Spinor fields in κ -Minkowski noncommutative spacetime

Tadeusz Adach

Uniwersytet Wrocławski

June 25, 2025

Noncommutative spacetime - What? Why?

• We are interested in possible residual effects of quantum gravity in the flat spacetime limit

General Relativity
$$\xrightarrow{\text{flat limit}}$$
 Special Relativity
 $\downarrow \kappa$?
Quantum Gravity? $\xrightarrow{?}$ Deformed SR?

• Certain models (e.g. topological QG in 2+1 dimensions, some spin foam models) predict effective noncommutativity of spacetime:

$$[x^{\mu},x^{
u}]
eq 0$$

- There are many different models of noncommutative spacetime e.g. Snyder spacetime, Moyal-Weyl spacetime, κ-Minkowski, ρ-Minkowski...
- The attractive feature of κ-Minkowski is that it admits a relativistically invariant length/energy/mass scale, which is a recurring theme across many approaches to QG

κ -field theory

- What kind of phenomenological implications can we extract?
- We investigate the interplay between κ-Poincaré and CPT
- Long-standing research program:
 - L. Freidel, J. Kowalski-Glikman and S. Nowak, *Field theory on kappa-Minkowski space revisited: Noether charges and breaking of Lorentz symmetry*, (2008)
 - M. Arzano, A. Bevilacqua, J. Kowalski-Glikman, G. Rosati, J. Unger, κ -deformed complex fields and discrete symmetries (2021)
 - A. Bevilacqua, J. Kowalski-Glikman, W. Wiślicki, κ -deformed complex scalar field: Conserved charges, symmetries, and their impact on physical observables, (2022)
- Recent advancements: new perspective on CPT and Dirac fields

・ 同 ト ・ ヨ ト ・ ヨ ト

Gravitational time-dilation from quantum interactions?

Dario Cafasso●,^{1,*} Nicola Pranzini●,^{2,3} Jorge Yago Malo,¹ Vittorio Giovannetti●,⁴ and Marilù Chiofalo● ¹Department of Physics, University of Pisa, and INFN - Sezione di Pisa, ¹Department of Physics, University of Pisa, and INFN - Sezione di Pisa, ²QTF Centre of Excellence and Department of Physics, University of Helsinki, ²QTF Centre of Excellence and Department of Physics, University of Helsinki, ³InstituteQ - the Finnish Quantum Institute, Finland ³InstituteQ - the Finnish Quantum Institute, Finland ⁴NEST, Scuola Normale Superiore and Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche, Piazza dei Cavalieri 7, IT-56126 Pisa, Italy ⁽¹⁾(Received 9 July 2024; accepted 16 October 2024; published 22 November 2024)

PHYSICAL REVIEW D 110, 106014 (2024)

Dario Cafasso QSTAR, INO-CNR, LENS, Firenze University of Naples, Federico II

Time in quantum theory

[Isham, 1993, Page and Wootters, 1983]

Page and Wootters (PaW)

"If the Universe is truly isolated, there is no place in the theory for an external time parameter"

"Time via a physical clock that is part of the system itself"

Reasonable hypothesis, if we want to compute/simulate...

Engeneered environment as a quantum reference frame

"Whatever can be said about 'time development' has to be extracted from this equation."

$$\hat{\mathcal{H}} \ket{\Psi} = 0$$

Evolution without evolution

Bipartite quantum system U = C + S with $\mathcal{H} = \mathcal{H}_C \otimes \mathcal{H}_S$.

 $\hat{\mathcal{H}} = \hat{\mathcal{H}}_{\mathcal{C}} + \hat{\mathcal{H}}_{\mathcal{S}}$ we have

$$\left\langle t\right|_{C}\hat{\mathcal{H}}\left|\Psi\right\rangle = \left(-i\hbar\frac{\mathrm{d}}{\mathrm{d}t} + \hat{\mathcal{H}}_{S}\right)\left\langle t\right|_{C}\left|\Psi\right\rangle = 0$$

$$\frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle_{S} = -\frac{i}{\hbar} \hat{\mathcal{H}}_{S} |\psi(t)\rangle_{S} \text{ with } a(t) = const$$

$$|\Psi
angle = \int \mathrm{d}\mu(t) \; a(t) \left|t
ight
angle_{C} \left|\psi(t)
ight
angle_{S}$$

 $|\psi(t)
angle_{S} = \frac{1}{a(t)} \left\langle t|_{C} \left|\Psi
ight
angle \; \text{with} \; a(t) = \left\|\left\langle t|_{C} \left|\Psi
ight
angle
ight\|$

The TiDIT mechanism

The corresponding Schrödinger equation is

$$i\hbar\hat{\boldsymbol{R}}\frac{\mathrm{d}}{\mathrm{d}\tau}|\psi(\tau)\rangle_{U|A} = \left(\alpha\hbar\boldsymbol{w}\hat{\sigma}_{B}^{\mathsf{x}} + \hat{\mathcal{H}}_{S}\right)|\psi(\tau)\rangle_{U|A}$$

 $\hat{R} = \mathbb{1} - g \hat{\sigma}_B^x$ [Castro-Ruiz et al., 2020]

Quantum time dilation
$$\xrightarrow{\text{TiDIT}}$$
 new interaction terms!
 $i\hbar \frac{\mathrm{d}}{\mathrm{d}\tau} |\psi(\tau)\rangle_{U|A} = \hat{\mathcal{H}}_{eff}^{(A)} |\psi(\tau)\rangle_{U|A}$
 $\hat{\mathcal{H}}_{eff}^{(A)} = \frac{1}{1-g^2} \left(\alpha\hbar wg + \alpha\hbar w\hat{\sigma}_B^{\mathrm{x}} + \hat{\mathcal{H}}_S + g\hat{\sigma}_B^{\mathrm{x}}\hat{\mathcal{H}}_S\right)$

Time-Dilation induced Interaction Transfer (TiDIT) mechanism

Thank you for your (classical) time!

Quantum Cosmos Lab

 $\iota_{(k)}^{m_1m_2m_3m} D(h)^{m'} {}_m \iota_{(k')m'}^{m_4m_5m_6}$

$$S(\hat{
ho}_{\partial A}) = S(\hat{
ho}_A) + \log(2j+1)$$
^{1.0}

Livine, E. R. (2018). Physical Review D, 97(2), 026009.

Formation of an interfacial wave spectral cascade: from one to few to many Seán Gregory, Silvia Schiattarella, Vitor Barroso, David Kaiser, Anastasios Avgoustidis, & Silke Weinfurtner

The interface between two fluids, $\xi(t, \vec{x})$, is oscillated with a shaking platform

This excites one low wavenumber k mode through parametric resonance

Through nonlinear interaction, this one mode excites a *few*, which in turn excite *many* more

Analogue cosmology

Fluid-fluid interface $\xi(t, \vec{x})$

Periodic forcing from shaking platform at amplitude A,

Power spectral density of fluid interface S_{mn}

[1] Gregory, S., Schiattarella, S., Barroso, V. S., Kaiser, D. I., Avgoustidis, A., & Weinfurtner, S. (2024). Tracing the nonlinear formation of an interfacial wave spectral cascade from one to few to many. arXiv (2+1) Scalar field in the early universe $\phi(t, \vec{x})$

Periodic forcing from inflaton oscillating around potential minima at amplitude A, frequency $2\omega_0$, immediately after

[2] Micha, R., & Tkachev, I. I. (2004). Turbulent thermalization. Physical Review D, 70(4), 043538.

Shannon wavelets and 'holographic-like' lattices in QFT

Speaker: Dominic G. Lewis

In collaboration with: Nicholas Funai, Simon Vedl, Dan George, Achim Kempf, Gavin Brennan, Nicolas C. Menicucci

June 2025

RMIT University, Macquarie University, University of Waterloo

Bandlimited continuous theory

Non-local lattice theory

Corporate needs you to find the difference between this picture and this picture

An ultraviolet cut-off to $QFT \rightarrow Permits$ an equivalent lattice model of coupled harmonic oscillators

Local derivative operators on the continuous field are non-local on the lattice (polynomial decay in coupling strength)

Some history

What about without a cut-off?

Using a Shannon wavelet basis, we can use sampling theory on fields without a cut-off!

We take the momentum space of a field and separate it into discrete layers and each layer acts as its own bandlimited QFT with its own lattice model.

The discrete field has a new dimension!

We place the lattices on top of each other and observe the length scale of each layer of the cake scales hyperbolically!

How far does this rabbit hole go?

Come to my poster and find out 🙃

Phys. Rev. D 111, 044001 (2025) / arXiv:2408.02729 [gr-qc]

Gravity-induced birefringence in spherically symmetric spacetimes

Sebastian Murk[®]*

Quantum Gravity Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan

Daniel R. Terno[†] and Rama Vadapalli[‡] School of Mathematical and Physical Sciences, Macquarie University, NSW 2109, Australia

Daniel R. Terno

Rama Vadapalli

Polarization-dependent photon trajectories

SM, Terno, Vadapalli Phys. Rev. D 111, 004001 (2025)

In the presence of curvature the motion of circularly polarized photons is nongeodesic and depends on both their helicity and their frequency.

Note:

Calculation of w^{μ} requires *Fermi-propagated null tetrad*, but its construction requires knowing the corrections!

Analytically: use perturbative approach $x^{\mu} = \mathring{x}^{\mu} + (\omega L)^{-1} x^{\mu}_{(1)} + \mathcal{O}((\omega L)^{-2})$

Numerically: incorporate Fermi-Walker transport law in system of equations

Polarization-induced corrections ϑ in the deflection and emission scenario

Inference and Fine-Tuning in Causal Explanations of Bell-Inequality Violations

Joppe Widstam

Max Planck Institute for the Physics of Complex Systems - Dresden, Germany

- Claim: Any asymmetry in time* is thermodynamic in origin.
- Tease apart causation nature and mere knowledge in quantum mechanics
- Interpret quantum mechanics as involving retrocausal influence
- Intuitively understand:
 - 1. how knowing all there is too know about the total system, one knows as little as possible about the individual subsystems $\rho_A = \operatorname{Tr}_B[|\Phi^+\rangle\langle\Phi^+|] = \frac{1}{2}\mathbb{I}_2$
 - 2. why Wood and Spekkens claim that causal explanations of Bell inequality violations require fine-tuning.

"An entangled system must be considered an inseparable whole"

How knowing all there is too know about the total system, one knows as little as possible about the individual subsystems

- Probability of Alice's measurement outcome depends on the "clustering" of all relevant variables $p(k_A \mid M^A, M^B, k_B).$
- Maximal ignorance about one of the relevant \bullet variables hides the dependence of Alice's outcome on the other relevant variables.

 $p\left(k_{A} \mid M^{A}, M^{B}, k_{B}\right) \rightarrow p\left(k_{A} \mid M^{A}, k_{B}\right) = p\left(k_{A} \mid M^{A}, M^{B}\right) = p\left(k_{A} \mid M^{B}, k_{B}\right) = \frac{1}{2}$

• Tracing out Bob's subsystem: $\rho_A = \operatorname{Tr}_B[|\Phi^+\rangle\langle\Phi^+|] = \frac{1}{2}\mathbb{I}_2$ $p_{k_A} = \operatorname{Tr}\left(|k_A\rangle\langle k_A|\rho_A\right) = \frac{1}{2}$

Thank you for listening!

References

Wood, C. J., & Spekkens, R. W. (2015). The lesson of causal discovery algorithms for quantum correlations: Causal explanations of Bellinequality violations require fine-tuning. *New Journal of Physics*, *17*(3), 033002.

Price, H., & Wharton, K. (2015). Disentangling the quantum world. *Entropy*, 17(11), 7752–7767.

Evans, P. W. (2021). A sideways look at faithfulness for quantum correlations. *The Journal of Philosophy*, 118(1), 28–42.

Grothus, M., & Vilasini, V. (2024). *Characterizing Signalling: Connections between Causal Inference and Space-time Geometry*. arXiv:2403.00916 If you are the author of this paper please visit my poster or talk to me at coffee break, there is a small community of philosophers I think will want to cite your paper.

Vilasini, V., & Colbeck, R. (2022). General framework for cyclic and fine-tuned causal models and their compatibility with space-time. *Physical Review A*, *106*(3), 032204.