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Cyclic quantum causal modelling

Motivation
Closed timelike curves Indefinite causality Feedback processes
Solutions of GR [1] [2,3] [4]

[1] Lloyd et al. Phys Rev Lett (2011)
[2] Oreshkov et al. Nat Commun (2012) [3] Chiribella et al. Phys Rev A (2013)
[4] Pearl et al. arXiv:1302.3595 (2013)
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Evaluating probabilities

For any causal model on G
{Ex} Y Bl

51 52

Pracyc(X,¥)6 = Tr[(Ex ® Fy)(&1 0 &)

Henson et al. New J Phys (2014)
Barrett et al. arXiv:1906.10726 (2019)
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Evaluating probabilities

For a of cyclic causal models on G
{EX}X {Fy}y
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Forré et al. arXiv:1710.08775 (2017)
Bongers et al. Ann Statist (2021)
Barrett et al. Nat Commun (2021)
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For any causal model® on arbitray G
{Ex}x {F},
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Pr(X7y)G

*with finite dimensional H and finite-cardinality random variables
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How: post selected teleportation

Goal: simulate an identity channel
Postselected teleportation protocol v
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Tras[ pa|Voo)(Woolac] = pvpc

Lloyd et al. Phys Rev Lett (2011)
Lloyd et al. Phys Rev D (2011)
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Given a directed graph G and a compatible probability Pr

Graph structure property Causal mechanisms
acyclic G
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d-separation theorem

G is acyclic

Soundness: If A L9 B|C in G, then for all causal models
A L B|C in Praeye

Completeness: If A ¢ B|C in G, then there exists a
causal model where A /L B|C in Pracyc

Fails for arbitrary cyclic G!

Pearl. Cambridge University Press (2009)
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p-separation theorem

for any G

Soundness: If A LP B|C in G, then for all causal models
A 1L B|C in Pr

Completeness: If A P B|C in G, then there exists a
causal model where A /L. B|C in Pr

For causal models™ on arbitrary G

*with finite dimensional # and finite-cardinality random variables
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—> characterising properties and inclusions between frameworks

Henson et al. New J Phys (2014)
Barrett et al. arXiv:1906.10726 (2019)
Costa et al. New J Phys (2016)
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Further results

- Companion paper for classical causal models (arxiv:2502.04171)

— Markovianity, number and existence of solutions

- Detailed relations between causal modelling frameworks

—> characterising properties and inclusions between frameworks

- Study on post-selected teleportation protocols

—> characterizing protocols with such property
Definition of interventions (in preparation)
effect of cyclicity on signalling

- Mapping tensor networks to cyclic causal models (in preparation)

— emergence of space-time and notion of causality
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Outlook

Causal discovery algorithms use d-separation for acyclic G

—> use p-separation in the cyclic case [1,2]

Indefinite causal structures are described with cyclic models

—> characterise special subsets, e.g., violating causal inequalities or
causally non-separable [3,4]

Causal compatibility problems compatibility of Pr with G

— extend known tecniques for acyclic G, e.g., inflation, to cyclic
mapping them to acyclic with postselection [5]

Studying spacetime emergence using tensor networks

— emergence of space time geometry from operational
properties of causal models [6]

[1] Spirtes et al. Appl Inform (2016) [2] Giarmatzi et al. npj Quantum Inf (2018)
[3] Oreshkov et al. Nat Commun (2012) [4] Chiribella et al. Phys Rev A (2013)
[5] Wolfe et al. J Causal Inference (2019)

[6] Cotler et al. J High Energ Phys (2019)
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