What quantum foundations teach us about black holes Ladina Hausmann ETH Zürich

Based on joint work with Renato Renner, arXiv:2504.03835

A black hole puzzle

Hayden, Preskill, 2007

S₂

U and V are typical unitaries

Typical unitarity \Longrightarrow

Combining the perspectives S_2 $|0\rangle_{S_1}|0\rangle_{S_2}$ U_{retrieve} S_1

 $|0\rangle_{S_2}$

The following premises lead to a contradiction: (Q) Universality of quantum theory (C) State compatibility

- (G) Gravity assumptions:
 - 1. Smooth horizon

 - 3. A black hole evolves according to a typical unitary
 - 4. ...

2. A black hole is a quantum system with a finite dimensional Hilbert space

Abstracting the puzzle

 S_2

R

Isolated system

Combining the perspectives

 $|0\rangle_{S_2}$

Wigner's friend paradox!

(S₂)

The following premises lead to a contradiction: (Q) Universality of quantum theory (C) State compatibility

- (G) Gravity assumptions:
 - 1. Smooth horizon

 - 3. A black hole evolves according to a typical unitary
 - 4. ...

2. A black hole is a quantum system with a finite dimensional Hilbert space

The following premises lead to a contradiction: (Q) Universality of quantum theory (C) State compatibility (G) Gra rssumpt ch horizon k hole is a quantum system with a finite dimensional Hilbert space ole evolves according to a typical unitary A bla 4. ...

The following premises lead to a contradiction: (Q) Universality of quantum theory (C) State compatibility

What can we learn from this?

Application to other paradoxes

Quantum collaboration paradox: (Q) Universality of quantum theory

Frauchiger, Renner, 2018

Firewall Paradox: (Q) Universality of quantum theory (C) (x=0) (x=

Almheiri, Marolf, Polchinski, Sully, 2012

