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Outline

time evolution of Gaussian q. E. of two bosonic modes
associated with a scalar q. field in de Sitter space and in
interaction with a thermal reservoir (in th. of open ss based
on completely positive q. dyn. semigs)
q. E. strongly depends on squeezing of bimodal state,
parameters characterizing the thermal env., curvature
parameter of de Sitter space, and mass parameter
thermal env. and curvature have a destructive influence on
E., whose survival time depends on the competition
between contrary effects provided by squeezing of bimodal
state, curvature, and thermal bath
E. is minimized for values 1/2 and 3/2 of mass parameter,
corresp. to conformally coupled scalar field, resp.
minimally coupled massless field
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Quantum field theory in de Sitter space

4D Euclidean de Sitter space can be embedded in 5D
Euclidean space→ open charts in de Sitter space, def. by
Hubble radius H−1, have coordinate frames that can be derived
through analytic continuation of Euclidean metric, and can be
separated into 3 regions (R,C,L), each one with its own
individual metric:

ds2
R = H−2

[
−dt2

R + sinh2 tR
(

dr2
R + sinh2 rRdΩ2

)]
ds2

C = H−2
[
dt2

C + cos2 tC
(
−dr2

C + cosh2 rCdΩ2
)]

ds2
L = H−2

[
−dt2

L + sinh2 tL
(

dr2
L + sinh2 rLdΩ2

)]
dΩ2 - metric on two-sphere

- regions R and L, described by coordinates (tR, rR) and (tL, rL),
resp., are causally disconnected

- region C is described by coordinates (rC , tC)
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solutions of Klein-Gordon eq. for a free scalar field in de Sitter
space:

uσp`m(t , r ,Ω) ∼ H
sinh t

χp,σ(t)Yp`m(r ,Ω), −L2Yp`m =
(

1 + p2
)

Yp`m

(t , r) ≡ (tR, rR) or (tL, rL)

Yp`m - harmonic fs. on 3D hyperbolic space

- positive frequency mode fs corresp. to Euclidean
(Bunch-Davies) vacuum, in which the free scalar field is initially
prepared, and which are supported in both regions R and L:

χp,σ(t) =


eπp−iσe−iπν

Γ(ν+ip+ 1
2 )

P ip
ν− 1

2
(cosh tR)− e−πp−iσe−iπν

Γ(ν−ip+ 1
2 )

P−ip
ν− 1

2
(cosh tR)

σeπp−ie−iπν

Γ(ν+ip+ 1
2 )

P ip
ν− 1

2
(cosh tL)− σe−πp−ie−iπν

Γ(ν−ip+ 1
2 )

P−ip
ν− 1

2
(cosh tL)

P±ip
ν− 1

2
- associated Legendre fs

- index σ takes values ±1, corresp. to indep. sols in each open
region R and L
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ν - mass parameter (m - mass of scalar field):

ν =

√
9
4
− m2

H2

- value ν = 1/2 corresponds to conformal coupled scalar field
and ν = 3/2 to minimally coupled massless scalar field

- parameter p is normalized by H and it represents curvature
parameter of de Sitter space: effect of curvature of 3D
hyperbolic space appears when p approaches to 1, and gets
stronger by decreasing p, so that the limit of infinite curvature is
reached for p → 0

- normalization factor for sols

Np =
4 sinhπp

√
coshπp − σ sinπν

√
π|Γ(ν + ip + 1

2)|
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scalar field (annihilation operator aσp`m and creation operator
a†σp`m)

φ̂(t , r ,Ω) =
H

sinh t

∫
dp
∑
σ,`,m

[
aσp`mχp,σ(t) + a†σp`−mχ

∗
p,σ(t)

]
Yp`m(r ,Ω)

aσp`m|0 >BD= 0 defines Bunch-Davies vacuum

6 / 27



Bunch-Davies vacuum for a global observer in de Sitter space
connects R vacuum and L vacuum through Bogoliubov transf.
and can be expressed as a two-mode squeezed state of R and
L vacua in Fock space:

|0 >BD= UR,L (γp) |0 >R |0 >L=
√

1− γp2
∞∑

n=0

γn
p |n >R |n >L

UR,L (γp) = eγp(c†Rc†L−cRcL) - two-mode squeezing op. corresp. to
a Gaussian channel

cR and cL - annihilation ops of R and L vacuum, resp.

|n >R,L= 1√
n!

(c†R,L)n|0 >R,L

squeezing parameter:

γp = i

√
2√

cosh 2πp + cos 2πν +
√

cosh 2πp + cos 2πν + 2

- for ν = 1/2 and ν = 3/2 simplifies to |γp| = e−πp, which tends
to 1 in the limit of small p (large curvature) and takes small
values in the limit of large p 7 / 27



squeezing operator UR,L (γp) is a Gaussian operation that
preserves the Gaussianity of state, and in phase space it is
represented by the curvature-induced symplectic op. acting on
modes B and B̄ observed by Bob and, resp. anti-Bob:

SB,B̄(γp) =
1√

1− γp2

(
I2 |γp|Z2
|γp|Z2 I2

)
I2 - unity matrix in 2× 2 space, Z2 is σz Pauli matrix→ under
this transf. the single mode observed by Bob is converted to a
two-mode in two open charts
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- assume Alice is a global observer situated in Bunch-Davies
vacuum and Bob is an observer who stays in region R of open
charts of de Sitter space
- consider an initial entangled Gaussian two-mode SVS of the
free scalar field shared by Alice and Bob
- in Bunch-Davies vacuum, this state, with squeezing
parameter s, is described by

σin
AB(s) =

(
cosh 2s I2 sinh 2s Z2
sinh 2s Z2 cosh 2s I2

)
(1)
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Bunch-Davies vacuum observed by global observer Alice can
be expressed as a two-mode squeezed state of R vacuum
observed by Bob and L vacuum observed by anti-Bob

- considering that there are no initial correlations between the
state described by the covariance matrix (1) and the subs.
observed by anti-Bob, the initial covariance matrix of entire
system is σin

AB(s)⊕ IB̄
→ a full description of s. involves three modes: mode A
observed by a global observer Alice, mode B observed by Bob
in region of open charts R and mode B̄ observed by anti-Bob in
region L of open charts

- CM of three-mode Gaussian state describing complete s.:

σABB̄ (s, γp) =
[
IA ⊕ SB,B̄ (γp)

] [
σin

AB(s)⊕ IB̄
] [

IA ⊕ SB,B̄ (γp)
]T
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since an observer living in region L is causally disconnected
from region R, the physically accessible information is encoded
in mode A of Alice and mode B of Bob

- by performing partial trace over B̄ in tripartite covariance
matrix we will get rid of mode B̄ associated with anti-Bob,
obtaining initial CM for Alice and Bob, associated with region R:

σAB(s, γp) =

(
A C
CT B

)

A = cosh 2s I2, B =
γp

2 + cosh 2s
1− γp2 I2, C =

sinh 2s√
1− γp2

Z2
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Time evolution of q. E. in de Sitter space

time evolution of Gaussian q. E. of two bosonic modes in de
Sitter space, interacting with a thermal env.

- dynamics is studied by employing the formalism of OQSs,
based on completely positive dyn. semigs

- Markovian Kossakowski-Lindblad master eq. for density
operator ρ(t), describing irreversible time evolution of an open
s. (~ = 1)

dρ(t)
dt

= −i[H, ρ(t)] +
1
2

∑
k

(
2Lkρ(t)L†k −

{
ρ(t),L†kLk

}
+

)
- Hamiltonian of two bosonic modes (with identical frequencies
ω = 1)

H =
1
2

(x2 + p2
x + y2 + p2

y )

- ops. Lk ,L
†
k describe interaction of s. with a general env. 12 / 27



if initial states are Gaussian and ops Lk are chosen polynomials
of first degree in canonically conjugated quadrature ops
x ,px , y ,py of two bosonic modes, then, due to the l. character
of dynamics, Gaussianity is preserved in time

- time evolution of corresponding bimodal CM σ(t) is given by
Lyapunov eq. of motion:

dσ(t)
dt

= Yσ(t) + σ(t)Y T + 2D

- drift matrix

Y =


−λ 1 0 0
−1 −λ 0 0
0 0 −λ 1
0 0 −1 −λ


λ - dissipation rate, and we assume diffusion matrix

D = diag{λ coth
1

2kBT
, λ coth

1
2kBT

, λ coth
1

2kBT
, λ coth

1
2kBT

}

(kB - Boltzmann const., T - temperature of thermal bath)
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solution
σ(t) = Γ(t)[σAB(s, γp)− σT ]ΓT(t) + σT

σAB(s, γp) - initial CM of observers Alice and Bob

Γ(t) = exp(Yt), with Γ(t)→ 0 when t →∞
- evolution generated by the Gaussian completely positive map
is det. by two 4 x 4 real matrices Γ and A = σT − ΓσT ΓT, which
satisfy

A + iΩAB ≥ iΓΩABΓT, ΩAB = ⊕2
1

(
0 1
−1 0

)
- symplectic form

- CM corresp. to asymptotic Gibbs state of the s. of two bosonic
modes, interacting with thermal reservoir of temperature T
(Boltzmann constant kB = 1):

σT =


coth 1

2T 0 0 0
0 coth 1

2T 0 0
0 0 coth 1

2T 0
0 0 0 coth 1

2T
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logarithmic negativity as a measure to quantify q. E., defined in
terms of symplectic invariants of CM

σ(t) =

(
A(t) C(t)
CT(t) B(t)

)
EN = − log2 g(σ(t)), (2)

g(σ(t)) =
1√
2

√
∆(t)−

√
∆2(t)− 4detσ(t)

- seralian

∆(t) ≡ detA(t) + detB(t)− 2detC(t)

- for EN ≤ 0 the state is separable and EN > 0 determines the
strength of E
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Figure 1: Alice-Bob Gaussian quantum entanglement EN versus time
t for different values of dissipation rate λ
(p = 0.1, s = 0.3,T = 0.3, ν = 1).
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Figure 2: Alice-Bob Gaussian quantum entanglement EN versus time
t for different values of temperature T of the bath
(p = 0.1, λ = 0.2, ν = s = 1).
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Figure 3: Alice-Bob Gaussian quantum entanglement EN versus time
t for different values of squeezing s (p = 0.1, λ = 0.2,T = 2, ν = 1).
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Figure 4: Left: Alice-Bob Gaussian quantum entanglement EN versus
curvature parameter p and mass parameter ν for a) -
(t = s = 0.5,T = 0.8, λ = 0.3) and c) -
(t = 0, s = 0.5,T = 0.8, λ = 0.3); Right: Alice-Bob Gaussian quantum
entanglement EN versus mass parameter ν for different values of
squeezing s for b) - (t = 0.5,T = 0.8,p = 0.1, λ = 0.3) and d) -
(t = 0,T = 0.8,p = 0.1, λ = 0.3). 19 / 27



Figure 5: Alice-Bob Gaussian quantum entanglement EN versus
curvature parameter p and temperature T at a given moment of time
(t = 0.1, ν = 1, λ = 0.2, s = 0.5).
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Figure 6: Alice-Bob Gaussian quantum entanglement EN versus
squeezing s and curvature parameter p at a given moment of time
(t = 0.1, λ = 0.2, T = 0.3, ν = 1).
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Figure 7: Alice-Bob Gaussian quantum entanglement EN versus
curvature parameter p and time t (T = 0.3, ν = 1, λ = 0.2, s = 0.2).
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Figure 8: Alice-Bob Gaussian quantum entanglement EN versus
mass parameter ν and time t (T = 0.3, p = 0.1, λ = 0.2, s = 0.2).
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Summary and Conclusions

- the initially existing q. E. of two bosonic modes gradually
weakens over time, and disappears eventually at a finite
moment of time - entanglement sudden death phenomenon
(ESD); E. intensity, and also survival time of E., decrease by
increasing temperature and dissipation parameter
- ESD impedes the realization of QIP (such tasks, like q.
teleportation and q. cryptography, require existence of E.)
- when E. survives, its intensity increases with squeezing of
modes
- thermal env. has a destroying influence on E., whose survival
time depends on the competition between the contrary effects
provided by the thermal bath and the squeezing of the bimodal
state
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Summary and Conclusions

- as de Sitter parameter p decreases, E. also decreases: effect
of space curvature reduces E., the state becomes less
entangled as curvature of open chart becomes larger; when
p → 1, for which effect of curvature appears, EN → a finite
value that depends practically only on squeezing s
- E. has an oscillatory behavior w.r.t. mass parameter ν, with
period 1, which comes from cos 2πν, however, in the flat space
limit p → 1 E. is almost not influenced by ν
- E. is minimized when ν = 1/2 and ν = 3/2, corresponding to
conformal coupled scalar field, resp. minimally coupled
massless field→ a massive field preserves more E. than a
massless field, i.e. E. of a massive scalar field is more robust
than that of a massless field in de Sitter space
- for t = 0, EN = 0 only when p = 0, ν = 1/2 and ν = 3/2, while
for t 6= 0, EN = 0 for definite values of curvature p; however, E.
can survive for definite values of times and in presence of
curvature, even in the limit of infinite curvature with p → 0, but
only for a mass parameter other than ν = 1/2 and ν = 3/2 25 / 27



Summary and Conclusions

- there is a critical value of p beyond which the amount of E.
saturates; at a given moment of time and for a given
temperature of the thermal env., the Gaussian q. E. can survive
only for a sufficiently large value of the parameter p, that is for a
sufficiently small curvature
- survival time of E. decreases as we make the curvature
parameter p smaller
- the obtained results illustrate the role that the curvature of
space and the parameters describing the squeezing and
thermal env. play in order to ensure the preservation of E. over
time for practical implementation of q. communication protocols
that rely on E.
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Thank you!
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