Cyclic quantum causal modelling with a graph separation theorem

<u>Carla Ferradini</u> Victor Gitton V. Vilasini

(arXiv:2502.04168)

Ínnía-

25 June, 2025

Quantum causal modelling

Quantum circuit

Causal model

Quantum causal modelling

Quantum circuit

Causal model

Probability rule Graph separation theorem

•••

Quantum circuit

Causal model

Quantum circuit

Causal model

Probability rule? Graph separation theorem?

• • •

Motivation

Motivation

Closed timelike curves

Solutions of GR [1]

[1] Lloyd et al. Phys Rev Lett (2011)

Motivation

Closed timelike curves Indefinite causality Solutions of GR [1] [2,3]

[1] Lloyd et al. Phys Rev Lett (2011)[2] Oreshkov et al. Nat Commun (2012) [3] Chiribella et al. Phys Rev A (2013)

Motivation

[1] Lloyd et al. Phys Rev Lett (2011)
[2] Oreshkov et al. Nat Commun (2012) [3] Chiribella et al. Phys Rev A (2013)
[4] Pearl et al. arXiv:1302.3595 (2013)

Probability rule

For any causal model on acyclic G

$\mathsf{Pr}_{\mathrm{acyc}}(x,y)_G = \mathsf{Tr}\left[(E_x \otimes F_y)(\mathcal{E}_1 \circ \mathcal{E}_2)\right]$

Henson et al. New J Phys (2014) Barrett et al. arXiv:1906.10726 (2019)

For any causal model on arbitrary G

For a subset of cyclic causal models on G

 $\Pr(x, y)_G$

Forré et al. arXiv:1710.08775 (2017) Bongers et al. Ann Statist (2021) Barrett et al. Nat Commun (2021)

For any causal model^{*} on arbitray G

 $\Pr(x, y)_G$

*with finite dimensional ${\mathcal H}$ and finite-cardinality random variables

G :

G :

 $\mathsf{Pr}_{\mathrm{acyc}}$

How: post selected teleportation

Goal: simulate an identity channel

Teleportation protocol

How: post selected teleportation

Goal: simulate an identity channel

Teleportation protocol

How: post selected teleportation

Goal: simulate an identity channel Postselected teleportation protocol \checkmark

$\mathrm{Tr}_{AB}[|\Psi_{00}\rangle\langle\Psi_{00}|_{AB}\rho_{A}|\Psi_{00}\rangle\langle\Psi_{00}|_{BC}] = p_{\checkmark}\rho_{C}$

Lloyd et al. *Phys Rev Lett* (2011) Lloyd et al. *Phys Rev D* (2011)

 $\Pr_{acyc}(x, y, t = \checkmark)_{G_{acyc}}$

 $\Pr_{acyc}(x, y | t = \checkmark)_{G_{acyc}}$

Given a directed graph G and a compatible probability \Pr

Given a directed graph G and a compatible probability Pr

Graph structure property ↓ *d-separation* in *G* ⊥^{*d*}

Given a directed graph G and a compatible probability \Pr

Graph structure property \downarrow *d-separation* in *G* \perp^d

Given a directed graph G and a compatible probability \Pr

Graph structure property \downarrow *d-separation* in *G* \perp^d

Given a directed graph G and a compatible probability \Pr

Graph structure property \downarrow *d-separation* in *G* \perp^d Causal mechanisms ↓ *independencies* in Pr ⊥⊥

Given a directed graph G and a compatible probability Pr

Graph structure property \downarrow *d-separation* in *G* \perp^d Causal mechanisms ↓ *independencies* in Pr ⊥⊥

 $A \perp B|C$ if $\Pr(a, b|c) = \Pr(a|c)\Pr(b|c)$

Given a directed graph G and a compatible probability \Pr

 $A \perp B|C$ if Pr(a, b|c) = Pr(a|c) Pr(b|c)

G is acyclic

G is acyclic

Soundness: If $A \perp^d B | C$ in G, then <u>for all</u> causal models $A \perp \perp B | C$ in Pr_{acyc}

G is acyclic

Soundness: If $A \perp^d B | C$ in G, then <u>for all</u> causal models $A \perp \perp B | C$ in Pr_{acyc}

Completeness: If $A \not\perp^d B | C$ in G, then there exists a causal model where $A \not\perp B | C$ in Pr_{acyc}

G is acyclic

Soundness: If $A \perp^d B | C$ in G, then <u>for all</u> causal models $A \perp \perp B | C$ in Pr_{acyc}

Completeness: If $A \not\perp^d B | C$ in G, then there exists a causal model where $A \not\perp B | C$ in Pr_{acyc}

Fails for arbitrary cyclic G!

Idea behind *p*-separation

G :

$$(X \perp^p Y)_G$$

Idea behind *p*-separation

for any G

for any G

Soundness: If $A \perp^{p} B | C$ in G, then <u>for all</u> causal models $A \perp \!\!\!\perp B | C$ in Pr

for any G

Soundness: If $A \perp^{p} B | C$ in G, then <u>for all</u> causal models $A \perp \!\!\!\perp B | C$ in Pr

Completeness: If $A \perp^{p} B | C$ in G, then there exists a causal model where $A \not\perp B | C$ in Pr

for any G

Soundness: If $A \perp^{p} B | C$ in G, then <u>for all</u> causal models $A \perp \perp B | C$ in Pr

Completeness: If $A \not\perp^p B | C$ in G, then <u>there exists</u> a causal model where $A \not\perp B | C$ in Pr

For causal models* on arbitrary G

 * with finite dimensional ${\cal H}$ and finite-cardinality random variables

- \cdot Companion paper for classical causal models $_{(arXiv:2502.04171)}$
- \rightarrow Markovianity, number and existence of solutions

- \cdot Companion paper for classical causal models $_{(arXiv:2502.04171)}$
- \rightarrow Markovianity, number and existence of solutions
- · Detailed relations between causal modelling frameworks
- \rightarrow characterising properties and inclusions between frameworks

Henson et al. *New J Phys* (2014) Barrett et al. arXiv:1906.10726 (2019) Costa et al. *New J Phys* (2016)

- \cdot Companion paper for classical causal models $_{(arXiv:2502.04171)}$
- \rightarrow Markovianity, number and existence of solutions
- \cdot Detailed relations between causal modelling frameworks
- \rightarrow characterising properties and inclusions between frameworks
- \cdot Study on post-selected teleportation protocols
- \rightarrow characterizing protocols with such property

- \cdot Companion paper for classical causal models $_{(arXiv:2502.04171)}$
- \rightarrow Markovianity, number and existence of solutions
- \cdot Detailed relations between causal modelling frameworks
- \rightarrow characterising properties and inclusions between frameworks
- · Study on post-selected teleportation protocols
- \rightarrow characterizing protocols with such property
- · Definition of interventions (in preparation)
- \rightarrow effect of cyclicity on signalling

- \cdot Companion paper for classical causal models $_{(arXiv:2502.04171)}$
- \rightarrow Markovianity, number and existence of solutions
- \cdot Detailed relations between causal modelling frameworks
- \rightarrow characterising properties and inclusions between frameworks
- · Study on post-selected teleportation protocols
- \rightarrow characterizing protocols with such property
- · Definition of interventions (in preparation)
- \rightarrow effect of cyclicity on signalling
- \cdot Mapping tensor networks to cyclic causal models $_{(\text{in preparation})}$
- \rightarrow emergence of space-time and notion of causality

Thank you

Outlook

Causal discovery algorithms use *d*-separation for acyclic $G \rightarrow$ use *p*-separation in the cyclic case [1,2]

Indefinite causal structures are described with cyclic models \rightarrow characterise special subsets, e.g., violating causal inequalities or causally non-separable [3,4]

Causal compatibility problems compatibility of Pr with $G \rightarrow$ extend known tecniques for acyclic *G*, e.g., inflation, to cyclic mapping them to acyclic with postselection [5]

Studying spacetime emergence using tensor networks \rightarrow emergence of space time geometry from operational properties of causal models [6]

Spirtes et al. Appl Inform (2016) [2] Giarmatzi et al. npj Quantum Inf (2018)
 Oreshkov et al. Nat Commun (2012) [4] Chiribella et al. Phys Rev A (2013)
 Wolfe et al. J Causal Inference (2019)
 Cotler et al. J High Energ Phys (2019)