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Noncommutative spacetime - What? Why?
We are interested in possible residual e↵ects of quantum gravity in
the flat spacetime limit

General Relativity �����!
flat limit

Special Relativity

# ?

Quantum Gravity?
?�����!

flat limit
Deformed SR?

Certain models (e.g. topological QG in 2+1 dimensions, some spin
foam models) predict e↵ective noncommutativity of spacetime:

[xµ, x⌫ ] 6= 0

There are many di↵erent models of noncommutative spacetime - e.g.
Snyder spacetime, Moyal-Weyl spacetime, -Minkowski,
⇢-Minkowski...
The attractive feature of -Minkowski is that it admits a
relativistically invariant length/energy/mass scale, which is a recurring
theme across many approaches to QG
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-field theory

What kind of phenomenological implications can we extract?

We investigate the interplay between -Poincaré and CPT

Long-standing research program:
- L. Freidel, J. Kowalski-Glikman and S. Nowak, Field theory on
kappa-Minkowski space revisited: Noether charges and breaking of Lorentz
symmetry, (2008)
- M. Arzano, A. Bevilacqua, J. Kowalski-Glikman, G. Rosati, J. Unger,
-deformed complex fields and discrete symmetries (2021)

- A. Bevilacqua, J. Kowalski-Glikman, W. Wíslicki,  -deformed complex

scalar field: Conserved charges, symmetries, and their impact on physical

observables, (2022)

Recent advancements: new perspective on CPT and Dirac fields
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Wravitational timeudilation from
quantum interactionsU
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Time in quantum theory

“Time via a physical clock that
is part of the system itself”

“If the Universe is truly isolatedt
there is no place in the theory for
an external time parameter”

Dage and Wootters eDaW-

“Whatever can be said about ‘time development’
has to be extracted from this equationf”

Reasonable hypothesisq if we
want to computessimulateccc

Pngeneered environment as a
quantum reference frame

S



Pvolution without evolution

T



The Ti”)T mechanism

The corresponding 4chrödinger equation is

A

Thank you for
your (classicalc timen



Grzegorz Czelusta
Spin networks on quantum computers

Jagiellonian University, Kraków, Poland
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Czelusta, G., Mielczarek, J. (2025). Physical Review D, 111(6), 066012.

Livine, E. R. (2018). Physical Review D, 97(2), 026009.
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The interface between two fluids, , is 
oscillated with a shaking platform 

This excites one low wavenumber  mode 
through parametric resonance 

Through nonlinear interaction, this one 
mode excites a few, which in turn excite many 
more 

Energy cascades to larger wavenumbers 

!(", →# )

$

Formation of an interfacial wave spectral cascade: 
from one to few to many 
Seán Gregory, Silvia Schiattarella, Vitor Barroso, David Kaiser, Anastasios Avgoustidis, & Silke Weinfurtner



[2] Micha, R., & Tkachev, I. I. (2004). Turbulent thermalization. Physical Review D, 70(4), 043538.

Periodic forcing from inflaton oscillating around potential 
minima at amplitude ", frequency , immediately after 

inflation  
2%0

Analogue cosmology
Fluid-fluid interface   ξ(", →# ) (2+1) Scalar field in the early universe  ϕ(", →# ) 
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Periodic forcing from shaking platform at amplitude , 
frequency 
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Momentum distribution of particles  ($
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[1] Gregory, S., Schiattarella, S., Barroso, V. S., Kaiser, D. I., Avgoustidis, A., & Weinfurtner, S. (2024). 
Tracing the nonlinear formation of an interfacial wave spectral cascade from one to few to many. arXiv 
preprint arXiv:2410.08842. 



Shannon wavelets and 
‘holographic-like’ lattices in 

QFT
Speaker: Dominic G. Lewis

In collaboration with: Nicholas Funai, Simon Vedl, Dan George, 
Achim Kempf, Gavin Brennan, Nicolas C. Menicucci
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RMIT University, Macquarie University, University of Waterloo



An ultraviolet cut-off to QFT ! Permits 
an equivalent lattice model of coupled 
harmonic oscillators

Local derivative operators on the 
continuous field are non-local on the lattice 
(polynomial decay in coupling strength)

Some history



What about without a cut-off?
Using a Shannon wavelet basis, we can use sampling 
theory on fields without a cut-off!

We take the momentum space of a field and separate it 
into discrete layers and each layer acts as its own 
bandlimited QFT with its own lattice model.



The discrete field has a new dimension! 

We place the lattices on top of 
each other and observe the 
length scale of each layer of 
the cake scales hyperbolically!

You start with a d-dim continuous QFT and end with a 
d+1 dim discrete one (with hyperbolic-like geometry)!



How far does this rabbit hole go?

Come to my poster and find out ☺
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Phys. Rev. D 111, 044001 (2025) / arXiv:2408.02729 [gr-qc]

Daniel R. Terno Rama Vadapalli

Sydney

Gravity-induced birefringence in spherically symmetric spacetimes

Sebastian Murk ⇤

Quantum Gravity Unit, Okinawa Institute of Science and Technology,
1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan

Daniel R. Terno † and Rama Vadapalli ‡

School of Mathematical and Physical Sciences, Macquarie University, NSW 2109, Australia

Geometric optics effectively describes the propagation of electromagnetic waves when the wavelength is much
smaller than the characteristic length scale of the medium, making wave phenomena like diffraction negligible.
As a result, light propagation in a vacuum is typically modeled by rays that follow null geodesics. However,
general relativity predicts that polarization-dependent deviations from these geodesics occur in an inhomogeneous
gravitational field. In this article, we evaluate the corrections for the deflection and emission of light by a massive
gravitating body. Additionally, we derive the scaling behavior of the physical parameters characterizing the
trajectories. The calculations are performed in the leading order in frequency. We use these results to assess the
significance of the birefringence effect in various astrophysical observations. We find that the effect cannot be
measured with current instruments but may be detectable in the near future.

I. INTRODUCTION

The study of optical phenomena is one of the oldest scientific
endeavours. It predates the formulation of the electromagnetic
theory by many centuries. The latter completed the classi-
cal picture of our universe and provided the foundation for
both quantum mechanics and relativity. Quantum theory trans-
formed our understanding of light and its interaction with mat-
ter. Nevertheless, in both classical and quantum optics [1, 2]
the propagation of electromagnetic waves is described using
geometric optics and, if necessary, its corrections. General
relativity, albeit a classical theory, profoundly affects our flat
spacetime view of wave propagation. The gravitational field of
massive bodies bends light rays, rotates their polarization, and
makes the vacuum birefringent.

As long as the electromagnetic field intensity is low enough
such that nonlinear effects of quantum electrodynamics and
the backreaction on spacetime geometry via the Einstein field
equations can be ignored, the propagation is governed by the
classical wave equations on a fixed curved background [3, 4].
For the minimally coupled electromagnetic field, the vector
potential Aµ satisfies

2Aµ
�R

µ
⌫A

⌫ = 0, (1.1)

where the d’Alembert operator 2 ··=r
µ
rµ, with rµ the co-

variant derivative and R
µ
⌫ the Ricci tensor that are associated

with the background metric gµ⌫ . The order-by-order solutions
are derived by considering a decomposition of the vector po-
tential as

A
µ(x) = A

µ
0
e
i�(x) + e

i�(x)
1X

n>1

!
�n

A
µ
n(x), (1.2)

⇤ sebastian.murk@oist.jp
† daniel.terno@mq.edu.au
‡ venkataramaraju.vadapalli@students.mq.edu.au

where � is the phase (or eikonal function), the amplitudes An

are slowly-varying on the relevant timescales, and the large
parameter ! is related to the peak frequency of the solution [1,
3, 4]. The eikonal and the amplitudes can be determined from
the equations for the coefficients of the various !�n terms that
are obtained by inserting this vector potential into the wave
equation and imposing the Lorenz gauge rµA

µ = 0.
Substitution of the lowest order term O

�
!
0
�

of the decompo-
sition (1.2) into Eq. (1.1) results in the propagation equations
for the wave vector and its polarization. These provide the ba-
sis for the formulation of geometric optics and the gravitational
Faraday effect (also known as the Rytov–Skroskiı̆ effect).

The wave vector [1, 3, 4] lµ ··= �rµ� ⌘ �@µ� defines
the propagation and the spatial periodicity of the wave. It is
null in all orders of the asymptotic expansion of Eq. (1.2) and
thus satisfies the eikonal equation

l2 = @µ�@
µ� = 0, (1.3)

which is a restatement of the null condition in terms of the
phase function. It is the Hamilton–Jacobi equation for massless
particles on a given background spacetime. As such, it is
equivalent to a dynamical system of massless point particles
described by a Hamiltonian H(lµ, xµ) [1, 5]. These fictitious
particles are often referred to as photons, even if the context is
purely classical.

The three-dimensional hypersurfaces of constant � are null.
The hypersurface-orthogonal integral curves of lµ form a twist-
free null geodesic congruence. These geodesics are the light
rays of geometric optics. Alternatively, they may be interpreted
as the trajectories of fictitious classical photons that generate
the hypersurface of constant phase � and at the same time are
orthogonal to it due to Eq. (1.3) [3].

The spacelike polarization vector is defined as

e
µ ··=

A
µ
0q

A
µ
0
A⇤

0µ

, e
⇤
µe

µ = 1. (1.4)
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Polarization-dependent photon trajectories

Polarized ray equation: Frolov
Phys. Rev. D 102, 084013 (2020)

In the presence of curvature the motion of circularly polarized photons 
is nongeodesic and depends on both their helicity and their frequency.

Calculation of        requires Fermi-propagated null tetrad, but its construction requires knowing the corrections!
Note:

SM, Terno, Vadapalli
Phys. Rev. D 111, 004001 (2025)

left- and right-handed circular polarization
<latexit sha1_base64="3NGf0+2Qx+fyex+who8VcPeKZUo=">AAACF3icbVDLSsNAFJ3UV62vqks3wSJUkJBofWyEohuXFewDklAm00k7dCYJMzdiCf0LN/6KGxeKuNWdf+P0sdDWAzMczrn3zp0TJJwpsO1vI7ewuLS8kl8trK1vbG4Vt3caKk4loXUS81i2AqwoZxGtAwNOW4mkWAScNoP+9chv3lOpWBzdwSChvsDdiIWMYNBSu2h5QB9gPMeV3cDPbMuuHNnWia2v08owK3uKdQW+9BLhHA7bxZIuGMOcJ86UlNAUtXbxy+vEJBU0AsKxUq5jJ+BnWAIjnA4LXqpogkkfd6mraYQFVX423mdoHmilY4ax1CcCc6z+7siwUGogAl0pMPTUrDcS//PcFMILP2NRkgKNyOShMOUmxOYoJLPDJCXAB5pgIpne1SQ9LDEBHWVBh+DMfnmeNI4t58yq3FZK1atpHHm0h/ZRGTnoHFXRDaqhOiLoET2jV/RmPBkvxrvxMSnNGdOeXfQHxucPk52dqg==</latexit>

(� = ±1)
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wµ

<latexit sha1_base64="7hRCyVtmCTHJyk+NBuUhqp/QEl4="></latexit>

D2xµ

D⌧2
= ��

!
Rµ

⌫↵�l
⌫e↵(1)F e

�
(2)F =: wµ
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dx⌫

d⌧

Analytically:  use perturbative approach

Numerically:  incorporate Fermi-Walker transport law in system of equations

2

It is transversal to the null geodesic generated by l. Tak-
ing the gradient of the null condition results in the geodesic
equation for the wave vector, and the Lorenz gauge condition
implies the parallel propagation equation for the polarization.
Therefore, the vectors are parallel-propagated [6] according to

rll = 0, rle = 0. (1.5)

The deflection of light from the fiducial Euclidean path is the
first classical test of general relativity [3, 7]. Gravitational Fara-
day rotation was found to dramatically alter the polarization
of X-ray radiation emitted from the accretion disk of the black
hole in Cyg X–1 [8]. Adjusting for this effect also played a
crucial role in the polarization analysis of the emission spec-
trum of the black hole in M87 [9]. It had previously been
investigated in the context of gravitational lensing [10, 11] and
interactions of gravitational and electromagnetic waves [12].
The interpretation of these results involves subtleties that are
related to both the differences in superfluously similar physical
situations and the important role that is played by choice of
reference frames [12–16].

The next term in the expansion of Eq. (1.2) that is of the
order O

�
!
�1

�
is responsible for the propagation of left- and

right-handed circularly polarized components of a beam of
light along different paths in an inhomogenous gravitational
field. This phenomenon is often referred to as the gravitational
spin Hall effect [17–22]. Several approaches can be used to
evaluate this effect. Efficient schemes that are applicable for
general spacetimes have been developed recently and allow us
to establish relations between different approaches [19, 20].

Even in the simplest spacetimes (e.g., Schwarzschild or
extremal Kerr black holes), numerical simulations reveal some
interesting consequences of the ostensibly small deviations
from geometric optics [20, 23]. The perturbative scale is set
by the parameter 1/(!L), where L is a typical length scale
(for example the Schwarzschild radius rg ⌘ 2M ). Several
analytical investigations [24–26] have identified some of these
features.

Using the formulation developed by Frolov in Ref. [19],
we investigate the effects of gravity-induced birefringence in
the Schwarzschild spacetime and perform calculations in the
leading order of 1/(!rg). For impact parameters larger than
the critical value 3

p
3rg/2, we obtain explicit expressions for

the quantities that characterize polarization-dependent orbits.
At the same order 1/!, they scale as various powers of the
dimensionless ratio `/rg, where ` ··= j/" denotes the impact
parameter, and j and " the conserved angular momentum and
the conserved energy of the photons, respectively.

The remainder of this article is organized as follows: We
present the basic equations underlying our approach in Sec. II,
including their numerical solutions and the schematics of ob-
taining the iterative analytical solutions. Results pertaining
to the scaling of various orbital parameters are presented in
Sec. III. In Sec. IV, we outline applications of our findings for
astrophysical observations. Lastly, in Sec. V, we discuss the
physical implications of our results and survey prospects for
future directions in this research domain. Additional mathe-
matical details are provided in the appendices, and the MATHE-

MATICA code detailing explicit calculations is openly available
in the GitHub repository listed as Ref. [27].

We use the (�,+,+,+) metric signature and set G = c = 1.
Four-vectors are denoted by the sans font, e.g., l, e, w, and
three-vectors are indicated by boldface, e.g., l and e. Greek
indices are assumed to run from 0 to 3.

II. BASIC EQUATIONS

Our starting point is the system of propagation equations
[19] for the tangent to a null ray l

µ ··= dx
µ
/d⌧ (where ⌧

denotes the affine parameter) and three additional vectors that
together form a null tetrad [6]. Unlike Ref. [19], we use the two
real (linear) polarization vectors instead of the complex circular
polarization vectors. This choice simplifies the analysis and
reduces errors of numerical calculations.

The polarisation four-vectors satisfy l · ei = 0, e2i = 1, and
n · ei = 0, where i = 1, 2 and the auxiliary null vector n
satisfies l · n = �1. The Newman–Penrose [28] null tetrad
(l, n,m, m̄) is formed by setting

m =
1
p
2
(e1 + ie2), m̄ =

1
p
2
(e1 � ie2). (2.1)

A polarized light ray follows a null but in general non-geodesic
trajectory whose acceleration in the high-frequency limit is
given by

D
2
x
µ

D⌧2
= �

�

!
R

µ
⌫↵�l

⌫
e
↵
(1)F e

�
(2)F =·· w

µ
. (2.2)

Here R
µ
⌫↵� denotes the Riemann tensor and � = ±1 corre-

sponds to right/left circular polarization. The derivation of this
expression requires that the tetrad is propagated according to

rlnF = 0, rlmF = �nF , rlm̄F = �
⇤nF , (2.3)

where the acceleration parameter  is given by

 ··= �w ·m = �
i�

!
Rµ⌫↵�l

µ
m

⌫
Fm

↵
F m̄

�
F . (2.4)

This set of equations guarantees that the relations between
the tetrad vectors are preserved along the trajectory x

µ(⌧),
and the subscript F is used to distinguish such tetrads (and to
indicate that they satisfy the analog of Fermi-propagation that
is adapted to null trajectories).

Since the propagation equations are valid at the order
1/(!L), where L is the characteristic length scale, we look
for a perturbative solution using it as a small dimensionless
parameter. The trajectory is thus represented as

x
µ =

�
x
µ + (!L)�1

x
µ
(1)

+O
�
(!L)�2

�
, (2.5)

where �
x
µ is a solution of the geodesic equation. Therefore,

the right-hand side of Eq. (2.2) must include the unperturbed
tetrad vectors,

�
l
µ =

�
x
µ
/d⌧ , etc. Consequently, the propagation

equations for the tetrad should be enforced only at the zeroth

https://doi.org/10.1103/PhysRevD.102.084013
https://doi.org/10.1103/PhysRevD.102.084013
https://doi.org/10.1103/PhysRevD.102.084013
https://doi.org/10.1103/PhysRevD.111.044001
https://doi.org/10.1103/PhysRevD.111.044001
https://doi.org/10.1103/PhysRevD.111.044001
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Polarization-induced corrections     in the deflection and emission scenario

Emission

<latexit sha1_base64="NiDXmjoaae6GvzKqjh7Gsxwo8AE=">AAAB/3icdVDLSgMxFM34rPU1KrhxEyyCq2HGFrW7ohuXFewDOkPJZNI2NJMMSaZQxi78FTcuFHHrb7jzb8y0FXweCDmcc+/NzQkTRpV23XdrYXFpeWW1sFZc39jc2rZ3dptKpBKTBhZMyHaIFGGUk4ammpF2IgmKQ0Za4fAy91sjIhUV/EaPExLEqM9pj2KkjdS19/1QsEiNY3Nl/ghJPSAaTbp2yXWq1XK54sHfxHPcKUpgjnrXfvMjgdOYcI0ZUqrjuYkOMjOPYkYmRT9VJEF4iPqkYyhHMVFBNt1/Ao+MEsGekOZwDafq144MxSpf0VTGSA/UTy8X//I6qe6dBxnlSaoJx7OHeimDWsA8DBhRSbBmY0MQltTsCvEASYS1iaxoQvj8KfyfNE8c79SpXFdKtYt5HAVwAA7BMfDAGaiBK1AHDYDBLbgHj+DJurMerGfrZVa6YM179sA3WK8fobSXLQ==</latexit>
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• Claim: Any asymmetry in time* is thermodynamic in origin.


• Tease apart causation nature and mere knowledge in quantum mechanics


• Interpret quantum mechanics as involving retrocausal influence


• Intuitively understand:


1. how knowing all there is too know about the total system, one knows as little as 
possible about the individual subsystems 

2. why Wood and Spekkens claim that causal explanations of Bell inequality 
violations require fine-tuning.

ρA = TrB[ |Φ+⟩⟨Φ+ | ] = 1
2 $2

Inference and Fine-Tuning in Causal Explanations of Bell-Inequality Violations 
Joppe Widstam 
Max Planck Institute for the Physics of Complex Systems - Dresden, Germany

*CPT in QFT



“An entangled system must be considered an inseparable whole”

• Probability of Alice’s measurement outcome depends 
on the “clustering” of all relevant variables 

.


• Maximal ignorance about one of the relevant 
variables hides the dependence of Alice's outcome 
on the other relevant variables. 

• Tracing out Bob’s subsystem:

p (kA ∣ MA, MB, kB)

p (kA ∣ MA, MB, kB) → p (kA ∣ MA, kB) = p (kA ∣ MA, MB) = p (kA ∣ MB, kB) = 1
2

How knowing all there is too know about the total system, one knows as little as possible about the individual subsystems

pkA
= Tr ( |kA⟩⟨kA |ρA) = 1

2

ρA = TrB[ |Φ+⟩⟨Φ+ | ] = 1
2 $2



References
Wood, C. J., & Spekkens, R. W. (2015). The lesson of causal discovery algorithms for quantum correlations: Causal explanations of Bell-
inequality violations require fine-tuning. New Journal of Physics, 17(3), 033002.

Price, H., & Wharton, K. (2015). Disentangling the quantum world. Entropy, 17(11), 7752–7767. 

Evans, P. W. (2021). A sideways look at faithfulness for quantum correlations. The Journal of Philosophy, 118(1), 28–42.

Grothus, M., & Vilasini, V. (2024). Characterizing Signalling: Connections between Causal Inference and Space-time Geometry. 
arXiv:2403.00916

Vilasini, V., & Colbeck, R. (2022). General framework for cyclic and fine-tuned causal models and their compatibility with space-time. 
Physical Review A, 106(3), 032204.

Thank you for listening!

If you are the author of this paper please visit my poster or talk to me at coffee break, 
there is a small community of philosophers I think will want to cite your paper.


