨Ê (t ′)2⟩i .
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Field Correlations

Using the notation x = (t, x⃗) and the assumption that the initial state of
the fluid surface is thermal, we find

⟨η̂(x)η̂(x′)⟩f =
α2ρ2N
4

Im

[∫ t

−∞
dqGR(q, X⃗ (q); x)A(q; x′)

]

A(q; x′) =

∫ q

−∞
dp⟨η̂(p, X⃗ (p))η̂(x′)⟩i ⟨Ê (p)2Ê (q)2⟩i .

⟨η̂(x)η̂(x′)⟩f = ⟨η̂(x)η̂(x′)⟩E0
f + ⟨η̂(x)η̂(x′)⟩δEf +O(δÊ 4)

Spectrum of Unruh-DeWitt detectors with energy gap E = ν:

⟨η̂(x)η̂(x′)⟩f = λ2

∫ ∆

−∆

dν

4π2
B(x, x′, ν)

where in the coincidence limit we have

B(x, x, ν) =

∣∣∣∣∫ ∞

−∞
dt ′a0(t

′)GR(x, Z⃗ (t
′))e−iνt′

∣∣∣∣2
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Classical and Quantum Variance

Re-writing a0 in terms of a dimensionless χ ∈ [0, 1] such that the
maximum laser power is Pmax, we obtain the standard switching:

χ(τ) := a0(τ)

√
ℏω0

Pmax
.

Relevant quantities to compare scales for classical and quantum
fluctuations:

Var(η̂)

λ2
=

Pmax

ℏω0

∫ ∆

−∆

dν

4π2

∣∣∣∣∫ ∞

−∞
dt ′χ(t ′)GR(x,Z(t

′))eiνt
′
∣∣∣∣2

ηclass(x)
2

λ2
=

(
Pmax

ℏω0

)2 [∫ ∞

−∞
dt ′GR(x,Z(t

′))χ(t ′)2
]2

Overall scaling indicates dominance of classical backaction at
high laser powers (/high photon rates)
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Variance Comparison: Static Case

Backaction variances for frequency band width ∆ = (2π)1.2KHz and
photon rate at time of measurement ζ := Pmax

ℏω0
= 10Hz.
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Circular Interaction Trajectories (c.f. Adam’s numerics)

The squared average fluid height (left-left) alongside the variance in the
fluid height as a result of electromagnetic fluctuations (left-right) for a
circular trajectory of radius 5mm at a speed of 0.9 times the speed of
surface waves in the superfluid helium.
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Rightmost: radius 5mm at a speed of 0.9 times the speed of surface waves
in the superfluid helium. Slower fall-off of the variance at larger distances
from the laser trajectory. (∆ = (2π)1.2 KHz, ζ = 10s−1, a = 2s−1).
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Laser-coupled BECs (à la Jorma’s talk)

Experimental Proposal: Focusing a laser onto a pancake BEC with a
moving interaction point allows the “vacuum” to be probed along an
accelerated trajectory [C. Gooding et al. PRL.125.213603(2020)].
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Relativistic Field and Response Function

BEC density fluctuations behave as an effective relativistic field,
sampled by a laser along the interaction trajectory:

ϕ(t, X⃗ (t)) ≡ ϕ(t) =

∫ ∆

−∆

dν

2π
e−iνtDν ,

where Dν is the annihilation (creation) operator for positive
(negative) frequency modes with respect to the accelerating detector.
The accelerated-detector response function takes the form

Sϕϕ[ν] =

∫
dt e−iνt⟨ϕ(t)ϕ(0)⟩ .

Our signal is the Fourier transform of the Wightman function for the
BEC field, pulled back to the interaction trajectory.
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Experimental Setup (à l’optomécanique)

The detector response function can be extracted by splitting and
heterodyning a pair of modulation bands shifted by Ω from an atomic
resonance at ω0:
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Nonperturbative Backaction [JLoTempPhys208.196(2022)]

Laser fluctuations at frequencies ω0 ± Ω+ ν (c.f. Bill’s Bogoliubov
method):

δã±[ν] = δa±[ν]±
iµDν√

2
± µ2

4
sgn(ν)δab[ν] ,

where µ ≡ −εα/
√
2 is a laser-enhanced coupling parameter and the

quantum backaction takes the explicit form

δab[ν] = δa−[ν] + δa−[−ν]† − δa+[ν]− δa+[−ν]† .
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Dual-arm Heterodyne Detection

The complete signal can be extracted by splitting and heterodyning
the pair of modulation bands (heterodyne detuning ∆LO):

Cisco Gooding Quantum Backaction 15 / 21



Photocurrent PSD Inferred Signal

Difference photon flux (measured):

n(t) ≡ 2α|β| cos(∆LOt) + |β|
(
e i∆LO tδã+(t) + e−i∆LO tδã+(t)

†
)
.

The difference photocurrent power spectral density (PSD):

Sii [∆LO − ν] = 1 +
µ2

2
(Sϕϕ[ν]− sgn(ν)) +

µ4

8

Rescaling by 2/µ2 to refer the normalised difference photocurrent back to
the signal, we obtain the inferred PSD signal

S inf
ϕϕ [ν] = Sϕϕ[ν] +N [ν] ,

where the added noise PSD is defined by

N [ν] =
2

µ2
+

µ2

4
− sgn(ν) .
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where the added noise PSD is defined by

N [ν] =
2

µ2
+

µ2

4
− sgn(ν) .
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†
)
.

The difference photocurrent power spectral density (PSD):

Sii [∆LO − ν] = 1 +
µ2

2
(Sϕϕ[ν]− sgn(ν)) +

µ4

8

Rescaling by 2/µ2 to refer the normalised difference photocurrent back to
the signal, we obtain the inferred PSD signal

S inf
ϕϕ [ν] = Sϕϕ[ν] +N [ν] ,

where the added noise PSD is defined by

N [ν] =
2

µ2
+

µ2

4
− sgn(ν) .

Cisco Gooding Quantum Backaction 16 / 21



Photocurrent PSD Inferred Signal

Difference photon flux (measured):

n(t) ≡ 2α|β| cos(∆LOt) + |β|
(
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The Standard Quantum Limit

The added noise PSD attains its minimum when
µ2 = 2

√
2, which corresponds to α2

SQL = 4
√
2/ε2 (with

ε = 2|α̂R |ω0
√
mρ0, where α̂R is the real part of the

atomic polarisability, ω0 is the central laser frequency, m is
the atomic mass, and ρ0 is the background BEC density).
This corresponds to a laser power PSQL = 8

√
2ω0/ε

2,
averaged over modulation cycles.
The added noise at the SQL is

N [ν] =
√
2− sgn(ν) .
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Squeezing Difference-modes in the EM Field

Like LIGO, shot-noise dominates the added noise at low
laser powers, and backaction dominates at high powers.
Backaction noise can be suppressed by squeezing the
initial laser field, at the cost of increasing noise in the
signal carrier:

N (ν, µ, λ) =
1

µ2

(
1 + cosh2 λ

)
+

µ2 e−2λ

4
− e−λsgn(ν)

For fixed squeezing parameter λ, the added noise is minimal for

µ2
λ = 2eλ

√
1 + cosh2 λ. The resulting added noise N (ν, µλ, λ) (with

ν > 0) is then minimal for λ = 1
2
ln
(√

5 + 2
)
≈ 0.7218.
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Beating the Standard Quantum Limit

Further paralleling LIGO, squeezing the initial laser probe allows the SQL
to be beaten (thanks for plotting, Cameron!):
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Will it cook the pancake BEC in the process?

To ensure a nondestructive measurement, the photon scattering rate

per atom, Γsc = 4α̂I P̄/πr
2
0 , should be much less than unity. Here, α̂I

is the imaginary part of the atomic polarisability, r0 is the laser spot

size, and P̄ ≈ 2ω0α
2 is the laser power.

Now, considering the ratio P̄/2ω0α
2
SQL, reaching the SQL corresponds

to Γsc ≈ 0.0035Hz.

To optimally beat the SQL with squeezing, we consider

λ = 1
2
ln
(√

5 + 2
)
≈ 0.7218, in which case the photon scattering rate

becomes Γsc ≈ 0.012Hz.

Conclusion: The SQL can be both reached and
optimally beaten to “cook the steak” without
cooking the pancake!
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