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Abstract

I A link between quantization and (non-commutative) geometry
is uncovered via Tomita-Takesaki modular theory for
complexified ortho-symplectic spaces.

I We suggest (following arXiv:1007.4094v1) that, in a covariant
quantum theory, non-commutative space-time can be
a-posteriori recovered from relativistic states over algebras of
partial observables.

I Speculative implications for cosmology will be mentioned.

https://arxiv.org/abs/1007.4094


• Strategy for Modular Algebraic Quantum Gravity

(? denotes slides with original material)

Is there “geometry” at the quantum level?



Modular Algebraic Quantum Theory (arXiv:1007.4094) ?

We aim to revert the arrows

geometry⇒ local equilibrium states

and obtain geometry from states: nc-geometry⇐ states
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I Conjecture: even when starting with a “classical geometry”,
via modular theory, a new “quantum geometry” is produced.

https://arxiv.org/abs/1007.4094


(Some) Fundamental Physical Principles in MAQT ?

I Modular localization: quantum subsystems are determined
by states via a KMS-equilibrium condition

I Jacobi-Einstein generalized equivalence principle: all
interactions are subsumed in a background geometry and
dynamics is free subject only to the geometric constraints

I Geometric origin of modular theory: Tomita-Takesaki
modular theory originates in complexification of
ortho-symplectic spaces and encodes free dynamics contraint
on phase-spaces

I Modular CPT symmetry: quantum systems are always in
CPT-symmetric thermal double pairs

I Modular Born geometry: that is induced by CPT symmetry
J, a Born reciprocity Φ and a modular R-polarization Γ



• Motivations from AQFT



Algebraic Quantum Field Theory (Araki, Haag, Kastler)1

(Dimock, Kay, Wald, Hollands, Brunetti, Fredenhagen, Verch)

I there is a covariant functor from isometric inclusions of open
Lorentzian manifolds to unital homomorphisms of C*-algebras:(

O1 −→ O2

)
7→
(
A(O1) −→ A(O2)

)
,

I algebras of causally independent regions commute:

O1 1 O2 ⊂ O⇒ [A(O1),A(O2)]− = {0O},

I algebras of regions sharing causal closures are isomorphic:

A(O) ' A(O′′),

1Haag R (1996) Local Quantum Physics Springer

https://arxiv.org/abs/math-ph/0112041


(Scalar) QFT on Curved Space-time
(Wald,3 Bär, Ginoux, Pfäffle)

globally hyperbolic
Lorentzian

submanifold
(O, g)

� //

symplectic R-space
(ΓO, ω) of solutions

of KG-equation
�gφ = mφ

� //
complexified
Weyl algebra
Wy(ΓO, ω)

I the assignment O 7→ A(O) := Wy(ΓO, ω) is an AQFT 2

I the complexification ΓC
O of (ΓO, ω) is a Krĕın space

I a choice of Kähler polarization (equivalently a quasi-free state
on Wy(ΓO, ω)) selects a one-particle Hilbert space H+.

2Actually A(O) is the C*-algebra of “exponentiated Weyl CCR”.
3Wald R (1994) Quantum Field Theory in Curved Spacetime and Black

Hole Thermodynamics Chicago University Press.

https://arxiv.org/pdf/0806.1036.pdf


Reeh-Schlieder Theorem

I whenever the open region O 6= ∅ has a non-trivial causal
complement O′ 6= ∅, the Bosonic Fock space H := F−(H+)
of H+ is a standard Hilbert space for the von Neumann
algebra A(O)′′ generated by A(O), with vacuum ξo ∈ H that
is cyclic for both A(O) and its commutant A(O)′.

The vacuum vector ξo ∈ H is cyclic and separating for every
local algebra A(O) of a region O ⊂M such that O′ 6= ∅ 6= O.

Tomita-Takesaki modular theory (next section) will provide each
A(O)′′ with a one-parameter modular group of automorphisms
. . . a mysterious intrinsic dynamics whose physical/geometrical
significance, since the ’70s, is still escaping understanding!

Heretic conjecture: the modular dynamics of quantum fields is a
“Coriolis’ effect” of the non-commutative geometry of space-time.



• Tomita-Takesaki Modular Theory
(the missing ingredient)



Modular Theory - von Neumann Algebras (Tomita-Takesaki)

For a von Neumann algebra M =M′′ ⊂ B(H) on a Hilbert space
H, for every vector state φ(T ) := 〈ξ | T (ξ)〉, with ξ ∈ H that is:

cyclic : (Mξ) = H, separating : Aξ = 0⇒ A = 0,

the R-subspace {T (ξ) | T = T ∗, T ∈M} ⊂ H is standard and

I its modular one-parameter unitary group

t 7→ ∆it
ξ = exp(itKξ) ∈ B(H),

I its modular conjugation antilinear isometry H
Jξ−→ H, satisfy:

σφt (M) := ∆it
ξM∆−itξ =M, ∀t ∈ R, JξMJξ =M′,

where the commutant M′ of M is defined by:

M′ := {A′ ∈ B(H) | [A′,A]− = 0,∀A ∈M}.

Notice that M′ is a von Neumann algebra and M′′ =M.

https://link.springer.com/book/10.1007/978-3-662-10451-4


Modular Theory - First Quantized Level
(originated in M.Rieffel - see for example R.Longo lecture notes)

Any complex Hilbert space HC with a standard real subspace VR:

HC = VR ⊕ i · VR, VR ∩ i · VR = {0H},

canonically determines the following data:

I a densely defined Tomita conjugation
SV : v ⊕ (i · w) 7→ v ⊕ (−i · w), x , y ∈ VR

with polar Hilbert decomposition SV = JV ◦∆
1
2
V ,

I a unitary one-parameter group t 7→ ∆it
V = exp(itKV ) on HC,

leaving VR stable: ∆it
V (VR) = VR, for all t ∈ R,

I an anti-unitary operator JV mapping VR on its symplectic
complement V ′ := {h ∈ HC | Im〈h | v〉H = 0, v ∈ VR}.

complexifications of
orthosymplectic spaces

↔ standard R-subspaces of
C-Hilbert spaces

https://www.mat.uniroma2.it/longo/Lecture-Notes_files/LN-Part1.pdf


Modular Theory - Second Quantized Level

Second Quantization Functor

symplectic R-spaces 7→ Weyl R-algebras of CCR

Complexification Functor

modular theory of
a standard R-space

7→

modular theory induced
by the Fock vacuum on
the von Neumann alge-
bra generated by second
quantized Weyl algebra

KV 7→
+∞⊕
n=0

n∑
k=1

 k−1︷ ︸︸ ︷
IV ⊗C · · · ⊗C IV ⊗CKV ⊗C

n−k︷ ︸︸ ︷
IV ⊗C · · · ⊗C IV

 ,

JV 7→
+∞⊕
n=0

JV ⊗C · · · ⊗C JV︸ ︷︷ ︸
n

 .



Kubo-Martin-Schwinger KMS-Condition

I A C*[W*]-dynamical system (A, α) is a one paramenter
group of ∗-authomorphisms R α−→ Aut(A) of a unital
C*[W*]-algebra A that is strongly[weakly] continuous.

I A state A
φ−→ C is a C-linear map that is normalized:

φ(1A) = 1C and positive: φ(x∗x) ≥ 0C, for all x ∈ A.
I A KMS-state, at inverse temperature β, is a state over a

C*[W*]-dynamical system (A, α) such that there exists a
“C*[W*]-dense” subalgebra Aφ ⊂ A such that:
I Aφ is α-invariant: αt(Aφ) ⊂ Aφ, for all t ∈ R,
I z 7→ αz(x) is C-analytic, for all x ∈ Aφ,
I ω(x · α−iβ(y)) = ω(y · x), for all x , y ∈ Aφ.

The modular authomorphism group σφ of φ is the unique such
that φ satisfies the KMS-condition at temperature β = 1.



• Modular Quantization



Classical / Quantum Theories 1.
Let (X , gX ) be a classical spacetime and let M := T ∗X the
associated classical extended phase-space (M, gM , ω).

I classical
observables on X

↔ elements of C(M)
a commutative ∗-algebra

I quantum
observables on X

↔ elements of Q(M)
a non-commutative ∗-algebra

physical
system

classical functor
ww

quantum functor

''
classical
∗-algebras

oo ?

(de)quantization natural transfor
// quantum
∗-algebras

quantum ∼ non-commutativization + complexification + ?



Classical / Quantum Theories 2.

I C(M) and Q(M) have common superselected subalgebras!

I there is a dequantization “convergence” Q(M)
~→0−−−→ C(M)

I a Dirac quantization transformation C(M)
q−→ Q(M) such that:

I i{f , g} 7→ [q(f ), q(g)]− (Dirac prescription)
I 1C(M) 7→ 1Q(M)

I q is C-linear and q(f ) = q(f )∗

I q(C(M)) acts irreducibly on a complex Hilbert space

does not exist (Groenewold - van Howe)

Geometric Prequantization
(eliminate irreducibility)

Geometric Quantization
(limiting quantized observables)

Partial
solutions

55

//

OO

Deformation Quantization
(modify the Dirac prescription)



Free Theories - Algebraic Second Quantization

I A physical system is globally free (from interaction) if its
phase space (M, ω) is a linear symplectic space

I globally free systems have a C-second quantization functor:

(M, ω) 7→Wy(M, ω) ∼
⊗

MC

< [x , y ]− − 2iω(x , y) >

where the C-Weyl-Heisenberg algebra is the universal
complex associative algebra under the linear inclusion of M

(M, ω)classical C-symmetric

algebra functor

ww

C-second quantization

functor

((

∨(MC)
Weyl quantization map

.. Wy(M, ω)
symbol dequantization map

nn



Non-linear Second Quantization on Cotangent Spaces
(Weyl, Wigner, Segal, Kohn, Nirenberg, Vinogradov)

We can generalize to cotangent symplectic manifolds M := T ∗X

(M, ω)classical symmetric

algebra functor

vv

second quantization

functor

''

SymC(X )
Weyl quantization map

.. DiffC(X )
symbol dequantization map

nn

I DiffC(X ) is the algebra of differential operators on X that is
the universal complex enveloping associative algebra of the
Lie-Rinehart algebra C∞(X )⊕ Der(X ) with [V , f ]− := V (f ).

I SymC(X ) is the algebra of symbols of differential operators:
the graded algebra associated to the filtered algebra DiffC(X ).

https://arxiv.org/abs/1511.06861


Real Polarization, Duality, Born Symmetry ?
I When M = T ∗X we have a global R-polarization of M and,

given a metric (X , gX ), the Ehresmann Levi-Civita connection
on T ∗X induces a canonical decomposition
TmM ' Tπ(m)X ⊕ T ∗π(m)X ; R : v ⊕ w∗ 7→ v ⊕ (−w∗).

I The space TM decomposes as direct sum of Riesz-dual
Lagrangian spaces TM ' TX ⊕ T ∗X with R-polarization R.

I The symplectic form ω induces (modulo sign) a canonical

Born symmetry TM
B−→ TM (given by (v ,w∗) 7→ (−w , v∗),

where v 7→ v∗ denotes the Riesz duality isomorphism).
I ω(B(x),B(y)) = ω(x , y)⇒ B ∈ Sp(TM, ω) furthermore:

B2 = − Id, B ◦ R = −R ◦ B,

almost split-quaternionic structure, with generators B,R.

Wy(M, ω)

Bogolubov Born symmetry

��

oo canonical isomorphism // DiffC(X )

Fourier transform
��

Wy(M, ω) oo
canonical isomorphism // DiffC(X ′)



Gauge Modular Flow of a Classical Riemannian Geometry ?
(forthcoming work with R.Conti)

Riemannian manifold
(X , gX )

+3
modular gauge groups

(for 0 < γ < 1)
σg ,γ

I A Riemannian classical geometry (X , gX ), for 0 < γ < 1, has
canonically associated (first-quantized) gauge modular flows
σg ,γ on the complexified HX := (TX ⊕ T ∗X )⊗R C of its
Hitchin-Gualtieri generalized tangent bundle TM|X :
I TM|X ' TX ⊕ T ∗X is an orthosymplectic bundle with

simplectic structure ω(v1 ⊕ w∗
1 , v2 ⊕ w∗

2 ) := w∗
1 (v2)− w∗

2 (v1),
inner product g := gX ⊕ gX ′ with gX ′(w∗

1 ,w
∗
2 ) := gX (w1,w2),

I TM|X is a standard R-subbundle of the Hilbert bundle HX

with inner product hg + iγhω where hg and hω are the
sesquilinear forms induced respectively by g and ω.

I What is the physical/geometrical meaning of σg?



Tulczyjew Double Bundles (see for example: arXiv:1505.0748)

I Classical dynamics is implicitly given by a constraint on
Tulczyjew double bundle TM := T (T ∗X ) ' TX ⊕ T ∗X .

I TM → M = T ∗X → X restricting the Tulczyjew bundle to X ,
gives the Hitchin-Gualtieri generalized bundle.

I The flow σg ,γ is actually on the complexified Tulczyjew bundle
T (X × X ′) ' T (X )⊕T (X ′) of X × X ′, a double copy of X .

T (T ∗X ) ' T (X )⊕ T ∗(X )

��

oo

Tulczyjew
∗-isomorphism// T ∗(X ′)⊕ T (X ′) ' T (T ∗X ′)

��
(T (X ), gX ) oo

Riesz
∗-isomorphism //

��

(T (X ′), gX ′)

��
(X , gX ) (X ′, gX ′)

https://arxiv.org/abs/1405.0748


Modular Born Geometries and Hypercomplex Actions ?

More generally, given an orthosymplectic space 4 (V , ω, g)

I its complexification has a canonical modular flux preserving V :

∆it
V = exp(iKV t), KV = ΓV ◦ΘV , ΘV := |KV |,

I ΦV := i · ΓV = B ⊕ B is a modular Born symmetry that
coincides with the phase of the polar decomposition of the
complexification of the polarizers P,Q of (V , ω, g):

ω(v ,w) = g(Pv ,w), g(v ,w) = ω(v ,Qw),

P = B ◦ |P|, Q = B ◦ |Q|, |Q| = |P|−1,

I the operators JV ,ΦV ,T := i ·, generate, on C⊗R V , the
action of the hypercomplex R-algebra M2(C) of the q-bit, a
ΦV -complexification of the split-quaternions of JV ,T .

I On the double VR ⊕ V ′R there is a generalized Born geometry.

4We assume the continuity of ω with respect to the norm induced by g .



Quantum R-Polarizations and Non-commutative Spaces ?
(extremely speculative conjecture)

I Whenever we start from a classical geometry (X , gX ), we
always have a classical R-polarization R that assures that
the “thermal double” X ⊕ X ′ upon quantization provides
Weyl algebras that are isomorphic to Diff(X )⊗ Diff(X ′).

I As we have seen, generalized modular Born geometry exists
also in cases where a classical R-polarization is absent.

I We conjecture that “quantum” R-polarizations ΓV will
induce non-commutative geometries of “configuration spaces”
given (see Paschke Kopf) by thermal doubles C⊗R C′, with
C′ := JVCJV that will provide as isomorphism of the thermal
Weyl double Wy(V )⊗Wy(V ′) with an algebra of

“non-commutative differential operators”5
−−→
Diff(C)⊗

←−−
Diff(C′).

5Some steps in such direction will be taken in PB, R.Conti, C.Puttirungroj
“Contravariant Non-commutative Geometry” (based on CP PhD thesis).

https://arxiv.org/abs/0708.0388


Classical/Quantum Dynamics: Liouvillians (conjectural)

(Inspired by: Mauro; Gallavotti;6 Streater;7 Emch;8 Ammari Ratsimanetrimanana)

I Classical (free) dynamics is given by the Liouvillian equation
on Koopman von Neumann Hilbert space L2(X ⊕ X ∗, ω∧n)
that carries commuting representations of the Weyl algebra
(Streater, Emch).

I Quantum (equilibrium) dynamics is given by the modular
Liouvillian Kω on the GNS-Hilbert space of the KMS-state.

I quantum KMS condition
~→0−−−→ Gallavotti KMS condition

I Weyl quantization reproduces Mauro’s prescription (at
algebraic level) giving Wy(X ⊕ X ∗)′′ ⊗C Wy(X ⊕ X ∗)′.

6Gallavotti G (1976) Classical KMS Condition and Tomita-Takesaki
theory International Conference on Dynamical Systems in Mathematical
Physics (Rennes, 1975) 89-94 Astérisque 40 Soc. Math. France

7Strater R (1966) Canonical Quantization Communications in
Mathematical Physics 2:354-374

8Emch, Gérard G (1981) Prequantization and KMS Structures
International Journal of Theoretical Physics 20(12):891-904

https://arxiv.org/abs/quant-ph/0305063
https://arxiv.org/abs/1904.09128


Non-commutative Space-time from Modular Gauge Flow ?
(extremely speculative conjectures)

I minimal coupling in gauge theory pk 7→ p̂k := pk + c · Ak(x)
induces non-commutativity of momenta:9

[p̂k , p̂j ] = ic · Fkj with field strength Fkj :=
∂Ak

∂xj
−
∂Aj

∂xk

I under Born symmetry the (Abelian) gauge theory also induces
non-commutativity of coordinates (e.g. Guendelman Singleton):

[x̂k , x̂j ] = ic ′ · F ′kj with field strength F ′kj :=
∂A′k
∂pj
−
∂A′j
∂pk

conjugate modular fluxes on a spaceoid over the groupoid X × X ′

geometric operators on X/X ′ oo
CPT+Born // gauge fluxes on X ′/X

9Here for Abelian gauge groups.

https://arxiv.org/abs/2206.02638


• Physical Predictions ?



GQuEST Interferometry Experiments

Some theoretical developments, broadly inspired by (variations of)
AdS/CFT (celestial) holography, claim that:

I the quantum nature of the geometry induced by modular
theory might actually be soon testable by the GQuEST
collaboration proposed interferometry experiment based on: 10

K.Zurek, E.Verlinde et al. arXiv:1902.08207 arXiv:1911.02018

arXiv:2208.01059 arXiv:2205.01799 arXiv:2012.05870 arXiv:2305.11224

The purpose of such experiments is to observe the quantum
superposition/fluctuation nature of geometry induced by the
vacuum state of (conformal) free quantum scalar field theory on
Minkowski spacetime via the modular theory of double cones
algebras (seen as conformal equivalent to black holes).

I positive results of GQuEST should give support to our
proposed modular algebraic quantum gravity.

10I became aware (at QG 2023 Nijmegen K.Zurek’s talk) of this very
intriguing ongoing experimental attempts.

https://magazine.caltech.edu/post/quantum-gravity
https://arxiv.org/abs/1902.08207
https://arxiv.org/abs/1911.02018
https://arxiv.org/abs/2208.01059
https://arxiv.org/abs/2205.01799
https://arxiv.org/abs/2012.05870
https://arxiv.org/abs/2305.11224
https://indico.imapp.ru.nl/event/106/contributions/298/attachments/157/311/23_QG_Zurek%20Kathryn%20Zurek%20%281%29.pdf


Tomita CPT, Contravariant NCG, Mirror Cosmology ?

A quite intriguing aspect of modular quantum gravity is that:

I CPT symmetry Jφ is a built-in feature of local reducible
standard GNS-representations of a covariant vacuum state φ:
they are representations of thermal doubles A⊗ JφAJφ

I such chiral symmetry seems also a direct byproduct of
non-commutativity of space-time: non-commutative vector
fields (derivations) and connections split in right/left variants
(A.Boroviec arXiv:q-alg/9710006 van den Bergh arXiv:math/0410528) 11

I L.Boyle and N.Turok have proposed an alternative
semi-classical CPT-symmetric cosmological model:
arXiv:1803.08928 arXiv:1803.08930 arXiv:2109.06204

Modular Algebraic Quantization can provide a quantum-level
justification for Boyle-Turok CPT mirror cosmologies.

11See also PB, R.Conti, C.Puttirungroj “Contravariant Non-commutative
Geometry” (work in progress partially based on C.P. PhD thesis).

https://arxiv.org/abs/q-alg/9710006
http://arxiv.org/abs/math/0410528
https://arxiv.org/abs/1803.08928
https://arxiv.org/abs/1803.08930
https://arxiv.org/abs/2109.06204


This talk is broadly inspired by these previous papers:

I M.Raasakka (2019) Spacetime Granularity from Finite-dimensionality
of Local Observable Algebras arXiv:1908.09293

I PB, R.Conti, N.Pitiwan (2019) Discrete Non-commutative
Gel’fand-Năımark Duality East West Journal of Mathematics 21(2)

I M.Raasakka (2017) Local Lorentz Covariance in Finite-dimensional
Local Quantum Physics arXiv:1705.06711

I M.Raasakka (2016) Spacetime-Free Approach to Quantum Theory
and Effective Spacetime Structure arXiv:1605.03942

I PB (2014) Categorical Operator Algebraic Foundations of Relational
Quantum Theory arXiv:1412.7256

I PB, R.Conti, W.Lewkeeratiyutkul (2011) A Horizontal Categorification
of Gel’fand Duality Advances in Mathematics 226(1):584-607

I PB, R.Conti, W.Lewkeeratiyutkul (2010)
Modular Theory, Non-commutative Geometry and Quantum Gravity
arXiv:1007.4094v1

I PB, R.Conti, W.Lewkeeratiutkul (2008)
Non-commutative Geometry, Categories and Quantum Physics
arXiv:0801.2826

https://arxiv.org/abs/1908.09293
http://eastwestmath.org/index.php/ewm/article/view/1
https://arxiv.org/abs/1705.06711
https://arxiv.org/abs/1605.03942
https://arxiv.org/abs/1412.7256
https://www.sciencedirect.com/science/article/pii/S0001870810002513?via%3Dihub
https://arxiv.org/abs/1007.4094v1
https://arxiv.org/abs/0801.2826


. . . and by several ongoing/forthcoming works:

I Modular Quantization and Non-commutative Space-time
PB, R.Conti

I Complexification, Quantization and Modular Theory
PB, R.Conti, C.Puttirungroj

I Algebraic Formalism for Covariant Quantum Theory
PB, T.Suwannapeng

I The Modular Gauge of a Riemannian Manifold
PB, R.Conti

I Contravariant Non-commutative Geometry
PB, R.Conti, C.Puttirungroj

I Non-commutative Gel’fand-Năımark Duality
PB, R.Conti, N.Pitiwan

I Modular Algebraic Quantum Gravity
PB, R.Conti, M.Raasakka



Thank You for Your Kind Attention!

Very special thanks to R.Conti: if some progress has been achieved,
it is due mostly to His incredible patience and tolerance ;-)

This file has been realized using the “beamer” LATEX package of
the TEX-live distribution and TEXstudio editor on Ubuntu Linux.



• Modular Algebraic Quantum Gravity



Basic Ideology of Modular Algebraic Quantum Gravity ?
Modular Algebraic Quantum Gravity is based on these four points:

I space-time (NC) geometry is induced by (covariant) states

covariant states ⇒ NC-geometry

I modular theory takes the role of dynamical constraint

phase-space Einstein equation ' Tomita-Takesaki theory

I quantum geometry is spectrally reconstructed (spaceoids)

nc C*-algebras
spectral triples

oo Gel’fand-Năımark

duality
// nc spaceoids

??

I covariance is enforced by categorical principles.

covariant transport ' modular holonomy



Proposed Strategy of MAQG ?

Starting from a pair (A , ω) algebra/state, define:

1. via modular localization a notion of local subsystem

(A , ω) � // A ω := {A ⊂ A | ω|A KMS}

2. a spectral modular geometry on each local subsystem

A ω � //M ω
A := {(Aω,Hω,Kω, Jω) | A ∈ A ω}

3. a modular holonomy groupoid, from geometries in M ω
A ,

M ω
A

� //H ω
A

inducing modular fluctuations of modular generators Kω

4. a phase-space/space-time non-commutative
geometry from the modular data (M ω

A ,H
ω

A ).



• 1. Modular Localization



Modular Localization in QG
(B.Schroer has been the first to suggest a modular localization in AQFT)

I In QG, we propose to reverse the AQFT functor:

(A , ω) A ω := {A ⊂ A | A is modular for ω}

I no a-priori assumed geometry;

I for a given covariant vacuum state ω

I over an algebra of partial observables A,

we extract a modular-local net A ω consisting of all unital
subalgebras A ⊂ A that are dynamically modularly stable:

the covariant vacuum ω is cyclic-separating in the ω-GNS
representation of the subalgebra and hence it is an equilibrium
KMS-state for its induced modular automorphism group.

I Is this modular-net describing a QFT on a new geometry?



• 2. Modular Spectral Geometries



Modular Local Spectral Geometries (arXiv:1007.4094v1)

Modular theory associates to every KMS-state ω on a modular
local algebra A a modular spectral non-commutative geometry

(A , ω) � // (Aω,Hω, ξω,Kω, Jω)A

I Hω is the Hilbert space of the GNS representation πω induced
by ω|A, with cyclic separating unit vector ξω ∈ Hω,

I Kω := log ∆ω is the generator of the one-parameter unitary
group t 7→ ∆it

ω spatially implementing the modular
one-parameter group of ∗-automorphisms σωt ∈ Aut(πω(A)′′),

I Jω is the conjugate-linear operator spatially implementing the
modular conjugation anti-isomorphism γω : πω(A)′′ → πω(A)′,

I Aω := {a ∈ A | [Kω, πω(a)] ∈ πω(A)′′}.

Notice that Kω is a first-order operator: [[Kω,Aω], JωAωJω] = 0.

https://arxiv.org/abs/1007.4094v1


Modular Local Covariant Quantum Theories
(forthcoming work with T.Suwannapeng)

Considering the previous modular-net of spectral geometries,

(A, ω) 7→ (Aω,Hω, ξω,Kω, Jω), A ⊂ A .

in the language of covariant quantum theory we suggest that:

I Aω is a local algebra of bounded partial observables,

I ξω is a covariant vacuum,

I Hω is a boundary Hilbert space,

I Kω is a covariant Wheeler-DeWitt constraint,

I Jω is a generalized CPT operator.

Invariant observables: T ∈ πω(Aω)′′ such that [Kω,T ] = 0.

Covariant observables: πω(Aω)′′ oσω R (crossed product).



• 3. Modular Covariance Groupoid



Modular Covariance Holonomy Groupoid (arXiv:1705.06711)

The pair (A , ω) determines a groupoid H ω
A of modular

covariance morphisms between modular spectral geometries.

For any inclusion A1 ⊂ A ⊃ A2 with A1,A,A2 ∈ A ω, we have an

I inclusion of ω-GNS spaces: Hω|A1
⊂ Hω|A ⊃ Hω|A2

For any A1,A2 ∈ A ω, we have a (possibly empty) family

I H ω
A (A1;A2) of modular holonomies from A1 to A2: unitary

operators U ∈ B(Hω|A), where A ∈ A ω, with A1 ⊂ A ⊃ A2

and [Kω|A ,U] = 0, AdU(A1) = A2, U(Hω|A1
) = Hω|A2

.

In the special case of local C*-algebras in AQFT, every unitary
operator Ug , g ∈ P↑+ implementing Poincaré covariance provides a
modular covariance operator. All local modular flows (not only
those associated with space-like wedge-algebras) provide
one-parameter groups of covariance morphisms (hence generalizing
Bisognano-Wichmann theorem).

What kind of space-time induces this type of covariance?

https://arxiv.org/abs/1705.06711


Modular Fluctuations

The modular holonomy groupoid induces, for every A ∈ A ω:

I modular fluctuations of the modular generator

Kω 7→ U ◦ Kω ◦ U∗, A ∈ A ω, U ∈H ω
A (A;A).

I modular fluctuations of the covariant vacuum ω|A:

ω|A 7→ ω|A◦AdU , ξω 7→ U(ξω) A ∈ A ω, U ∈H ω
A (A;A).

I a modular 1-parameter group of ∗-functors on a W*-category:πω(A)′′ . . . πω(A)′′

...
. . .

...
πω(A)′′ . . . πω(A)′′

 t 7→

 ∆it
ξω

. . . ∆it
ξω ,Uξω

...
. . .

...
∆it

Uξω ,ξω
· · · ∆it

Uξω





Non-commutative Klein-Cartan Geometries? (conjectural)

I Klein’s Erlangen program characterizes geometry from its
group of symmetries:
Klein’s geometries are homogeneous spaces.12

I Cartan dealt with local symmetries: Cartan’s geometries are
bundles of homogeneus spaces with a connection.13

Conjecture: we are here dealing with a non-commutative version
of Cartan’s geometries, where the modular covariance between
local modular spectral geometries take the place of connections
and local symmetries. Space-time will emerge as a spaceoid
equipped with such “modular connection”.

More general notions of “holonomy bimodules” might be necessary.

12F.Klein (1872) arXiv:0807.3161.
13See the book: R.W.Sharpe (1997) Differential Geometry: Cartan’s

Generalization of Klein’s Erlangen Program, Springer.

https://arxiv.org/abs/0807.3161


Phase-space Quantum Gravity? (very conjectural)

I Tomita-Takesaki modular theory is here taking, at the level of
phase-space, the role of the quantum version of Einstein’s
equation associating “geometries” to “matter content”:

(A , ω) � // (M ω
A ,H

ω
A )

local Tomita-Takesaki
modular theory

' phase-space quantum
Einstein equation

Kω|A ' quantum Tµν ' local matter content

modular holonomies ' quantum Gµν ' local curvature

I The global phase-space geometries (M ω
A ,H

ω
A ) induced by

the pair (A , ω) are similar in spirit to those described by
A.Corichi-M.Ryan-D.Sudarsky arXiv:gr-qc/0203072.

https://arxiv.org/abs/gr-qc/0203072


• 4. Space-Time Modular NC Geometry
(Extremely Speculative Roadmap)



Modular Filters and Correlations (partially motivated by Rasaakka)

In AQFT, points in Minkowski space can be reconstructed from
maximal filters of local observable algebras (Bannier)

I similarly, one can construct a family of points F
corresponding to maximal modular filters in A ω.

I two points F1,F2 are not connected iff it is possible to find
local algebras Aj ∈ Fj , j = 1, 2 and A ∈ A ω, with
A1 ⊂ A ⊃ A2 such that the modular flow of A restricts, via
conditional expectations (Tomiyama-Takesaki theorem), to
the modular flows of Aj

I any modular covariance unitary between A1 and A2 gives a
“1-arrow linking from the point F1 to the point F ′′2 .

I the non-commutative convolution algebra of the groupoid of
modular filters above, might be a candidate for a
non-commutative algebra of space-time.

How to find a “spectral geometry” over this convolution algebra?

https://arxiv.org/abs/1908.09293
http://dx.doi.org/10.1007/BF00671024


Space-Time NC-geometry from Local Modular Data
(only physical motivation)

It is still premature to attempt an answer but these are indications:

I The strength of modular fluctuations between local modular
geometries encodes the metric data between spacetime points:
in conformal AQFT modifying the proximity of double cones
produces perturbations of the local modular flows.

I There is superposition of different metrics: the strength of the
previous fluctuations depends not only on the relative
position, but also on the “dimension of the double cones”.

I As conceptual experiment we might try to recover a
“space-time spectral spaceoid” from the relative geometric
position of first-quantization modular theory inside local
algebras of free fields (or even QM) on Minkoswki space.



From Local Modular Data to Local Gauge Theory?
(very speculative and vastly incomplete)

Will any reasonable local physics (gauge theory, Dirac) appear?

1-st order local phase-space spectral geometries (M ω
A ,H

ω
A )

modular polarization
��

2-nd order local configuration-space spectral geometries (M̂ ω
A , Ĥ

ω
A )

Dirac “square root” Gauge⊗Gauge∗'Gravity
��

1-st order local “gauge” spectral geometries



From Local to Global? (speculative)

The “analytical” rigidity of modular local data seem to force the
adoption of techniques typical of algebraic (NC)-geometry!

Descent How to “globally glue” together local spectral geometries?
I We probably need a generalization of descent theory for

sheaves/stacks to the non-commutative case.

In this direction, I am only aware of the work of Flori Fritz on
the notion of gleaves.

Transport How to treat holonomy transport in the global case?
I Dealing with dynamical systems, either invariance or, much

more likely, covariance constructions are viable.

One might need to pass to crossed products holonomy
algebras of (M ω

A ,H
ω

A ) as pioneered in the work of
Astrup Grimstrup on quantum holonomy algebras.

A theory of non-commutative descent and transport is still missing!

https://arxiv.org/abs/1308.6548
https://arxiv.org/abs/1404.1500


From 1-categorical to ∞-categorical Holonomies? (speculative)

I It is a common trend in algebraic geometry to generalize the
notion of spaces with singularities via vertical categorification:
derived geometries (see for example Eugster Pridham).

I In non-commutative (algebraic) geometry, the “vertical escape
to ∞” is known to be essentially unavoidable (see for example

Kontsevich Soibelman, Ginzburg).

One might need to consider derived NC-geometries associated to
higher-holonomies of our modular data.

Unfotunately, we are not aware of treatments of spectral derived
NC-geometry and it is not even clear what will characterize
commutative spaces there: we conjectured that a modification to
the exchange property might be relevant (Cahiers paper)

https://arxiv.org/abs/2109.14594
https://arxiv.org/abs/math/0606241
https://arxiv.org/abs/math/0506603
http://cahierstgdc.com/wp-content/uploads/2020/07/BERTOZZINI-AL.-LXI-3.pdf


Spectrum: Classical Space ↔ Quantum Space
(motivated by work on “quantum spaceoids” with R.Conti, N.Pitiwan)

C⊕ C⊕ C M2(C)

C C C

• • • •
%% ++

C C C

•
zz

kk

C

α1 0 0
0 α2 0
0 0 α3

 [
α11 α12

α21 α22

]

Conjecture [proved in the discrete case]: There is a duality
between unital C*-algebras and non-commutative spaceoids:
(Fell line-bundles over transition amplitude spaces satisfying
certain uniformity and saturation conditions).



The Two “Souls” of (Non-commutative) Geometry ?
(motivated by R.Conti question: “What is a Geometry?”)

classical space

ww ((
∩
��

descent // ? quantum space ? covarianceoo

Descent
(localization/gluing)

Covariance
(transport/holonomy)

sheaves/stacks Klein-Cartan geometries
Grothendieck topoi Ehresmann connections
Grothendieck categories category theory

(higher) homotopy/holonomy



• Warnings and Disclaimers



Why Non-commutative Space-Time?

classical physics oo // classical geometry

quantum physics oo // NC geometry ?

I removal of QFT infinities and GR singularities

I Kaluza-Klein geometrical description of interations (nc-SM)

I quantum gravity (quantize: GR ∼ space-time geometry)



Disclaimer: Space-Time in Quantum Gravity (?)

There are two main (in principle not necessarily opposite) points of
view on the role of space-time/geometry in quantum gravity:

I space-time/geometry exists microscopically

I space-time/geometry emerges macroscopically

Today it is almost universally accepted in most of the approaches
to QG that space-time (classical or even quantum) is:14

I not fundamental: (Wheeler) pre-geometries at high energies

I it emerges at low energies: phase transition from a
fundamental theory that is not geometrical.

In this talk, we take the (very controversial) road less traveled:

generalized geometry might exist also at the quantum level.

14Armas J (2021) Conversations on Quantum Gravity Cambridge U P.



Warning: EQFT + Emergentism / NP Operationalism

The emergentism of (classical/quantum) geometrical properties
(also in A.Connes’ NCG) has very solid roots:

I the success of perturbative renormalization has drastically
changed theoretical physics forever
(Wilson, Feynman, Dyson, Weinberg, . . . )

I Effective Quantum Field Theory reductionism describes
physical regimes emerging on top of each other:
no more need for “quantum geometry” to address
singularity (GR) and divergence (QFT) issues.

Here we adopt an extremely controversial obsolete point of view :

I there is an operational justification for the introduction of
quantum space-time geometry at the non-perturbative level.



Classical Geometric < − > Quantum Algebraic

There is a “Cartesian discrasy” rather than a “Cartesian duality”:

I traditionally geometry is indissoluble from classical physics,

I quantum physics uses the language of operator algebras.

Two different paradigmatic views exist on this issue:

(von Neumann)
QT is not necessarily

geometric

(Vinogradov)
QT must be recasted in

geometric language

Our point of view is intermediate:

I operator algebraic language is right for QT

I generalized geometry (NCG) can be adapted to QT

I the loss of space-time geometric degrees of freedom
(B(H1) ' B(H2)) should be cured (missing ingredients).



Other Geometric Roles of Modular Theory

As a disclaimer, we recall that modular theory already counts
several important interactions with (non-commutative) geometry:

I theory of foliations and type III: (Connes)

I modular class of Poisson manifolds: (Weinstein)

I real spectral triples: (Connes)

I modular thermal time: (Connes Rovelli)

I modular twisting of spectral triples: (Connes Moscovici)

I modular spectral triples: (Carey Phillips Rennie)

I modular curvature: (Connes Moscovici Khalkhali Fatizadeh)

Our point of view here is ideologically quite different and points to
a full modular reconstruction of (some aspects of) geometry of
space-time, more in line with the tradition in algebraic quantum
field theory (see for example: Bisognano Wichmann, Schroer Wiesbrock,

Borchers, Summers White, Morinelli Neeb Ólaffson).

https://alainconnes.org/wp-content/uploads/ThNonComm.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0393044097800113?via%3Dihub
https://alainconnes.org/wp-content/uploads/reality.pdf
https://arxiv.org/abs/gr-qc/9406019
https://arxiv.org/abs/math/0609703
https://arxiv.org/abs/0801.4605
https://alainconnes.org/wp-content/uploads/modularcurvature.pdf
https://arxiv.org/abs/1901.07438
https://pubs.aip.org/aip/jmp/article-abstract/16/4/985/465517/On-the-duality-condition-for-a-Hermitian-scalar?redirectedFrom=fulltext
https://arxiv.org/abs/math-ph/9809003
https://pubs.aip.org/aip/jmp/article-abstract/41/6/3604/718143/On-revolutionizing-quantum-field-theory-with?redirectedFrom=fulltext
https://arxiv.org/abs/hep-th/0304179
https://arxiv.org/abs/2307.00798


Non-standard Claims

We question certain now standard assertions in NCG.

non-commutative topology oo
? // C*-algebras

I C*-algebras are spectrally described by spaceoids: certain
uniform bundles of transition amplitudes over pair groupoids
(alternatively -see R.Cirelli- certain uniform Kähler bundles)
and these are not barely topological structures!

non-commutative measure theory oo
? // W*-algebras

I Again W*-algebras do not only contain (non-commutative)
measure theoretic information, but also formalize (certain
bundles of) complexified orthosymplectic spaces (hence their
intrinsic modular dynamical character)!



Reasonable Objections / Answers

I Isn’t background geometry already implicit in the choice of
the local algebras of observables?

our algebras consist of partial observables and are supposed to
be off-shell : free algebras could be used (see Rasaakka).

I Should different algebras and “correlations between them”
replace states?

this might be possible, states will be just a very special choice
of such “correlations”.

I Why should the geometry reconstructed from modular theory
be non-commutative?

the modular fluxes of different local regions “interfere”.

I Should it be a higher geometry as well?

very likely yes: vertical categorification is already necessary in
non-commutative (algebraic) geometry.

https://arxiv.org/abs/1605.03942

	Appendix

