Gravitational wave imprints on spontaneous emission

Jerzy Paczos

Navdeep Arya, Sofia Qvarfort, Daniel Braun, and Magdalena Zych

RQI North, Naples 2025

GWs and classical test masses

GWs and classical test masses

- energy shifts
- resonant transitions

- energy shifts
- resonant transitions

Quantum fields

 particle production • particle scattering

GWs and spontaneous emission

Gravitational wave:

- plane wave; traveling along z; amplitude $\mathcal{A} \ll$ 1; frequency ω
- $\mathrm{d}s^2 = -\mathrm{d}t^2 + \mathrm{d}z^2 + (1 + \mathcal{A}\cos[\omega(t-z)])\mathrm{d}x^2 + (1 \mathcal{A}\cos[\omega(t-z)])\mathrm{d}y^2$

Gravitational wave:

- plane wave; traveling along z; amplitude $\mathcal{A} \ll 1$; frequency ω
- $\mathrm{d}s^2 = -\mathrm{d}t^2 + \mathrm{d}z^2 + (1 + \mathcal{A}\cos[\omega(t-z)])\mathrm{d}x^2 + (1 \mathcal{A}\cos[\omega(t-z)])\mathrm{d}y^2$

Atom:

- point-like two-level system: $|g\rangle$ and $|e\rangle$; energy gap ω_0
- monopole operator: $\hat{m}(t) = \mathrm{e}^{\mathrm{i}\omega_0 t} |e
 angle \langle g| + \mathrm{e}^{-\mathrm{i}\omega_0 t} |g
 angle \langle e|$

Gravitational wave:

- plane wave; traveling along z; amplitude $\mathcal{A} \ll 1$; frequency ω
- $\mathrm{d}s^2 = -\mathrm{d}t^2 + \mathrm{d}z^2 + (1 + \mathcal{A}\cos[\omega(t-z)])\mathrm{d}x^2 + (1 \mathcal{A}\cos[\omega(t-z)])\mathrm{d}y^2$

Atom:

- point-like two-level system: $|g\rangle$ and $|e\rangle$; energy gap ω_0
- monopole operator: $\hat{m}(t) = \mathrm{e}^{\mathrm{i}\omega_0 t} |e\rangle \langle g| + \mathrm{e}^{-\mathrm{i}\omega_0 t} |g\rangle \langle e|$

Quantum field:

- massless, real, scalar
- quantized on a GW background
- field operator: $\hat{\phi}(x) = \int d^3 k \left[u_k(x) \hat{a}_k + u_k^*(x) \hat{a}_k^{\dagger} \right]$

Gravitational wave:

- plane wave; traveling along z; amplitude $\mathcal{A} \ll 1$; frequency ω
- $\mathrm{d}s^2 = -\mathrm{d}t^2 + \mathrm{d}z^2 + (1 + \mathcal{A}\cos[\omega(t-z)])\mathrm{d}x^2 + (1 \mathcal{A}\cos[\omega(t-z)])\mathrm{d}y^2$

Atom:

- point-like two-level system: $|g\rangle$ and $|e\rangle$; energy gap ω_0
- monopole operator: $\hat{m}(t) = \mathrm{e}^{\mathrm{i}\omega_0 t} |e\rangle \langle g| + \mathrm{e}^{-\mathrm{i}\omega_0 t} |g\rangle \langle e|$

Quantum field:

- massless, real, scalar
- quantized on a GW background
- field operator: $\hat{\phi}(x) = \int d^3 k \left[u_k(x) \hat{a}_k + u_k^*(x) \hat{a}_k^{\dagger} \right]$

Interaction: $\hat{H}_{\mathrm{I}}(t) = \varepsilon \hat{m}(t) \hat{\phi}(x(t))$

Initial state: $|\psi_0 angle=|e angle\otimes|0 angle$

- atom in the excited state
- field in the vacuum state

Initial state: $|\psi_0
angle=|e
angle\otimes|0
angle$

- atom in the excited state
- field in the vacuum state

Atom's trajectory: $\boldsymbol{x}(t) = \boldsymbol{0}$

Initial state: $|\psi_0
angle = |e
angle \otimes |0
angle$

- atom in the excited state
- field in the vacuum state

Atom's trajectory: $\boldsymbol{x}(t) = \boldsymbol{0}$

State at time t: $|\psi(t)\rangle = |\psi_0\rangle - i \int_0^t dt' \hat{H}_I(t') |\psi_0\rangle - \int_0^t dt' \int_0^{t'} dt'' \hat{H}_I(t') \hat{H}_I(t') |\psi_0\rangle$

Initial state: $|\psi_0
angle = |e
angle \otimes |0
angle$

- atom in the excited state
- field in the vacuum state

Atom's trajectory: $\boldsymbol{x}(t) = \boldsymbol{0}$

State at time t: $|\psi(t)\rangle = |\psi_0\rangle - i \int_0^t dt' \hat{H}_I(t') |\psi_0\rangle - \int_0^t dt' \int_0^{t'} dt'' \hat{H}_I(t') \hat{H}_I(t') |\psi_0\rangle$

Expected number of emitted photons: $\langle n_k(t) \rangle \equiv \langle \psi(t) | \hat{a}_k^{\dagger} \hat{a}_k | \psi(t) \rangle$

Expected number of emitted photons:

 $\langle n_{m k}(t)
angle = \langle ilde{n}_{m k}(t)
angle + \langle \delta n_{m k}(t)
angle$

Expected number of emitted photons:

 $\langle n_{m k}(t)
angle = \langle ilde{n}_{m k}(t)
angle + \langle \delta n_{m k}(t)
angle$

Flat spacetime contribution

Expected number of emitted photons:

 $\langle n_{m k}(t)
angle = \langle ilde{n}_{m k}(t)
angle + \langle \delta n_{m k}(t)
angle$

Flat spacetime contribution

GW correction

Frequency dependence: $\langle ilde{n}_{m{k}}(t)
angle \propto {
m sinc}^2 (\delta_k t/2) \qquad \langle \delta n_{m{k}}(t)
angle \propto {
m sinc} (\delta_k t/2) ({
m sinc}[(\delta_k - \omega)t/2] - {
m sinc}[(\delta_k + \omega)t/2])$ Sidebands in the spectrum!

Frequency dependence: $\langle ilde{n}_{m{k}}(t)
angle \propto {
m sinc}^2(\delta_k t/2) \qquad \langle \delta n_{m{k}}(t)
angle \propto {
m sinc}(\delta_k t/2) ({
m sinc}[(\delta_k - \omega)t/2] - {
m sinc}[(\delta_k + \omega)t/2])$ Sidebands in the spectrum!

Angular dependence:

 $\langle \delta n_{m k}(t)
angle \propto \cos^2(heta/2) \cos(2arphi)$ $\langle ilde{n}_{m k}(t)
angle \propto 1$

Directionality of the emission!

$\delta_k\equiv |k|-\omega_0$

 $k = (|k| \sin \theta \cos \varphi, |k| \sin \theta \sin \varphi, |k| \cos \theta)$

How well can we estimate the GW amplitude?

How well can we estimate the GW amplitude?

Cramer-Rao bound: $\delta A \ge \frac{1}{\sqrt{M\mathcal{I}(t)}}$

 δA - estimation uncertainty

M - independent repetitions

 $\mathcal{I}(t)$ - Fisher information

How well can we estimate the GW amplitude?

Cramer-Rao bound: $\delta A \ge \frac{1}{\sqrt{M\mathcal{I}(t)}}$

 $\delta \mathcal{A}$ - estimation uncertainty

M - independent repetitions

 $\mathcal{I}(t)$ - Fisher information

Measure $\langle n_{k}(t) \rangle$ for all k... What is the corresponding Fisher information?

Fisher information

Fisher information

M - number of atoms

Cramer-Rao bound: $\delta A \ge \frac{1}{\sqrt{M\mathcal{I}(t)}}$ M - number of atoms

Detection possible (in principle) if $\delta \mathcal{A} \leq \mathcal{A} \implies 1 \leq \mathcal{A} \sqrt{M \mathcal{I}(t)}$

Cramer-Rao bound: $\delta A \ge \frac{1}{\sqrt{M\mathcal{I}(t)}}$ *M* - number of atoms

Detection possible (in principle) if $\delta A \leq A \implies 1 \leq A \sqrt{M \mathcal{I}(t)}$

Minimal required number of atoms: $M \ge (\mathcal{A}\omega_0/\omega)^{-2}$

Cramer-Rao bound: $\delta A \ge \frac{1}{\sqrt{M\mathcal{I}(t)}}$ *M* - number of atoms

Detection possible (in principle) if $\delta \mathcal{A} \leq \mathcal{A} \implies 1 \leq \mathcal{A} \sqrt{M \mathcal{I}(t)}$

Minimal required number of atoms: $M \ge (\mathcal{A}\omega_0/\omega)^{-2}$

 $\mathcal{A} \sim 10^{-21}, \quad \omega_0 \sim 10^{14} \ \mathrm{Hz}$

Cramer-Rao bound: $\delta A \ge \frac{1}{\sqrt{M\mathcal{I}(t)}}$ *M* - number of atoms

Detection possible (in principle) if $\delta A \leq A \implies 1 \leq A \sqrt{M \mathcal{I}(t)}$

Minimal required number of atoms: $M \ge (\mathcal{A}\omega_0/\omega)^{-2}$

 $\mathcal{A} \sim 10^{-21}, \quad \omega_0 \sim 10^{14} \ \mathrm{Hz}$

Lower LIGO limit: $\omega \sim 10 \text{ Hz} \implies M \geq 10^{16}$

Cramer-Rao bound: $\delta A \ge \frac{1}{\sqrt{M\mathcal{I}(t)}}$ *M* - number of atoms

Detection possible (in principle) if $\delta \mathcal{A} \leq \mathcal{A} \implies 1 \leq \mathcal{A} \sqrt{M \mathcal{I}(t)}$

Minimal required number of atoms: $M \ge (\mathcal{A}\omega_0/\omega)^{-2}$

 $\mathcal{A} \sim 10^{-21}, \quad \omega_0 \sim 10^{14} \ \mathrm{Hz}$

Lower LIGO limit: $\omega \sim 10 \text{ Hz} \implies M \geq 10^{16}$

Strontium linewidth: $\omega \sim 10^{-3} \text{ Hz} \implies M \ge 10^{8}$

Gravitational waves induce sidebands and directionality of the emission.

Gravitational waves induce sidebands and directionality of the emission.

It might be detectable - the requirements are not daunting.

Gravitational waves induce sidebands and directionality of the emission.

It might be detectable - the requirements are not daunting.

The method is general. Can we use spontaneous emission to probe the geometry of spacetime?

More details:

arXiv:2506.13872

Gravitational wave imprints on spontaneous emission

Jerzy Paczos

Navdeep Arya, Sofia Qvarfort, Daniel Braun, and Magdalena Zych

RQI North, Naples 2025

GWs and classical test masses

- energy shifts
- resonant transitions

Quantum fields

 particle production • particle scattering

GWs and spontaneous emission

Gravitational wave:

- plane wave; traveling along z; amplitude $\mathcal{A} \ll 1$; frequency ω
- $\mathrm{d}s^2 = -\mathrm{d}t^2 + \mathrm{d}z^2 + (1 + \mathcal{A}\cos[\omega(t-z)])\mathrm{d}x^2 + (1 \mathcal{A}\cos[\omega(t-z)])\mathrm{d}y^2$

Atom:

- two-level system: $|g\rangle$ and $|e\rangle$; energy gap ω_0
- monopole operator: $\hat{m}(t) = \mathrm{e}^{\mathrm{i}\omega_0 t} |e\rangle \langle g| + \mathrm{e}^{-\mathrm{i}\omega_0 t} |g\rangle \langle e|$

Quantum field:

- massless, real, scalar
- quantized on a GW background
- field operator: $\hat{\phi}(x) = \int d^3 k \left[u_k(x) \hat{a}_k + u_k^*(x) \hat{a}_k^{\dagger} \right]$

Interaction: $\hat{H}_{I}(t) = \varepsilon \hat{m}(t) \hat{\phi}(x(t))$

Initial state: $|\psi_0
angle = |e
angle \otimes |0
angle$

- atom in the excited state
- field in the vacuum state

Atom's trajectory: $\boldsymbol{x}(t) = \boldsymbol{0}$

State at time t: $|\psi(t)\rangle = |\psi_0\rangle - i \int_0^t dt' \hat{H}_I(t') |\psi_0\rangle - \int_0^t dt' \int_0^{t'} dt'' \hat{H}_I(t') \hat{H}_I(t') |\psi_0\rangle$

Expected number of emitted photons: $\langle n_k(t) \rangle \equiv \langle \psi(t) | \hat{a}_k^{\dagger} \hat{a}_k | \psi(t) \rangle$

Expected number of emitted photons:

 $\langle n_{m k}(t)
angle = \langle ilde{n}_{m k}(t)
angle + \langle \delta n_{m k}(t)
angle$

Flat spacetime contribution

GW correction

Flat spacetime contribution:

$$\langle ilde{n}_{m k}(t)
angle = rac{arepsilon^2 t^2}{(2\pi)^3 8 |k|} {
m sinc}^2 (\delta_k t/2)$$

GW correction:

$$\langle \delta n_{\boldsymbol{k}}(t)
angle = rac{arepsilon^2 t^2}{(2\pi)^3 8|k|} \mathcal{A} rac{|k|}{\omega} f(\delta_k, t) g(\theta, arphi) \qquad k = (|k| \operatorname{si})$$

 $f(\delta_k,t) = \mathrm{sinc}(\delta_k t/2) \cos(\omega t/2) (\mathrm{sinc}[(\delta_k-\omega)t/2] - \mathrm{sinc}[(\delta_k+\omega)t/2])$ $g(heta,arphi)\equiv\cos^2(heta/2)\cos(2arphi)$

 $\delta_k\equiv |k|-\omega_0$

 $\sin heta \cos arphi, |k| \sin heta \sin arphi, |k| \cos heta)$

Frequency dependence: $\langle ilde{n}_{m{k}}(t)
angle \propto {
m sinc}^2 (\delta_k t/2) \qquad \langle \delta n_{m{k}}(t)
angle \propto {
m sinc} (\delta_k t/2) ({
m sinc}[(\delta_k - \omega)t/2] - {
m sinc}[(\delta_k + \omega)t/2])$ Sidebands in the spectrum!

Angular dependence:

 $\langle \delta n_{m k}(t)
angle \propto \cos^2(heta/2) \cos(2arphi)$ $\langle ilde{n}_{m k}(t)
angle \propto 1$

Directionality of the emission!

Equivalence principle

The atom is point-like... Why is there any effect at all?

The atom-field system is extended.

No problems with EP!

The total emission rate remains unchanged.

No information about GW in the atomic state!

How well can we estimate the GW amplitude?

Cramer-Rao bound: $\delta A \ge \frac{1}{\sqrt{M\mathcal{I}(t)}}$

 δA - estimation uncertainty

M - independent repetitions

 $\mathcal{I}(t)$ - Fisher information; measurement-dependent

Measure $\langle n_k(t) \rangle$ for all k... What is the corresponding Fisher information?

Fisher information

 ${\cal I}_{
m min}(t) = {ar n(t)\over 3} \Big({\omega_0\over\omega}\Big)^2 \cos^2(\omega t/2) [1-{
m sinc}(\omega t)]$ **Bounds:** ${\cal I}_{
m max}(t) = {ar n(t)\over 3} \Big({\omega_0\over\omega}\Big)^2 [1-\cos(\omega t){
m sinc}(\omega t)]$

 $\bar{n}(t)$ - total number of emitted photons

Fisher information

Bounds: $\mathcal{I}_{\min}(t) = \frac{\bar{n}(t)}{3} \left(\frac{\omega_0}{\omega}\right)^2 \cos^2(\omega t/2) [1 - \operatorname{sinc}(\omega t)]$ ${\cal I}_{
m max}(t) = {ar n(t)\over 3} \Big({\omega_0\over\omega}\Big)^2 [1-\cos(\omega t){
m sinc}(\omega t)]$

 $\bar{n}(t)$ - total number of emitted photons

 $\mathcal{I}_{\min}(t)$

 $\mathcal{I}_{\max}(t)$

optimal times

Cramer-Rao bound: $\delta A \ge \frac{1}{\sqrt{M\mathcal{I}(t)}}$ *M* - independent repetitions (number of atoms)

Detection possible (in principle) if $\delta A \leq A \implies 1 \leq A \sqrt{M \mathcal{I}(t)}$

$$t=rac{2\pi m}{\omega},\ m\in\mathbb{N}:\qquad \mathcal{I}(t)=rac{ar{n}(t)}{3}\Big(rac{\omega_0}{\omega}\Big)^2$$

 $ar{n}(t) \lesssim 1 \implies \left(\mathcal{A}\omega_0/\omega
ight)^{-2} \leq M$ $\mathcal{A} \sim 10^{-21}, \quad \omega_0 \sim 10^{14} \ {
m Hz}$

Lower LIGO limit: $\omega \sim 10 \text{ Hz} \implies M \ge 10^{16}$

Strontium linewidth: $\omega \sim 10^{-3} \text{ Hz} \implies M \ge 10^{8}$

(number of atoms)

Summary

Gravitational waves induce sidebands and directionality of the emission.

The effect is consistent with the equivalence principle, even though the atom is point-like.

It might be detectable - the requirements are not daunting.

Outlook

A more realistic model of atom-light interaction is needed for accurate experimental predictions.

An analysis of noise is required.

The method is general. Can we use spontaneous emission to probe the geometry of spacetime?